First, we compute the action of the automorphisms on \(I_2\), and check that these matrices are in \( SO(10)\).
i8 : K = frac(QQ[t]);
i9 : R = K[y_0..y_6];
i10 : I2 = {-2*y_1^2+2*y_0*y_2, y_1*y_2-y_0*y_3, -2*y_2^2+2*y_1*y_3, -y_2*y_3+2*y_1*y_4-y_0*y_5, y_2*y_4-2*y_1*y_5+y_0*y_6, -y_5^2+y_4*y_6, -y_4*y_5+y_3*y_6, -y_4^2+y_3*y_5, y_3*y_4-2*y_2*y_5+y_1*y_6, y_3^2-2*y_2*y_4+y_1*y_5};
i11 : A1 = diagonalMatrix({t^-3,t^-2,t^-1,1,t,t^2,t^3});
7 7
o11 : Matrix K <--- K
i12 : FA1 = map(R,R,A1);
o12 : RingMap R <--- R
i13 : eA1=matrix apply(I2, i -> writeInI2Basis(i,I2,FA1))
o13 = | 1/t4 0 0 0 0 0 0 0 0 0 |
| 0 1/t3 0 0 0 0 0 0 0 0 |
| 0 0 1/t2 0 0 0 0 0 0 0 |
| 0 0 0 1/t 0 0 0 0 0 0 |
| 0 0 0 0 1 0 0 0 0 0 |
| 0 0 0 0 0 t4 0 0 0 0 |
| 0 0 0 0 0 0 t3 0 0 0 |
| 0 0 0 0 0 0 0 t2 0 0 |
| 0 0 0 0 0 0 0 0 t 0 |
| 0 0 0 0 0 0 0 0 0 1 |
10 10
o13 : Matrix K <--- K
i14 : FA2 = map(R,R,reverse gens R);
o14 : RingMap R <--- R
i15 : eA2=matrix apply(I2, i -> writeInI2Basis(i,I2,FA2))
o15 = | 0 0 0 0 0 2 0 0 0 0 |
| 0 0 0 0 0 0 -1 0 0 0 |
| 0 0 0 0 0 0 0 2 0 0 |
| 0 0 0 0 0 0 0 0 -1 0 |
| 0 0 0 0 1 0 0 0 0 0 |
| 1/2 0 0 0 0 0 0 0 0 0 |
| 0 -1 0 0 0 0 0 0 0 0 |
| 0 0 1/2 0 0 0 0 0 0 0 |
| 0 0 0 -1 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 1 |
10 10
o15 : Matrix K <--- K
i16 : isInFultonHarrisSO2n(eA1)
o16 = true
i17 : isInFultonHarrisSO2n(eA2)
o17 = true
Next, we check that we have lifted these actions to the Clifford
algebra correctly.
i18 : RVL1 = {
{0,0,0,1,0, 0,0,0,1,0},
{0,0,0,1,0, 0,0,0,t^-1,0},
{0,0,1,0,0, 0,0,1,0,0},
{0,0,1,0,0, 0,0,t^-2,0,0},
{0,1,0,0,0, 0,1,0,0,0},
{0,1,0,0,0, 0,t^-3,0,0,0},
{1,0,0,0,0, 1,0,0,0,0},
{1,0,0,0,0, t^-4,0,0,0,0}
};
i19 : entries(product apply(RVL1, x -> alpha(x)))==entries(eA1)
o19 = true
i20 : RVL2 = {
{0,0,0,1,0, 0,0,0,1,0},
{0,0,1,0,0, 0,0,-1/2,0,0},
{0,1,0,0,0, 0,1,0,0,0},
{1,0,0,0,0, -1/2,0,0,0,0}
};
i21 : entries(product apply(RVL2, x -> alpha(x)))==entries(eA2)
o21 = true
i22 : product apply(RVL1, x -> Q(x))
1
o22 = ---
10
t
o22 : K
i23 : product apply(RVL2, x -> Q(x))
1
o23 = -
4
o23 : QQ
Next, we compute the actions of the automorphisms on \(S^{+}\).
i24 : ContractAndWedgeList=join(apply(5, i -> contractByemk(i+1,evenWedgeBasis,oddWedgeBasis,K)),apply(5, i -> wedgeByek(i+1,evenWedgeBasis,oddWedgeBasis,K)));
i25 : s=apply(2^4, i -> i);
i26 : sA1 = -t^5*actionOnSplus(RVL1,ContractAndWedgeList,s)
o26 = | 1/t5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 t2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 t 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 1/t 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 1/t 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 1/t2 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 1/t2 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 1/t3 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 1/t4 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 t5 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 t4 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 t3 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t2 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t |
16 16
o26 : Matrix K <--- K
i27 : sA2 = 2*actionOnSplus(RVL2,ContractAndWedgeList,s)
o27 = | 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 |
| 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 |
| 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 |
| 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 |
| 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 |
| 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 |
16 16
o27 : Matrix K <--- K
Finally, we compute the actions of the automorphisms on coordinates of
\(\mathbb{P}(S^{+})\).
i28 : xA1 = transpose(sA1^-1)
o28 = | t5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 1/t2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 1/t 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 t 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 t 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 t2 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 t2 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 t3 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 t4 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 1/t5 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 1/t4 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 1/t3 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/t2 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/t |
16 16
o28 : Matrix K <--- K
i29 : xA2 = transpose(sA2^-1)
o29 = | 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 |
| 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 |
| 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0 |
| 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0 |
| 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 |
| 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 |
16 16
o29 : Matrix K <--- K