My fantastic Webdings Logo


Cris Poor

Math Department, Fordham University


References

  1. Ash, A. and Gunnells, P. and McConnell, M.: Cohomology of Congruence Subgroups of SL(4;Z) II. (preprint)
  2. Böcherer, S.: Siegel Modular Forms and Theta Series. Proc. of Symposia in Pure Math., Part 2, (1989), 3-17.
  3. Duke, W. and Imamoglu, O.: Siegel modular forms of small weight. Math. Ann. 310, (no. 1), (1998), 73-82.
  4. Eichler, M.: Über die Anzahl der linear unabhängigen Siegelschen Modulformen von gegebenem Gewicht. Math. Ann. 213, (1975), 281-291.
  5. Erokhin, V. A.: Theta series of even unimodular 24-dimensional lattices. LOMI. 86, (1979), 82-93.
  6. Erokhin, V. A.: Theta series of even unimodular lattices. LOMI. 199, (1981), 59-70.
  7. Farkas, H. M.: Generalizations of the λ-function. Israel. Math. Conf. Proc. 9, (1996), 231-239.
  8. Freitag, E. and Oura, M.: A theta relation in genus 4. Nagoya Math. J. 161, (2001), 69-83.
  9. Grushevsky, S. and Salvati Manni, R.: On the Cosmological constant for the chiral superstring measure. arXiv: 0809 1391v1, September 8, 2008.
  10. Gunning, R. C.: Quadratic periods of hyperelliptic abelian integrals, Problems in Analysis, Princeton Univ. Press: Princeton, (1970), 239-247.
  11. Hain, R.: The geometry of the mixed Hodge structure on the fundamental group. Proc. Sympos. Pure Math. 46, (II), (1987), 247-282.
  12. Harris, J. and Morrison, I.: Slopes of effective divisors on the moduli space of stable curves. Invent. Math. 99, (1990), 321-355.
  13. Hashimoto, K.: The dimension of spaces of cusp forms on Siegel upper halfplane of degree two (I). J. Fac. Sci. Univ. Tokyo Sect. IA Math.30, (1983), 403-488.
  14. Ibukiyama, T. and Skoruppa, N.: A vanishing theorem for Siegel modular forms of weight one. Abh. Math. Sem. Univ. Hamburg 77, (2007), 229-235.
  15. Ibukiyama, T.: Dimension Formulas of Siegel Modular Forms of Weight 3 and Supersingular Abelian Surfaces Proceedings of the 4-th Spring Conference: Siegel Modular Forms and Abelian Varieties, Hamana Lake, Japan (2007), 39-60.
  16. Igusa, J.-I.: Modular forms and projective invariants. Amer. J. Math. 89, (1967), 817-855.
  17. Igusa, J.-I.: Schottky's invariant and quadratic forms E. B. Christo el Int. Symp., Aachen (1981), 352-362 .
  18. Jablow, E.: Quadratic vector classes on Riemann surfaces. Duke Math. J. 53, (1986), 221-232.
  19. Kaenders, R. J.: On De Rham Homotopy Theory for Plane Algebraic Curves and their Singularities. Proefschrift, Katholieke Universiteit Nijmegen (1997), 1-167.
  20. Klein, M.: Verschwindungssaätze für Hermitesche Modulforme sowie Siegelsche Modulformen zu den Kongruenzuntergruppen Γ(n)0 (N) und Γ(n)(N). Dissertation der Universität des Saarlandes, Saarbrüken (2004), 1-170.
  21. Martinet, J.: Perfect lattices in Euclidean spaces.. Grundlehren der mathematischen Wissenschaften, Band 327. Springer-Verlag, New York-Heidelberg, 2003.
  22. Mumford, D.: Tata Lectures on Theta II. Progress in Math., Vol. 43, Birkhäuser: Boston, Basel, Stuttgart. (1984).
  23. Oura, M. and R. Salvati Manni: On the image of code polynomials under theta map. arXiv:0803.4389
  24. Poor, C.: Computations of Spaces of Siegel Modular Cusp Forms RIMS Proceedings: Automorphic forms and their Dirichlet series (editor: H. Katsurada), Kyoto, Japan (2002).
  25. Poor, C. and Yuen, D.: Paramodular Cusp Forms Proceedings of the 4-th Spring Conference: Siegel Modular Forms and Abelian Varieties, Hamana Lake, Japan (2007), 198-215.
  26. Pulte, M.: The fundamental group of a Riemann surface: mixed Hodge structures and algebraic cycles. Duke Math. J. 57, (1988), 721-760.
  27. Salvati Manni, Riccardo.: Modular forms of the fourth degree. (Remark on a paper of Harris and Morrison) Lect. Notes Math. 1515, (Classification of Irregular Varieties), (1992), 106-111.
  28. Weber, H.-J.: Hyperelliptic simple factors of J0(N) with dimension at least 3. Exper. Math. 6, (no. 4), (1997), 273-287.
  29. Witt, E.: Eine Identität zwischen Modulformen zweiten Grades. Abh. Math. Sem. Hans. Univ. 14, (1941), 323-337.



I am soooo fake pre-loading this image so the navigation doesn't skip while loading the over state.  I know I could use the sliding doors technique to avoid this fate, but I am too lazy.