Cris Poor
Math Department, Fordham University
References
- Ash, A. and Gunnells, P. and McConnell, M.: Cohomology of Congruence Subgroups
of SL(4;Z) II. (preprint)
- Böcherer, S.: Siegel Modular Forms and Theta Series. Proc. of Symposia in
Pure Math., Part 2, (1989), 3-17.
- Duke, W. and Imamoglu, O.: Siegel modular forms of small weight. Math.
Ann. 310, (no. 1), (1998), 73-82.
- Eichler, M.: Über die Anzahl der linear unabhängigen Siegelschen Modulformen
von gegebenem Gewicht. Math. Ann. 213, (1975), 281-291.
- Erokhin, V. A.: Theta series of even unimodular 24-dimensional lattices.
LOMI. 86, (1979), 82-93.
- Erokhin, V. A.: Theta series of even unimodular lattices. LOMI. 199, (1981),
59-70.
- Farkas, H. M.: Generalizations of the λ-function. Israel. Math. Conf. Proc. 9,
(1996), 231-239.
- Freitag, E. and Oura, M.: A theta relation in genus 4. Nagoya Math. J. 161,
(2001), 69-83.
- Grushevsky, S. and Salvati Manni, R.: On the Cosmological constant for the
chiral superstring measure. arXiv: 0809 1391v1, September 8, 2008.
- Gunning, R. C.: Quadratic periods of hyperelliptic abelian integrals, Problems
in Analysis, Princeton Univ. Press: Princeton, (1970), 239-247.
- Hain, R.: The geometry of the mixed Hodge structure on the fundamental
group. Proc. Sympos. Pure Math. 46, (II), (1987), 247-282.
- Harris, J. and Morrison, I.: Slopes of effective divisors on the moduli space of
stable curves. Invent. Math. 99, (1990), 321-355.
- Hashimoto, K.: The dimension of spaces of cusp forms on Siegel upper halfplane
of degree two (I). J. Fac. Sci. Univ. Tokyo Sect. IA Math.30, (1983), 403-488.
- Ibukiyama, T. and Skoruppa, N.: A vanishing theorem for Siegel modular
forms of weight one. Abh. Math. Sem. Univ. Hamburg 77, (2007), 229-235.
- Ibukiyama, T.: Dimension Formulas of Siegel Modular Forms of Weight 3 and
Supersingular Abelian Surfaces Proceedings of the 4-th Spring Conference: Siegel
Modular Forms and Abelian Varieties, Hamana Lake, Japan (2007), 39-60.
- Igusa, J.-I.: Modular forms and projective invariants. Amer. J. Math. 89,
(1967), 817-855.
- Igusa, J.-I.: Schottky's invariant and quadratic forms E. B. Christo
el Int.
Symp., Aachen (1981), 352-362 .
- Jablow, E.: Quadratic vector classes on Riemann surfaces. Duke Math. J. 53,
(1986), 221-232.
- Kaenders, R. J.: On De Rham Homotopy Theory for Plane Algebraic Curves
and their Singularities. Proefschrift, Katholieke Universiteit Nijmegen (1997), 1-167.
- Klein, M.: Verschwindungssaätze für Hermitesche Modulforme sowie
Siegelsche Modulformen zu den Kongruenzuntergruppen Γ(n)0 (N) und Γ(n)(N).
Dissertation der Universität des Saarlandes, Saarbrüken (2004), 1-170.
- Martinet, J.: Perfect lattices in Euclidean spaces.. Grundlehren der mathematischen
Wissenschaften, Band 327. Springer-Verlag, New York-Heidelberg, 2003.
- Mumford, D.: Tata Lectures on Theta II. Progress in Math., Vol. 43,
Birkhäuser: Boston, Basel, Stuttgart. (1984).
- Oura, M. and R. Salvati Manni: On the image of code polynomials under theta
map. arXiv:0803.4389
- Poor, C.: Computations of Spaces of Siegel Modular Cusp Forms RIMS Proceedings:
Automorphic forms and their Dirichlet series (editor: H. Katsurada),
Kyoto, Japan (2002).
- Poor, C. and Yuen, D.: Paramodular Cusp Forms Proceedings of the 4-th
Spring Conference: Siegel Modular Forms and Abelian Varieties, Hamana Lake,
Japan (2007), 198-215.
- Pulte, M.: The fundamental group of a Riemann surface: mixed Hodge structures
and algebraic cycles. Duke Math. J. 57, (1988), 721-760.
- Salvati Manni, Riccardo.: Modular forms of the fourth degree. (Remark on a
paper of Harris and Morrison) Lect. Notes Math. 1515, (Classification of Irregular
Varieties), (1992), 106-111.
- Weber, H.-J.: Hyperelliptic simple factors of J0(N) with dimension at least 3.
Exper. Math. 6, (no. 4), (1997), 273-287.
- Witt, E.: Eine Identität zwischen Modulformen zweiten Grades. Abh. Math.
Sem. Hans. Univ. 14, (1941), 323-337.