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Abstract

A problem for fluid flow around an axisymmetric spherical surface with a hole is

presented to characterize pore dynamics in liposomes. A rotational stream function for

the contraction of a punctured plane region is obtained and is used in the perturbation

expansion for a stream function in the case of a spherical surface with a hole of small

radius compared to the spherical radius. The Rayleigh dissipation function is calculated

and used to infer the aqueous friction induced by the contraction of the hole. The

theoretical aqueous friction coefficient is compared with one derived from experimental

data, and they are in agreement.

1 Introduction

Biological membranes consist of lipids and proteins. Membranes deform as a natural part of

many biological processes, such as the changes in shape red blood cells undergo as they pass

through capillaries, the merger of separate membranes in the release of neurotransmitters
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in the brain, and the engulfment of large extracellular molecules by cells. The deformation

of membranes is hindered by the internal viscosity of the membrane and by the aqueous

viscosity of the surrounding water.

A single bilayer can be arranged into a sphere that separates interior and exterior aqueous

compartments. These liposomes can be large (20 µm), mimicking cell membranes, or small

(100 nm), modeling membranes of intracellular granules. Pores more or less circular, form in

membranes as a result of injury of osmotic bursting and the spherically shaped membrane

surface becomes open to the extracellular solution. Pore dynamics has been experimentally

modeled by osmotic swelling of liposomes, and it has been found that the pore grows until the

internal pressure of the liposome, responsible for swelling, is relieved; the hole then shrinks,

minimizing its circumference.

The standard theory that had been used to predict pore growth and shrinkage assumed

that dissipation of the energy stored within the stretched bilayer is dominated by the viscosity

of the bilayer itself [2]. This prior theory, however, did not correctly account for pore

dynamics as a function of aqueous viscosity; the time course for growth and shrinkage of

the pore is slowed as the aqueous viscosity is experimentally increased, and the prior theory

ignored any contribution of aqueous viscosity to energy dissipation [2, 16]. More recently we

developed a theory that does properly describe the experimentally observed dependence. We

further showed by dimensional analysis that aqueous viscosity, and not bilayer viscosity, is the

leading term in the dissipation function [20]. But this recent theory assumed that the bilayer

was flat, whereas liposomes and cells are spherical. A drag friction coefficient accounting for

the aqueous viscosity was obtained empirically by fitting this theory to experimental data

of measured pore time courses.

In this note, we present a self contained theoretical derivation for the viscous drag of

the ambient fluid for spherical, rather than flat, open membranes. We will refer to the

viscous drag as aqueous friction. We view a liposome with a pore as an axisymmetric, two

dimensional surface immersed in an incompressible, viscous, Newtonian fluid. We present a

boundary value problem for the fluid flow around the surface. In the biological situation,
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the Reynolds number Re = ρUL/µ ≈ 10−5 is low; the velocity is obtained from a stream

formulation for the equations of motion. We first study the case of a sphere with infinite

radius and obtain a closed form solution for the stream function around a flat plane with a

hole. We address the case of a sphere with finite radius by using the method of perturbation

expansion assuming the ratio between the radius of the hole and the radius of the sphere

is small. We then calculate the rate of mechanical energy dissipation in order to infer the

following value of the aqueous friction coefficient;

γ(ε) = 2π − 4ε ln
ε

2
+ · · · (1)

where ε is the non-dimensional ratio of hole radius to sphere radius. Equation 1 shows that

the friction coefficient for a contracting, infinite, flat plane with a hole is precisely 2π. This

coefficient increases as the plane is made spherical with a finite radius that is large when

compared to the radius of the hole. We combine the value of γ(ε), which now depends on

the liposome geometry, with the Raleigh dissipation equation to derive pore dynamics.

The analytical and numerical calculation of the interaction between fluid flows and bound-

ing regions is in general a difficult problem that is further complicated by the domain ge-

ometry. The boundary integral [17, 25, 27], immersed boundary [14, 15], and phase field

[21] methods are three important numerical methods capable of modeling these interactions.

Exact expressions for the fluid flow, like those obtained by [9] for the nonlinear flow over a

spreading, flat surface, are rare. For the annular region we consider in this note, [5] obtained

the shear forces for unidirectional flow across the circular hole in a plane wall. Exact solu-

tions for the Stokes flow and drag force for a spherical cap in a uniform far field flow have

been derived [8, 18]. In these works, the steady streaming flow describes the rigid translation

of a spherical cap in a viscous fluid at rest. The velocity is constant on the boundary. In

contrast, in the present study the streaming flow is unsteady and the spherical cap is not

rigid, but rather can contract or expand. The magnitude and direction of the velocity on

the boundary depend on both position and time. The consequences of viscous drag on

oscillating cantilevers used for atomic force microscopes has also been considered through

a shape dependent hydrodynamic function [22]. There has been significant work that has
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considered the retraction of viscous sheets that is controlled by energy dissipation internal to

the bilayer itself, but ignoring any contributions caused by movement of the ambient viscous

fluid [1, 4, 6, 7, 24]. To our knowledge a closed form expression for the stream function

accounting for the interaction between a spreading surface that contains a circular hole with

the viscous ambient medium has not been described before.

In the next Section, we present the stream function formulation for axisymmetric Stokes

flow and derive particular solution expansions of the stream equation. In Section 4, we

solve the flow problem for the contraction of a flat plane surface. In Section 5, we solve the

analogous flow problem for a spherical surface using the method of perturbation expansions.

The dissipation function and the friction coefficient given by Equation 1 are calculated at

the ends of Sections 4 and 5. The results of these calculations are compared in Section 6

with the numerical value of the aqueous friction coefficient obtained by empirical means. An

experiment that would explicitly test our theory is suggested.
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3 Notation and Preliminaries

We treat the problem of determining the flow field in the aqueous region surrounding the

membrane by the method of the Stokes’ stream function. Consider an axisymmetric, open

surface Σt with a single hole where the surface is moving with normal velocity vn and

tangential velocity vs (Figure 1). The stream function ψ is a solution to the boundary

value problem ([11]; 4-7.13)

D2ψ − 1

ν
(Dψ)t = 0, x ∈ R3 \ Σt, (2)
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Figure 1: Cut-away portion of a rotationally symmetric open surface Σt representing a spherical liposome

of radius R with a pore of radius r(t) lying between the azimuthal angles 0 < φ < π. A viscous ambient fluid

occupies the region bathing the surface.

1

$

∂ψ

∂s
= −vn, x ∈ Σt, (3)

1

$

∂ψ

∂n
= vs, x ∈ Σt, (4)

ψ = 0, $ = 0. (5)

Here, D is the stream operator which, in cylindrical coordinates ($, z), reads

D =
∂2

∂$2
− 1

$

∂

∂$
+

∂2

∂z2
.

When Dψ = 0 the stream function ψ is said to be irrotational and when Dψ 6= 0 the stream

function ψ is said to be rotational. Here ν = µ/ρ is the kinematic viscosity where µ is the

aqueous (dynamic) viscosity and ρ the aqueous density. The surface tangent es is oriented

away from the hole and the surface normal en is chosen so that (es, en) form a right-handed
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orthonormal frame (Figure 1). In (3), the partial derivative of ψ is taken in the es direction

with arc-length parameter s and in (4) the partial derivative of ψ is taken in the direction en.

Since Σt faces the fluid on two sides, we will distinguish the side of Σt lying in the direction

en as positive and the side of Σt lying in the direction −en side as negative. Finally, (5) is

the requirement that fluid flux be nonsingular on the axis of symmetry.

We will focus our attention on contractile motions of the Σt. As defined below, contraction

is related to a dimensional parameter r(t)—the hole radius. Lipid bilayers are generally

homogeneous so we let the lipid density be spatially constant. Mass conservation then

implies that divS v = ∂v
∂s
· es + 1

$
v · e$ is independent of s, where v = vses + vnen is the

velocity of Σt, divS is the surface divergence, and e$ and ez are the cylindrical basis vectors.

If vn = 0, then

vs(s) =
c1

$
+
c2

$

∫ s

0

$du (6)

where c1 and c2 are integration constants determined by the rim and far field tangential

velocities.

In classical calculations, the drag force that is imposed on obstacles in a Stokes flow

generally shares the same direction as the far field flow. In the present problem, this iden-

tification is not possible because the shear forces caused by contraction are radial. Strictly

speaking, the total shear force is a pseudo force. We calculate the rate of mechanical en-

ergy dissipation as a function of µ, r(t) and r′ to infer the friction coefficient. Once v has

been specified and the stream function ψ determined from (2-5) we calculate the Rayleigh

dissipation function ([11]; 2-2.1, 4-14.10);

∆a = −2µ

∫
Σt

vs
$
Dψ dA. (7)

The dissipation function ∆a is the rate at which internal energy is transferred from the

bilayer into the aqueous surrounding by viscous losses. The coefficient 2 preceding the

previous integral accounts for the dissipation on the positive and negative side of Σt. We

have also chosen a sign convention making ∆a nonnegative.

To illustrate how the friction coefficient is derived from the dissipation function and

applied to the problem of pore dynamics, let E(r, R) be the internal energy of a liposome
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as a function of the hole radius r and sphere radius R. For a liposome in which the internal

pressure is zero, for example,

E(r, R) = T2πr + S
(4πR2 − 2πRr2)

8πR2

is the sum of the edge energy and stretching energy where T = 2.5 kT nm−1 is edge tension

of a hole in a bilayer and S = 0.045 kT nm−2 is the modulus for unfolding of the wrinkles in

the bilayer. The Rayleigh dissipation equation permits us to determine an evolution equation

for r(t);

1

2

∂∆

∂r′
= −∂E

∂r
(8)

where ∆ = ∆a + ∆m and ∆m is the rate of internal energy dissipation due to viscous

losses within the membrane. The aqueous friction coefficient γ is defined by the relation

Fa = 2πrr′γ where Fa = 1
2
∂∆a

∂r′
is the aqueous friction.

We study surfaces Σt which can be approximated by an infinite, flat plane punctured by

a hole of radius r(t) centered on the axis of symmetry;

Σ0
t = {($, z, φ) : $ > r(t), z = 0, 0 ≤ φ < 2π}.

Here, φ is the azimuthal angle. Solutions of (2-5) will be developed by the method of

perturbation expansion ([26]) where we tentatively assume

ψ = ψ0 + εψ1 + · · · (9)

and where ε is a small, non dimensional perturbation parameter. The stream functions in

(9) are solutions to auxiliary boundary value problems on R3\Σ0
t . The boundary data for ψ0,

ψ1, . . . are determined by the surface velocity, the coordinate changes associated with the

approximation of Σt by Σ0
t , and by any preceding terms in the expansion. We will restrict

our attention to the first two terms in the expansion (9), although it is in principle possible

to pursue terms of arbitrarily high order.

Following the method of [23], solutions to (2-5) are presented in oblate spheroidal coor-

dinates

$ + iz = c sinh(ξ + iη).
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The contours ξ = const. and η = const. form an orthogonal family of planetary spheroids

and hyperboloids respectively. The succeeding expressions will be simplified by working with

the separable coordinates

p = cos η, q = sinh ξ

for which

$ = r
√

1− p2
√

1 + q2, z = rpq. (10)

In this way, the infinite cylinder {(p, q, φ) : 0 < p < 1,−∞ < q < ∞, 0 ≤ φ < 2π} is

conformally mapped onto the region R3 \ Σ0
t . In these coordinates, the stream operator is

D =
1

r2(p2 + q2)

(
(1− p2)

∂2

∂p2
+ (1 + q2)

∂2

∂q2

)
.

Later in this note, rotational stream functions of the form

ψ0 = qf(p), ψ1 = pg(p), (11)

will arise for which D2ψ0 = D2ψ1 = 0 provided f and g are quadratic. Further solutions of

the equation D2ψ = 0 are obtained by the decomposition ([13])

ψ = ψirr + ψrot, Dψirr = 0, Dψrot = ω, Dω = 0

where ψirr and ω are expressed in terms of Gegenbauer polynomials. Specifically,

ψirr,0 = 1, ψirr,1 = p, ψirr,2 = q, ψirr,3 = pq, ψirr,4 =
1

4
(p2 − 1)(q2 + 1), · · · (12)

satisfy Dψirr,n = 0 for n = 0, 1, 2, . . . , and

ψrot,0 =
1

2
(q2 − p2 + 2), ψrot,1 =

1

2
q

(
1

3
q2 − p2

)
, ψrot,2 =

1

2
p

(
q2 − 1

3
p2

)
,

ψrot,3 =
1

6
(pq3 − p3q + 2pq), · · ·

(13)

satisfy Dψrot,n = ψirr,n for n = 0, 1, 2, . . . . The mathematical details of the derivation of

(12) and (13) are provided in the Appendix Section. We will determine the solution ψ to

boundary value problems by setting

ψ = Bψ0 +B′ψ1 +
∞∑
n=0

Anψirr,n +
∞∑
n=0

Bnψrot,n (14)
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where the value of the coefficients B, B′, A0, A1, . . . , and B0, B1, . . . are chosen to satisfy the

boundary conditions (3-5). [13] have obtained the general expansion the stream function in

oblate spheroidal coordinates.

4 An Infinite, Flat Plane with Hole

As the base case, we consider the planar surface Σ0
t moving with tangential velocity

vs($) = r′
r

$
(15)

and normal velocity

vn($) = 0.

With this velocity, the rim of the hole contracts with rate r′ and the area density is inde-

pendent of position and t. This velocity is sometimes referred to as radial plug flow. It is

immediately verified that vs satisfies the continuity equation (6). Consider the associated

boundary value problem

D2ψ0 − 1

ν
(Dψ0)t = 0, x ∈ R3 \ Σ0

t , (16)

1

$

∂ψ0

∂$
= 0, x ∈ Σ0

t , (17)

1

$

∂ψ0

∂z
= r′

r

$
, x ∈ Σ0

t , (18)

ψ0 = 0, $ = 0. (19)

With the help of (10), one verifies that the boundary conditions (17-19) imply

ψ0(1, q) = 0,
∂ψ0

∂q
(0, q) = 0,

∂ψ0

∂p
(0, q) = r′r2q, −∞ < q <∞. (20)

We therefore guess a solution of the form ψ0 = qf(p) given in (11). We require that f(1) =

0, f(0) = 0, and f ′(0) = r′r2. This is achieved by setting f(p) = r′r2p(1− p) and therefore

ψ0(p, q, t) = r′r2(t)qp(1− p). (21)
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Figure 2: The contour lines of the stream function ψ0/r′ and values (panel A) and the contour lines of

the pressure p/2µr′ and values (panel B) are both for the case r = 1. The surface Σ0
t , depicted by the thick

curve, represents a planar bilayer with a circular hole.

Note that ψ0 is now also a solution of (16) because D2ψ0 = 0 and

Dψ0 =
−2r′q(1− p2)

p2 + q2
(22)

is independent of t, once terminal velocity is reached and r′ is constant. The function ψ0

is an exact solution to the unsteady Stokes flow problem for an incompressible plane region

shrinking with constant speed around a circular hole.

The pressure p can be integrated from the equations 4-26.1, 4-26.2, and 4-15.5 in [11],

yielding

p(p, q, t) = − 2µr′p

r(t)(p2 + q2)
. (23)

Although the pressure p is singular on the leading edge of the hole (q = 0), the dissipation of

mechanical energy due to pressure vanishes. This occurs because the pressure is symmetric

on opposite sides of Σ0
t . Contours of the pressure and ψ0 are provided by Figure 2. Although

the velocity is an exact solution of the Stokes equation, it is not a solution to the full Navier-

Stokes equations (∇ψ0×∇($−1Dψ0) 6= 0). However, the very low Reynolds number implies
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that the velocity fails to solve the full Navier-Stokes equation by a residual on the same

order as the residual found in numerical approximations [10]; the linear Stokes flow is thus

indistinguishable from the nonlinear flow in practical, biological applications.

The pressure field (23) in the vicinity of the pore edge is locally the same as the pressure

field induced by the steady, two dimensional flow past a semi-infinite plate. Taking h to

be the distance from a point in the plane with the surface, setting p = 0 in (23) and

using (10), yields p ∼ −2r′µ/r
√
h. The expression ξ̃η̃2 for the stream function in parabolic

coordinates (η̃, ξ̃) at the leading edge of a flat plate is given by [3]. By integrating the

equations of motion, the pressure on the leading edge of a flat plate pplate is then proportional

to η̃/(η̃2 + ξ̃2). Evaluating the pressure of the plate in the region adjacent to the edge gives

pplate proportional to 1/
√
h which is locally of the same form as the pressure near the pore

edge. A similar comparison holds for the flat plate and axisymmetric uniform flow past the

leading edge of a hemispherical cup [8].

To evaluate the dissipation function, we set p = 0 in (10), (15), and (22), to find

∆a = −2µ

∫
Σ0

t

vs
$
Dψ dA = 8πµr(r′)2

∫ ∞
0

1

1 + q2
dq = 4π2µr(r′)2 (24)

from which we infer

Fa = 4π2µrr′, γ = 2π. (25)

Here γ = 2π is the leading term in the expansion (1). The succeeding terms in the expansion

are calculated in the next section.

5 A Large Sphere with Hole

We use toroidal coordinates to model the spherical surface with a hole;

z + i$ = ir coth
λ+ iζ

2
.

The contours ζ = const. form a family of spheres centered on the axis of symmetry and

λ parametrizes the circular arc extending from the axis of symmetry (λ = 0) to the point
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Figure 3: Toroidal coordinates parametrizing a large sphere Σεt with a hole of radius r. The ζ-contours

form spheres of radius R; the z coordinate has been shifted up so that the base of the sphere passes through

the origin. The curve ($(ζ̃), z(ζ̃)) is orthogonal to the sphere. The pore rim and intersection with the axis

of symmetry are parametrized by the limits λ =∞ and λ = 0 respectively.

($, z) = (r, 0) lying on the rim of the hole (λ→∞.) Let R� r, ε = r
R
, and define

Σ̃ε
t = {($, z, φ) : sin ζ = ε}.

Setting λ = 0 gives the value

r sin ζ

1− cos ζ
+

r sin ζ

1 + cos ζ
=

2r

sin ζ
, (with sin ζ = ε)

for the diameter of Σ̃ε
t. In this way, R coincides with the radius of Σ̃ε

t. The surface Σ̃ε
t translates

along the z-axis as r(t) → 0. Ultimately, we would like Σε
t to be an open sphere of radius

R whose center is stationary. To do so, we translate the previous coordinate system so that

the base of the sphere lies at the origin and define, for ζ̃ > 0,

z

r
=

sin ζ̃

coshλ− cos ζ̃
+

sin ζ

1 + cos ζ
,

$

r
=

sinhλ

coshλ− cos ζ
. (26)

Let Σε
t be the locus of points (z(λ), $(λ), φ) from (26) for 0 ≤ λ <∞, ζ̃ = ζ, and 0 ≤ φ < 2π

as depicted in Figure 3. By introducing ζ̃ in (26), we generate a curve (z(ζ̃), $(ζ̃)) orthogonal
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to the section of Σε
t. This gives a convenient way to compute the normal derivative needed

shortly. Define the tangential velocity

vs(λ) =
r′

cos ζ

√
coshλ− 1

coshλ+ 1
(27)

and normal velocity

vn(λ) = 0.

With this velocity, the rim of the hole contracts with rate r′ and the area density of the

surface is independent of position (but not time). A short calculation verifies that vs(0) = 0,

limλ→∞ vs(λ) = r′

cos ζ
, and that vs is a solution to (6). Also, the radial plug flow is recovered

in the limit

lim
ε→0

vs = r′
r

$

∣∣∣
ε=0
,

as required by (15).

Consider the creeping flow boundary value problem associated with the bounding region

Σε
t;

D2ψε = 0, x ∈ R3 \ Σε
t, (28)

1

$

∂ψε

∂s
= 0, x ∈ Σε

t, (29)

1

$

∂ψε

∂n
= vs, x ∈ Σε

t, (30)

ψε = 0, $ = 0. (31)

To solve the boundary value problem (28-31) by the method of perturbation expansion, we

tentatively assume that a perturbation expansion

ψε(p, q, t; ε) = ψ0(p, q, t) + εψ1(p, q, t) + . . . (32)

holds in a neighborhood of ε = 0. The general strategy is to substitute this expansion into

the equations (28-31). Equating like powers in ε allows a determination of ψ0 and ψ1 as
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solutions to auxiliary boundary value problems. Noting that ψ = 0 on the intersection of Σε
t

with the axis of symmetry, (29) implies that

ψ0 + εψ1 + · · · = 0, x ∈ Σε
t.

Here, p and q depend implicitly on ε, necessitating an expansion of ψ0 and ψ1 before equating

like powers. We do so by fixing λ, and allowing a given point on Σε
t to approach the plane as

ε → 0. With the help of (10) and (26), expanding into a Taylor series in ε, using the chain

rule and the fact that qε = 0 and pε = q
2

+ 1
2q
, we find that

ψ0 + ε

(
ψ1 +

(
q

2
+

1

2q

)
ψ0
p

)
+ · · · = 0. (33)

The subscripts p, q, and ε refer to their respective partial derivatives evaluated at ε = ζ = 0

and fixed λ. Similarly, the condition (30) implies that

∂ψ0

∂n
+ ε

∂ψ1

∂n
+ · · · = $vs, x ∈ Σε

t. (34)

To equate like powers, we rewrite the normal derivative in terms of the partial derivatives in

p and q and then expand each term appearing in the chain rule in terms of ε. Fixing ε and

allowing ε̃ to vary in (26) we find, after some calculation,

∂

∂n
= P

∂

∂p
+ Q

∂

∂q
(35)

where P and Q satisfy

P|ε=0 =
1

rq
, Pε = 0, Q|ε=0 = 0, Qε =

1− q4

2rq3
.

Also, $vs|ε=0 = rr′ and ($vs)ε = 0. With the help of (35), expanding (34) in powers of ε

gives

r′r = Pψ0
p + Qψ0

q + ε(Pψ1
p + Qψ1

q + Pεψ
0
p + Pψ0

pppε + Qεψ
0
q + Qψ0

qqqε) + · · ·

=
1

rq
ψ0
p + ε

(
1

rq
ψ1
p +

1

rq

(
q

2
+

1

2q

)
ψ0
pp +

1− q4

2rq3
ψ0
q

)
+ · · · .

(36)

Consolidating the results from (33) and (36) yields

ψ0(1, q) = 0, ψ0(0, q) = 0, ψ0
p(0, q) = r′r2q, −∞ < q <∞,
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and

ψ1(1, q) = 0, ψ1(0, q) = −
(
q

2
+

1

2q

)
ψ0
p, ψ1

p(0, q) = −
(
q

2
+

1

2q

)
ψ0
pp −

1− q4

2q2
ψ0
q

for −∞ < q < ∞. As expected, the first three of the previous six equations are the same

as (20) that appeared for the stream function on the infinite, flat plane in Section 4. We

identify ψ0 = r′r2qp(1 − p) as before. Plugging the known value of ψ0 into the boundary

values for ψ1 now gives

ψ1(1, q) = 0, ψ1(0, q) = −1

2
r′r2(q2 + 1), ψ1

p(0, q) = r′r2(q2 + 1), −∞ < q <∞.

Equating these boundary values with the decomposition (14) (with ψ0 = qp2 and ψ1 = pq2)

gives the system of equations

B1

6
q3 +

(
B′ +

B2

2
+
B0

2

)
q2 +

(
A3 +B1 +B − B1

2

)
q + A0 + A1 −

B2

6
+
B0

2
= 0,

B1

6
q3 +

(
B0

2
− A4

4

)
q2 +B1q +B0 + A0 −

A4

4
= −1

2
r′r2(q2 + 1),(

B′ +
B2

2

)
q2 + A3q + A1 = r′r2(q2 + 1).

This system has as a solution B′ : A1 : B2 : A0 : A4 : B0 = (−2 : 1 : 6 : 1 : −2 : −2)r′r2 and

all other coefficients zero. In this way

ψε = ψ0 + εψ1 + · · ·

= r′r2 [qp(1− p) + ε (−2ψ1 + ψirr,1 + 6ψrot,2 + ψirr,0 − 2ψirr,4 − 2ψrot,0)] + · · · .
(37)

Recalling that D applied to the irrotational components of ψ1 gives zero, we find

Dψε = r′
[−2q(1− p2)

p2 + q2
+ ε

(−4p(1 + q2)

p2 + q2
+ 6p− 2

)]
+ · · · (38)

We evaluate (7) for the perturbation solution (37). The only technical difficulty presented

by this perturbation expansion is that the integrand of order ε must be integrated over Σε
t

before taking the limit ε → 0 to avoid a divergent integral. From (37) and (38), with the
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substitution u = coshλ, we have dA = 2πr$
(u−cos ζ)

√
u2−1

du and

∆a = −2µ

∫
Σt

vs
$
Dψε dA = −4πµrr′

∫ ∞
1

Dψε

(u+ 1)(u− cos ζ)
du

= 8πµr(r′)2

∫ ∞
1

1√
2
√
u− 1(u+ 1)

+
ε

(u+ 1)(u− cos ζ)
du+ · · ·

= 8πµr(r′)2

(
π

2
− ε

1 + cos ζ
ln

1− cos ζ

2

)
+ · · · .

Finally, using the asymptotic relationship 1 − cos ζ = ε2

2
+ · · · yields the aqueous friction

and dissipation terms for a sphere with R� r;

∆a = 2πµr(r′)2
(

2π − 4ε ln
ε

2
+ · · ·

)
, Fa = 2πµrr′γ(ε), γ(ε) = 2π − 4ε ln

ε

2
+ · · · .

In the next section we make a comparison between pore dynamics using the value γ(ε) and

the experimental record for spherical liposomes.

6 Experimental Validation

We now compare the drag coefficient γ(ε) derived by purely theoretical reasoning with the

drag coefficient C derived in [20] from experimental data, which assumed that C was in-

dependent of liposome radius and hole size. Curve fitting the data with a friction term of

the form Cµrr′ yielded C = 8.16. In the experiments, the smallest measured hole radius

was r = 2 µm and the widest measured radius was 10 µm, placing r in the range from one

tenth to one half of the liposome radius, R = 19.7 nm. For this range of values of ε, the

friction coefficient γ(ε) takes values between 7.4815 and 9.0558. Thus the experimental fit is

in accord with the present theoretical determinations. We now use the theoretically derived

coefficient γ(ε) instead of the value of the coefficient C, previously derived by curve fitting

experimental data, to calculate the expected pore dynamics predicted by the theory in [20].

The agreement between the theory and experimental data is excellent. (Figure 4.)

To further validate (25) by experimental means, a single planar bilayer with diameter

greater than a millimeter, could be used. For planar bilayers, surface tension σ is constant

(and maintained by the supporting circular Gibbs-Plateau border of radius rB), and the
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Figure 4: Comparison of the theoretically derived coefficient γ(ε) (solid lines), the experimentally inferred

coefficient C = 8.16 (dashed lines), and the experimental record (crosses) for pore dynamics [20]. (A) For

the simulation we used µ0 = 32 cP, R = 19.7, µl = 1 P, T = 12.5 pN and S = 0.045 kT nm−2, the values

reported for the experimental records, [2] and [12]. (B) For this experimental record, aqueous viscosity

was smaller µ0 = 1.13 cP ([16]) than in the record of panel A and pore dynamics is faster, underscoring

the importance of aqueous viscosity. We calculated the expected pore dynamics by using the values of the

physical parameters given in the experimental study: R = 21.1, µl = 1 P, T = 14 pN and S = 0.045 kT

nm−2. As a practical matter, the curve fit value of C = 8.16 gives virtually the same curve as that derived

using γ(ε) derived from first principles.

radial plug flow profile is undisturbed by the far field conditions. The bilayer can be punc-

tured (e.g., by electroporation [19]) and the expansion of the hole’s radius r(t) measured

as a function of time. The energy of the bilayer is E = σπ(r2
B − r2) while the aqueous

dissipation of energy, according to (24), is ∆a = 4π2µr(r′)2. The dissipation due to bilayer

friction is ∆m = 4πµlh(r′)2 where h is the thickness of the bilayer (3–4 nm) and µl is the

viscosity of lipid [2]. Note that the aqueous dissipation, which is volumetric, is proportional

to pore radius while the membrane dissipation, accounted for only in the membrane surface,

is independent of this radius.

Using the Rayleigh dissipation equation, the evolution equation for the expansion of the
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hole’s radius in terms of the sum of the aqueous (γ(0) = 2π) and membrane friction is:

Fa + Fm

2π
= (2πµr + 2hµl)r

′ = σr.

For moderate values of lipid viscosity (µl = 1 P) and r in the µm range, the aqueous

component of friction is dominant. In this case we predict that the settling velocity will be

r′ =
σ

2πµ
.

If, however, the contribution of the lipid viscosity µl to energy dissipation is high (µl � 1

P), then r(t) will not grow linearly but satisfy

2πµ(r − r0) + 2hµl ln
r

r0

= σt

where r0 = r(0) is the radius directly after pore formation. Because the functional forms

of aqueous and lipid viscosity to the time course of pore size are quite different from each

other, the relative contributions of each can be determined. Prior investigators [1, 7] have

established the functional form of pore growth in the extreme case of a lipid film suspended

in air. Because aqueous friction is zero in this case, pore dynamics is affected by membrane

friction alone.

7 Conclusion

Experiments that measure the expansion and contraction of holes in liposomes motivated us

to formulate a boundary value problem to determine the motion of an incompressible, viscous

fluid surrounding a spherical surface of zero thickness when a hole in the surface expands

or contracts with a prescribed velocity. The analogue of radial plug flow for a spherical

shape was derived under the assumption that the surface density is spatially constant. This

allowed us to derive a stream function using a perturbation expansion and then calculate

the dissipation function for the flow field.

The zeroth order term in the stream function perturbation expansion is an exact solution

to the Stokes system. One can take advantage of the closed form expression by considering
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other perturbation problems where the limiting shape is similar to the plane region studied

here. Alternatively, since the surface velocity is known, the flow field can be determined

from the Green’s function representation used by the boundary integral method. Although

mathematically more complicated, not only could the velocity expressions be derived, but

the error of the perturbation solution as a function of the perturbation parameter could be

estimated.

8 Appendix

By performing a separation of variables to the equation Dψ = 0, we express the irrotational

stream functions in terms of (In(p), Hn(p)) (Jn(q), Gn(q)), n = 0, 1, 2, . . . where In and Hn

form the solution set for

(1− p2)P ′′ + n(n− 1)P = 0,

and where Jn and Gn form the solution set for

(1 + q2)Q′′ − n(n− 1)Q = 0.

The Gegenbauer functions In and Hn satisfy

In(p) =
1

(n− 1)!

(
d

dp

)n−2(
p2 − 1

2

)n−1

, n = 2, 3, . . . ,

Hn(p) =
1

2
In(p) ln

p+ 1

p− 1
−Kn(p), n = 2, 3, . . . ,

where Kn(p) are polynomial. For the exceptional cases n = 0, 1 we define I0(p) = −1,

H0(p) = p, I1(p) = p, and H1(p) = −1 and set Im(p) = Hm(p) = 0 for m = −2,−1. The

functions Jn(q) and Gn(q) are obtained by setting

inJn(q) = In(iq), in+1Gn(q) = Hn(iq), n = −2,−1, 0, . . .

The functions In(p) and Jn(q) are polynomials. For n = 2, 3, . . . , the functions Hn(p) are

singular at p = 1 and the functionsGn(q) are discontinuous at q = 0. For this reason we retain
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only H0, H1, G0, G1, and In and Jn for n = 0, 1, 2, . . . in the series expansion of physically

realizable stream functions and deem the functions Hn and Gn for n = 2, 3, . . . unphysical.

The functions (12) are obtained by forming the products of (I0(p), H0(p)), (I1(p), H1(p)), and

In(p), n = 2, 3, . . . with (J0(p), G0(p)), (J1(p), G1(p)), and Jn(p), n = 2, 3, . . . respectively.

The rotational components (13) are now found by setting ψrot,1 = 1
2
q
(

1
3
q2 − p2

)
, ψrot,2 =

1
2
p
(
q2 − 1

3
p2
)
, and with the help of the identity ([23])

p2In(p) = δnIn+2(p) + εnIn(p) + ζnIn−2(p), n = 0, 1, 2, . . . ,

for the values δn = (n+1)(n+2)
(2n−1)(2n+1)

, εn = 2n2−2n−3
(2n+1)(2n−3)

, and ζn = (n−2)(n−3)
(2n−1)(2n−3)

.
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