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ANALYTICAL BOUNDS FOR TREASURY BOND 

FUTURES PRICES 

 

ABSTRACT 

 

The pricing of the delivery options, timing options particularly, in Treasury bond futures are 

prohibitively expensive.  A recursive use of the lattice model is unavoidable for valuing such 

options, as Boyle (1989) demonstrates.  As a result, this paper derives an upper bound and a 

lower bound for Treasury bond futures prices.  We first show that the popular preference-free, 

closed form cost of carry model is an upper bound for the Treasury bond futures price.  Then, we 

derive analytical lower bounds for the futures price under one and two-factor Cox-Ingersoll-Ross 

models of the term structure.  These bounds are then tested empirically with weekly futures prices 

for the period from January 1987 till December 2000. 
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I. INTRODUCTION 

 

The delivery options in Treasury bond futures are generally known as the quality option and 

three timing options. The quality option gives the short the right to deliver any eligible bond (no 

less than 15 years to maturity or first call) and various timing options give the short the flexibility 

of making the delivery decision any time in the delivery month. The end-of-month timing option 

refers to the deliveries occurring at the last 7 business days in the delivery month when the 

futures market is closed to trading. For the remaining about 15 business days of the delivery 

month, the wild card timing option refers to the period from 2:00 p.m. to 8:00 p.m. (Chicago time) 

every day when the futures market is closed but the bond market is open while the accrued 

interest timing option refers to the period from 7:20 a.m. to 2:00 p.m. when both futures and its 

underlying bond markets are open. 

 Delivery options in T bond futures are difficult to price. A recursive use of the lattice 

model is unavoidable for valuing such options, as Boyle (1989) demonstrates, in that the futures 

price is effectively a forward price.  Furthermore, as we shall demonstrate later, the wild card 

timing option is actually a compound forward price – one on top of the other, which cannot be 

priced precisely without a multi-recursive system.  As a result, an accurate valuation of these 

delivery options is very expensive. The goal of this study is therefore to derive fast bounds for the 

T bond futures price. These bounds can be computed quickly and provide a crude conservative 

estimate for the T bond futures price. 

 An early discussion of the valuation of the quality option appears in Cox, Ingersoll, and 

Ross (1981) in which they state that their valuation can be applied to futures with the quality 

option when the single spot bond price is replaced with the minimum from the deliverable set. 

Hemler (1988) uses Margrabe’s (1978) exchange option formula to price the quality option but the 

pricing formula becomes intractable as the number of deliverable bonds increases. Carr (1988) was 

the first to use factor models to price the quality option and Carr and Chen (1996) extend the 

Carr model to include a second factor. Ritchken and Sankarasubramanian (1992) use the Heath-

Jarrow-Morton (1992) framework to find the quality option value. Livingston (1987) analyzes the 

quality option on the forward contract. 

 Timing options in general have no closed form solutions and are therefore studied with 

lattice methods. Kane and Marcus (1986a) lay out a general framework for analyzing the wild 

card option. In their analysis, discounting is not considered in the wild card period. Broadie and 

Sundaresan (1987) develop a lattice model to value the end-of-month option. Their focus is 

strictly on the futures price in the end-of-month period.  Boyle (1989) uses a two-period model to 

show that the timing option could have a significant impact. His analysis assumes constant 

interest rates and does not directly apply to T bond futures. 
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 Empiricists in general agree that the quality option has a non-trivial value.1 However, 

unlike the evidence for the quality option, the evidence for the timing option is not so clear. This 

is because most studies do not distinguish between the quality option value and the value from 

the other timing options, let alone values among various timing options.2 

 The Treasury bond futures contract is one of the most liquid and widely traded interest 

rate derivative contract worldwide.  The bid-ask spread is tight and the volume is large.  Usually 

this is the market that practitioners use to calibrate the models they use to price other less liquid 

contracts.  Hence, a pricing model that prices accurately both the quality and timing options must 

be derived in order to do such a task.  However, as we shall demonstrate later in the paper, such 

a model is too expensive to be implemented since it involves a recursive search for the futures 

price at the beginning of the delivery month.  In order to have a rough feel for the cost of 

computation of directly modeling the quality and timing options, we use a similar two factor Cox-

Ingersoll-Ross model to the one we use in the paper to compute 6 futures prices.  With a Dell 

Dimension 2400 machine of 2.8 mega herz CPU, on average, it needs 9719.52 seconds (or 2.7 hours) 

per calculation under 102 steps.  Clearly such high cost of computation is too expensive to be used 

in any realistic fashion. 

 In this paper, we derive several results regarding the lower and upper bounds for the 

futures price.  First, we derive both bounds in a model-free format.  We prove that the model-free 

upper bond is the cost of carry model, which is closed-form.  The lower bond is in the format of 

an expectation.  Since the bounds are model free, violating the bounds implies arbitrage profits.  

Secondly, with the two-factor Cox-Ingersoll-Ross model, we derive an analytical solution to the 

futures price with the quality option, which serves as a tighter upper bound for the Treasury bond 

futures price.  Lastly, we derive an analytical lower bound for the Treasury bond futures price 

under the Cox-Ingersoll-Ross model.  We then provide empirical results to show that these bounds 

are reasonably tight – about 2 ~ 3% up and below the futures price.3 

 The paper is organized as follows. The next section studies the quality option.  We first 

study the quality option under continuous marking to market, or MTM (i.e. both futures and 

bond markets are open all the time).  Then we show that the futures price with the quality option 

                                            

1 See, for example, Carr and Chen (1996), Kilcollin (1982), Benninga and Smirloc (1985), Kane 

and Marcus (1986b), and Hedge (1990). 

2 See, for example, Arak and Goodman (1987), Hedge (1988), Gay and Manaster (1986). 

3 These bounds are not to be violated, or arbitrage profits should take place.  As it will become 

clear (in Section IV), in the case of the upper bound that is model free, a simple trading strategy 

can be formed to arbitrage against the violation (under perfect markets).  In the case of the 

model-dependent lower bound, arbitrage profits exist only if the assumed model is correct. 
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is effectively a forward price when the futures market is closed but the bond market is open.  

Section III provides the theoretical analysis and derives lower and upper bounds for the futures 

price. We derive lower bounds for the futures price under both the quality option and the timing 

options.  We then show that the preference-free cost of carry formula is an upper bound for the 

futures price.  Section IV derives analytical formulas for the lower bound of the futures price (note 

that the cost of carry formula is model-free) under one and two-factor Cox-Ingersoll-Ross models. 

Section V contains an empirical study where a two-factor equilibrium term structure model is 

estimated under the Chen and Scott (1993) technique. Finally, the paper is concluded in Section 

VI. 

 

II THE QUALITY OPTION AND THE FUTURES PRICE 

 

The delivery option that has the most economic value is the quality option that gives the short of 

the futures contract the right to choose the cheapest bond to deliver at the delivery date.  Other 

delivery options that are embedded in T bond futures are known as the three timing options.  The 

short can choose any time in the delivery month to make a delivery.  The short can make a 

delivery even when the futures market is closed.  At the end of the delivery month, for 7 business 

days, the futures market is closed but the short can still make a delivery.  This is understood as 

the end-of-month timing option.  For the remaining about 15 business days in the delivery month, 

the short can deliver either between 7:20 a.m. and 2:00 p.m. (Chicago time) when both the futures 

market and the underlying bond market are open or after 2:00 p.m. when the futures market is 

closed.4  The former timing option is called accrued interest timing option and the latter timing 

option is also known as the daily wild card play.  The following picture explains graphically 

various timing options. 

 

                                            

4 T bond market is an over the counter market that has no official closing time, even though 

market practice adopts 3:00 p.m. Eastern time as a symbolic closing time.  The futures market 

allows the short up to 8:00 p.m. Eastern time to make the delivery announcement, and hence 

theoretically there is a 5-hour window for the wild card. 
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The period of the last 7 business days is the end-of-month period. Throughout the paper we use v 

for the starting time and T for the ending time of this period. For the rest of the delivery month, 

there are two sections of each day, the accrued interest period and the wild card period.  For a 

regular futures trading day i between 7:20 a.m. and 2 p.m. Chicago time, both bond and futures 

markets are open simultaneously.  The futures market closes at 2 p.m. but there is no official 

closing time for the bond market (while conventionally 3 p.m. Eastern time is marked as a 

symbolic closing time for the bond market.)  Since the short has till 8 p.m. to make the delivery 

decision, the wild card period is defined over 2 p.m. ( iu ) to 8 p.m. ( iu h+ ). 

 The notation and symbols used in the paper are also summarized as follows: 

 

*

**

( )  "quoted" futures price with all delivery options

( )  futures price with the quality option and continuous marking to market

( )  futures price with the quality option at the absence of conti

t

t

t

Φ =

Φ =

Φ = nuous MTM 

( )  upper bound

( )  lower bound

t

t

Φ =

Φ =

 

( )  futures price of the th quoted bond price

( )  forward price of the th quoted bond price

( )  accrued interest of the th bond

( , )  discount bond price at time  of $1 at time 

( )  "qu

i

i

i

i

t i

t i

a t i

P t T t T

Q t

Φ =

Ψ =

=

=

= oted" coupon bond price of the th bond

 conversion factor of the th bond

( , )  random discount factor between  and 

i

i

q i

t T t Tδ

=

=

 

 

Note that under a specific model for the term structure (e.g. Vasicek or Cox-Ingersoll-Ross), the 

futures price of a specific bond can be priced in analytical form (see Section IV).  Before we start 
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our analysis, we need Jamshidian’s separation theorem (1987) and his definition of the forward 

measure.5 

 

Theorem 1 (Forward Measure) 

Let ( , )P t T  be the price of a pure discount bond delivering $1 at some future date and it follows the 

dynamics as: 

 

 
( , )

( ) ( , ) ( )
( , )

QdP t T
r t dt b t T dW t

P t T
= +  

 

where r is the instantaneous risk-free rate, b is maturity dependent bond volatility, and ( )QdW t  is 

the standard Wiener process defined under the risk-neutral space.  Then the forward measure is 

defined as: 

 

 ( )2 ( )( , )
( ) ( , ) ( , ) ( )

( , )
F TdP t T

r t b t T dt b t T dW t
P t T

= − +  

 

where ( )( ) ( ) ( , )F T QdW t dW t b t T dt= + .  Under this forward measure, all expected values taken will 

be forward prices, that is: 

 

 

( )

( )

[ ( , ) ( )] [ ( , )] [ ( )]

( , ) [ ( )]

F TQ Q
t t t

F T
t

E t T X T E t T E X T

P t T E X T

δ δ=

=
 

 

where ( )( , ) exp ( )T
tt T r u duδ = −∫  and ( )[ ( )]F T

tE X T  computes the forward price of X. 

 

A simple proof of this theorem is given in an appendix although the original proof is available in 

Jamshidian (1987). 

 

A. The Quality Option with Continuous Marking to Market 

 

In the absence of all timing options, the quality option gives the short the right to deliver the 

cheapest bond only at maturity, T, and the short receives the following payoff: 

 

(1) { }max ( ) ( )i iq T Q TΦ −  

                                            

5 Also see Hull (2003). 
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Note that the accrued interests of both bond and futures contracts are equal and canceled. Since 

the delivery value of (1) has to be identically 0 for all states, we can solve for the futures price at 

maturity as: 

 

(2) 
( )

( ) min i

i

Q T
T

q

   Φ =     
 

 

and today’s futures price is merely a risk-neutral expectation of this payoff: 

 

(3) 

*

1 1

1 1

1 1

1 1

( )
( ) min

[ ( )] ( ) ( )
max

( ) ( ) ( )
max

Q i
t

i

Q
Qt i
t

i

Q i
t

i

Q T
t E

q

E Q T Q T Q T
E

q q q

t Q T Q T
E

q q q

     Φ =        
     = − −       

   Φ   = − −       

 

 

Note 1 1( ) [ ( )]Q
tt E Q TΦ =  is the futures price of the first bond with no option and *( )tΦ  is the 

futures price of the cheapest bond at maturity. This result has been shown previously by Carr 

(1988) and other authors. This equation says that the futures contract with the quality option is 

equivalent to a futures contract without the quality option (only bond 1 is eligible for delivery) 

with an exchange option held by the short.  With a specific term structure model, equation (3) 

becomes an analytical solution.6 

 

B. The Quality Option with no Marking to Market When the Futures Market Is 

Closed 

 

Equation (3) is correct only if marking to market is applied continuously throughout the life of the 

futures contract. Unfortunately, in the last 7 business days of the delivery month, the futures 

market is not open and the futures contract is not marked to market. The futures price used for 

settlement in this period is the last settlement price at the beginning of the 7-day period. Since 

the futures price is already determined, the actual payoff at the last delivery day, T, is not 

necessarily 0. The short can actually gain or lose. To avoid arbitrage, the futures price at the 

                                            

6 For example, the closed form solution under the one-factor Cox-Ingersoll-Ross model can be 

found in Carr (1988). 
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beginning of the 7-day period should be set so that the expected present value of payoffs at 

maturity is 0. Under this circumstance, the futures price at the beginning of the 7-day period is a 

forward price, not a futures price. Formally, label the futures price as **( )vΦ  to represent the 

futures price at the beginning of the end-of-month period, v, should be so set that: 

 

(4) **[ ( , )max{ ( ) ( )}] 0Q
v i iE v T v q Q Tδ Φ − =  

 

where δ is the stochastic discount factor assumed to be strictly less than 1. Using Theorem 1, we 

can then rewrite (4) as: 

 

(5) ( ) **[max{ ( ) ( )}] 0F T
v i iE v q Q TΦ − =  

 

which can be expanded as follows: 

 

(6) 

( ) **

( ) ** **
1 1 1 1

** ( ) **
1 1 1 1

0 [max{ ( ) ( )}]

0 [ ( ) ( ) max{ ( )( ) ( ( ) ( )), 0}]

0 ( ) ( ) [max{ ( ) ( ) ( )( ), 0}]

F T
v i i

F T
v i i

F T
v i i

E v q Q T

E v q Q T v q q Q T Q T

v q v E Q T Q T v q q

= Φ −

= Φ − + Φ − − −

= Φ − Ψ + − −Φ −

 

 

and the futures price at time v can be written as: 

 

(7) { }** ( ) **1
1

1 1

( ) 1
( ) max ( ) ( )F T

v i i

v
v E Q T Q T K

q q

Ψ  Φ = − − −  
 

 

where ** **
1( ) ( )i iK q q v= − Φ .  Note that ( )

1 1( ) [ ( )]F T
vv E Q TΨ =  is the forward price of the first 

bond. The interpretation of this result is similar to that of (3), except that the risk neutral 

measure is replaced by the forward measure defined in Theorem 1 and the futures price becomes 

the forward price. However, unlike (3), the futures price at time v has no easy solution, because it 

appears on both sides of the equation. This futures price has to be solved recursively using a 

numerical method.  In a lattice framework suggested by Boyle (1989), we first choose an initial 

value for the futures price at time v, calculate payoffs at various states at maturity T, and then 

work backwards along the lattice. We adjust the futures price until the discounted payoff 

computed from the lattice is 0. Once the futures price at time v is set, we can then travel back 

along the lattice and use the risk neutral probabilities till the end of the last wild card period, 

nu h+ .  Then the similar procedure for the end-of-month period is repeated for the last wild card 

period to arrive at the futures price at the beginning of the wild card period nu .  Again, the risk 

neutral expectation is taken at 1nu h− +  and a recursive search is to compute the futures price at 
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1nu − .  The process is repeated until the delivery month is over.  Since the futures price becomes a 

forward price which cannot be obtained without a recursive search.  The search for the “forward 

price” takes place at every node at all the times (i.e., 1u , 2u , ⋯ , nu , v). As a result, to compute 

the futures price with the quality option is prohibitively expensive. 

 With the presence of the end-of-month timing option, the futures price computed by (7) is 

an overestimate because the short has additional flexibility of choosing the best timing. If the 

short is allowed to deliver at any time in this 7-day period, then we need to compare the expected 

present value of future payoffs with the current delivery value. Higher current delivery value will 

trigger early deliveries. This is very similar to the American option pricing methodology where the 

intrinsic value is compared by the expected present value of future payoffs. 

 

III THE TIMING OPTIONS AND FUTURES PRICE BOUNDS 

 

In the previous section, we see that under the end-of-month and a series of wild card periods, even 

the quality option alone is very complex to compute, let alone those timing options.  In this 

section, we derive upper and lower bounds for these options in a general framework and analytical 

formulas are derived in the next section when a specific term structure model is chosen. 

 

A. The Accrued Interest Timing Option 

 

The accrued interest timing option refers to the flexibility for the short to deliver the cheapest 

bond any time in the delivery month when both futures and spot markets are open. This is 

everyday from 7:20 a.m. to 2:00 p.m. (Chicago time) from the first day of the delivery month to 

right before the end-of-month period. Since the futures market is open, the futures contract is 

marked to market and deliveries can take place any time. As a result, the futures price can never 

be greater than the cheapest-to-deliver bond price. If the futures price were greater than the 

cheapest bond price, then deliveries would take place instantly. The short will sell the futures, buy 

the cheapest bond, make the delivery, and earn an arbitrage profit. Formally, for t v< , 

 

(8) { }( )
( ) min max ( ) ( ) 0i

i i
i

Q t
t t q Q t

q

   Φ > ⇔ Φ − >    
 

 

Therefore, the futures price in the period where both markets are open must be less than the 

cheapest-to-deliver bond price to avoid arbitrage. On the other hand, if the futures price is lower, 

one can long futures and short spot but the delivery will not occur because the short position of 

the futures contract will lose money if he makes a delivery. Consequently, the delivery will be 
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postponed and there is no arbitrage profit to be made. If the futures price is always less than the 

cheapest-to-deliver bond price (adjusted by its conversion factor), the delivery payoff now is 

negative as opposed to 0 at the end. As a result, the short will never deliver until the last day. 

Consequently, the accrued interest timing option has no value. We restate this result in the 

following proposition. 

 

Proposition 1 

The accrued interest timing option without the wild card and end-of-month options has no value.7 

□  

 

The existence of the other timing options will lower the current futures price, further reducing the 

incentive for the short to deliver early. We state this result in the following Corollary. 

 

Corollary 1-1 

The accrued interest timing option with the wild card and end-of-month options has no value. 

□  

 

While the accrued interest timing option is worthless, the timing options at the end-of- month and 

the wild card periods are not. When the futures market is closed, there is no marking to market in 

the futures market and the futures contract becomes a forward contract. Boyle (1989) has 

demonstrated that in a case of forward contracts timing options will have value. We shall extend 

Boyle’s analysis to stochastic interest rates so that we can evaluate T bond futures timing options. 

 

B. The End-of-Month Timing Option 

 

Without the end-of-month timing option, we know that the futures price should be set according 

to (7). With the end-of-month timing option, deliveries can occur any time in the end-of-month 

period as long as the current delivery payoff is more than the present value of the expected payoff. 

 When both quality and timing options exist, the short makes a rational delivery decision 

when the immediate delivery value is higher than the expected discounted value should delivery 

takes place later.  This is like the early exercise of an American option.  There is no closed form 

solution to compute American option prices.  Precisely as Boyle (1989) has observed, the pricing 

of quality and timing options would need a lattice model. 

                                            

7 The name “accrued interest” comes in because in the delivery month, the bond price increases 

due to accrued interests.  Here, Q is a traded price that included accrued interests. 
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 To avoid arbitrage, today’s futures price needs to be set so that the expected discounted 

payoff is nil.  As a result, if we can identify a function that is always greater than both the 

delivery payoff and the discounted present value, this function is guaranteed to have a positive 

present value at time v.  This is in spirit similar to the application in Chen and Yeh (2002).  The 

trick is to identify a function that is always greater than the delivery value and the continuation 

value (ft: Continuation value is the value if it is not optimal to exercise (i.e. delivery).  In the 

binomial model, the continuation value is the value at the node that reflects all possible exercises.) 

 We guess the function of the following, for v t T< < : 

 

(9) 
{ }

{ }

1
max ( ) ( ) max ( ) ( , ) ( )

( , )

max ( ) ( )

Q Q
t i i t i i

i i

E v q Q T E v q t T Q T
t T

v q Q t

δ
δ

       Φ − > Φ −         
> Φ −

 

 

where δ is the stochastic discount factor which is assumed to be strictly less than 1.  This value is 

greater than the present value of the delivery payoff at any time [ , ]t v T∈ .  Equation (9) states 

that the upper bound is always greater than the exercise value of the futures contract.  The last 

line is obtained as follows.  Note that the martingale result states that: 

[ ( , )( ( ) ( ))] ( ) ( )Q
t i i i iE t T Q T a T Q t a tδ + = + , in other words, discounted market price of a bond 

should equal its current value, assuming there is no coupon in between t and T.8  Since the 

accrued interest is linear but discounting is not (i.e., ( , ) ( ) ( )i iP t T a T a t> ) it follows that 

[ ( , ) ( )] ( )Q
t i iE t T Q T Q tδ <  but the difference is small. 

 Equation (9) shows that the proposed function is greater than the delivery value at any 

time. We can also show that the function has a higher value at an earlier time than at a later 

time. That is: 

 

(10) 

1
max ( ) ( )

( , )

1
max ( ) ( )

( , )

1
( , ) max ( ) ( )

( , )

Q
t i i

Q
t i i

Q Q
t i it t

E v q Q T
t T

E v q Q T
t t T

E t t t E v q Q T
t t T

δ

δ

δ
δ

+∆

     Φ −       
     > Φ −   +∆    
      > +∆ Φ −      +∆     

 

 

                                            

8 If there is a coupon in between t and T, we simply subtract the coupon value from the expected 

value. 
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It is seen that the proposed function is always greater than the delivery value and the discounted 

continuation value, it must be the case that it is an upper bound for the end-of-month period 

timing option value.  Hence, at time v, the payoff should be positive: 

 

(11) 
1

max ( ) ( ) 0
( , )

Q
v i iE v q Q T

v Tδ

     Φ − >       
 

 

which can be expanded as follows: 

 

(12) 

1 1 1 1

1 1 1 1

1 1
( ) ( ) max ( )( ) ( ( ) ( )) 0

( , ) ( , )

1 1
( ) ( ) max ( ) ( ) ( )( ) 0

( , ) ( , )

Q
v i i

Q Q
v v i i

E v q Q T v q q Q T Q T
v T v T

E v q v E Q T Q T v q q
v T v T

δ δ

δ δ

     Φ − + Φ − − − >       
         Φ −Φ + − − Φ − >           

 

 

This implies that the futures price should be bounded from below as follows: 

 

(13) 

{ }

1
1

1 1

1
1

1 1

( ) ( , ) ( , ) 1
( ) max ( ) ( ) , 0

( , )

( ) ( , ) ( , )
max ( ) ( ) , 0

Q
v i i

Q
v i i

v v T v T
v E Q T Q T K

q q v T

v v T v T
E Q T Q T K

q q

δ

   Φ ∆ ∆   Φ > − − −       
Φ ∆ ∆  > − − − 

 

 

where 

 

1( ) ( )i iK q q v= − Φ  and 
1

[1/ ( , )]
( , ) Q

vE vT
v T

δ
∆ =  

 

Note that the second inequality holds because δ is strictly less than 1. Therefore, the right hand 

side of the above equation is a lower bound. The lower bound for any time t, ( )tΦ , is the risk 

neutral expectation of the above lower bound at time v: 

 

(14) 

{ }

{ }

1
1

1 1

1
1

1 1

( ) ( , ) ( , )
( ) max ( ) ( ) , 0

( ) ( , ) ( , )
max ( ) ( ) , 0

Q Q
t v i i

Q
t i i

v v T v T
t E E Q T Q T K

q q

t v T v T
E Q T Q T K

q q

  Φ ∆ ∆  Φ = − − −     
Φ ∆ ∆  = − − − 
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Note that iK  is a function of ( )vΦ  which cannot be solved without a recursive search procedure, 

to arrive at an analytical lower bound, we replace this value with a closed form futures price 

*( )vΦ .  We state this result in a following proposition. 

 

Proposition 2 

The futures price under only the end-of-month timing option is bounded from below by the 

following risk neutral expectation: 

 

(15) { }*1
1

1 1

( ) ( , ) ( , )
max ( ) ( ) , 0Q

t i i

t v T v T
E Q T Q T K

q q

Φ ∆ ∆  − − −  
 

 

where * *
1( ) ( )i iK q q v= − Φ  and *( )vΦ  is the futures price with only the quality option defined in 

equation (3). 

□  

 

It is interesting to note that the end-of-month option has value even if there exists no quality 

option. When there is no quality option but the timing option is allowed, the delivery may occur 

early. The short always compares the delivery payoff ( ) ( )v q Q tΦ −  where v t T< <  with the 

expected present value of the delivery payoff at maturity.  We can show that: 

 

(16) [ ]( , )( ( ) ( )) ( , ) ( ) ( ) ( ) ( )Q
tE t T v q Q T P t T v q Q t v q Q tδ Φ − > Φ − < Φ −  

 

Since the direction of the inequality can go either way, it is likely that early deliveries can take 

place. This demonstrates that the timing option does have value even in the absence of the 

quality option. The difference between the first two terms in (16) is ( , ) ( ) ( )P t T a T a t−  where a is 

the accrued interest and the difference of the last two terms is (1 ( , )) ( )P t T v− Φ . As a result, 

whether or not deliveries will occur early depends upon which effect is larger. This result should 

not be confused with the result from Boyle (1989) where the timing option is defined differently. 

 

C. The Wild Card Timing Option 

 

In addition to the end-of-month period where the futures market is closed but the bond market is 

open, there is a 6-hour period every day for about 15 days where the futures market is also closed. 

This is called the daily wild card timing option. The wild card option is different from the end-of-

month option in that the futures market will reopen after each wild card period and the futures 

contract will be marked to market. If bond prices drop in the wild card period, given that the 
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futures price is fixed, the short can benefit from delivering a cheaper bond. However, the short 

can equally benefit from the marking to market when the futures market reopens. As a result, the 

incentive for the short to deliver in the wild card period is minimal. Delivery can take place in a 

wild card period only when the payoff from immediate delivery exceeds the expected present value 

of marking to market on the next day. 

 We now proceed to derive the bound of the wild card option.  For each daily wild card 

period, ( , )u u h+ , we define the following function as the upper bound of the delivery payoff (for 

u t u h< < + ): 

 

(17) [max{ ( ) ( , ) ( )}]Q
t i iE u q t u h Q u hδΦ − + +  

 

This is an upper bound of the payoff because it is greater than (i) the payoff from immediate 

delivery: 

 

(18) 
[max{ ( ) ( , ) ( )}] max{ ( ) [ ( , ) ( )]}

max{ ( ) ( )]}

Q Q
t i i i t i

i i

E u q t u h Q u h u q E t u h Q u h

u q Q t

δ δΦ − + + ≥ Φ − + +

> Φ −
 

 

where the second line is obtained by the fact that [ ( , ) ( )] ( )Q
t i iE t T Q T Q tδ <  proved earlier and (ii) 

the discounted expected payoff from delivering at the end of the wild card period: 

 

(19) [max{ ( ) ( , ) ( )] [ ( , )max{[ ( ) ( )]}]Q Q
t i i t i iE u q t u h Q u h E t u h u q Q u hδ δΦ − + + > + Φ − +  

 

Hence, (19) is indeed an upper bound for the wild card option value, which is greater than 0: 

 

(20) 

( )

[max{ ( ) ( , ) ( )}] 0

( )
max ( ) ( , ) 0

( )
( ) ( , )min 0

( )
( ) ( , ) min

Q
t i i

Q i
t

i

Q i
t

i

F u h i
t

i

E u q t u h Q u h

Q u h
E u t u h

q

Q u h
u E t u h

q

Q u h
u P t u h E

q

δ

δ

δ

+

Φ − + + >

   +  Φ − + >       
   +  Φ − + >       

   +  Φ > +        
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Note that { }( )
min ( )i

i

Q u h
q u h
+ ≥ Φ +  when both markets are open from Section IIIA.9  Therefore, 

( )( ) ( , ) [ ( )]F u h
tu P t u h E u h+Φ > + Φ + .  This is no surprise because the end-of-month option will 

reduce the futures price prior to time v, which in turn will reduce the futures price at time u h+ .  

Hence, it is  

 

Proposition 3 

Given the futures price next morning (i.e., ( )iu hΦ + ) when the futures market re-opens at day 

1i +  (assuming continuous marking to market), The futures price prior to each wild card period 

(i.e., ( )iuΦ ) is bounded from below by: 

 

(21) ( )( , ) [ ( )]iF u h
i i itP u u h E u h++ Φ +  

 

where iu  is the beginning of a wild card period depicted on page 3 and iu h+  is end of the wild 

card period (which is assumed to be the same as the time when the futures market re-opens next 

morning). 

□  

 

D. Putting It All Together for the Lower Bound 

 

So far, we have derived the lower bound for the futures price of the end-of-month period, ( )vΦ , 

and each of the wild card period, ( )uΦ , where u represents the beginning time of any wild card 

period.  The futures price of any given time, is a recursive calculation of (21).  The easiest way to 

understand the calculation is to picture a univariate lattice model.  The lower bound for the 

futures price at time v is calculated by (15).  We shall label it ( )vΦ  for the lower bound at time v.  

Then, the regular risk neutral expectation is taken until the end of the last wild card period, 

nu h+  where nu  represents the beginning of the n-th (last) wild card period, is reached.  The 

correct futures price, ( )nu hΦ + , at this moment is unknown since it requires a repeated recursive 

process described in Section III.  But we can replace it with the lower bound 

( ) [ ( )]
n

Q
n u hu h E v+Φ + = Φ .  Then, we apply (21) to compute the lower bound at time nu  to get 

( )( ) ( , ) [ ( )]n

n

F u h
n n n u nu P u u h E u h+Φ = + Φ + .  Repeat this process through all the wild card periods, 

1 2 1, , ,n nu u u− − ⋯  to get 1

1

( )
1 1 1 1( ) ( , ) [ ( )]F u h

uu P u u h E u h+Φ = + Φ + .  Then the regular risk neutral 

                                            

9 Note that in the second line of (17) where iq  is divided through is due to the fact that there 

exists a bond i such that max{ ( ) ( , ) ( )} 0i iu q t u h Q u hδΦ − + + >  in all states. 
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expectation is taken to the current time: 1( ) [ ( )]Q
tt E uΦ = Φ .  Repeated substitutions yield the 

following general result for the lower bound at the current time 1t u< ,  

 

(22) 

{ }

1

2

1

1 1 2

1 1 2 2 2

1

*1
11

1 1

( ) [ ( )]

[ ( , ) [ ( )]]

[ ( , ) [ ( , )[ ( )]]

( , ) ( )

( ) ( , ) ( , )
( , ) max ( ) ( )

Q
t

Q Q
t u h

Q Q
t u

nQ
t j jj

nQ
t j j i ij i

t E u

E u u h E u

E u u h E u u h u h

E u u h v

v v T v T
E u u h Q T Q T K

q q

δ

δ δ

δ

δ

+

=

=

Φ = Φ

= + Φ

= + + Φ +

=

 = + Φ 
 
  Φ ∆ ∆  = + − − −      

∏

∏

⋯  

 

The second line of the above equation is obtained by substituting the lower bound for 1( )uΦ  (i.e., 

11 1 1 1( ) [ ( , )[ ( )]Q
uu E u u h u hδΦ = + Φ + ) and the law of iterative expectations under the risk neutral 

measure.  We summarize in a proposition: 

 

Proposition 4 

The futures price is bounded from below by the following risk neutral expectation 

 

(23) { }*1
11

1 1

( ) ( , ) ( , )
( ) ( , ) max ( ) ( )

nQ
t j j i ij i

v v T v T
t E u u h Q T Q T K

q q
δ

=

  Φ ∆ ∆  Φ = + − − −      
∏  

□  

 

E. The Cost of Carry Model – the Upper Bound 

 

After deriving the lower bound of the futures price, in the next proposition, we show that the cost 

of carry model provides an upper bound for the futures price. The well-known cost of carry 

formula is the following: 

 

(24) 

* *( ) ( )
*( , )

*
*

( )
( )

Q t a t

P t T
a T

t
q

+ −
Φ =  

 

where *Q , *q , and *a  are quoted price, conversion factor, and accrued interest of the cheapest 

bond at time t.  Rearranging terms to get: 
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(25) 

* *( ) ( )
*( , )

*
*

( ) *

*

( )

( )
( )

( )

( )
min

( )
min

Q t a t

P t T

F T
t

F T i
t

i

Q i
t

i

a T
t

q

Q T
E

q

Q T
E

q

Q T
E

q

+ −
Φ =

 
 =  
 
     =        

     >        

 

 

As we can see, the cost of carry model is equal to a forward expectation of the payoff. The futures 

price without the timing options is a risk-neutral expectation of the payoff (see (3)). The last 

inequality is obtained due to the following: 

 

(26) 
( )

cov ( , ), min 0i

i

Q T
t T

q
δ
      >       

 

 

This is easy to see because when r increases (decreases), both discount factor, δ, and all quoted 

bond prices, iQ ’s, decrease (increase), and the sign of the covariance is therefore positive. Note 

that the futures price without timing options is already an upper bound, the cost of carry model 

used by practitioners is a more conservative upper bound of the futures price. We state the result 

in the following proposition. 

 

Proposition 5 

The futures price is bounded from above by the cost of carry model. 

 

(27) *( ) ( )t tΦ = Φ  

□  

 

It is generally believed that the futures price with the quality option (equation (3)) is the upper 

bound of the futures price, since it ignores the timing options.  Indeed, if (3) can be evaluated 

accurately, it is a much tighter lower bound than the cost of carry model shown above.  However, 

note that the cost of carry model is a “model free” result while (3) relies upon a specific term 

structure model.  As a result, if the term structure model is not correctly specified, (3), may not 

serve the role of upper bound well.  As we shall see in the empirical section, under a two-factor 

Cox-Ingersoll-Ross model, equation (3) does not always provide an upper bound.  On the other 

hand, the violation of the cost of carry upper bound implies arbitrage opportunities. 



 

 17 

 

IV ANALYTICAL BOUNDS FOR EXPLICIT TERM STRUCTURE MODELS 

 

In this section, we use the one- and two-factor Cox-Ingersoll-Ross (1985) models to demonstrate 

how one can calculate the upper bounds of the delivery options and the lower bound of the futures 

price analytically.  Quoted coupon bond price should be equal to: 

 

(28) 
1

( ) ( , ) ( )
m

j j

j

Q t P t T c a t
=

= −∑ , 

 

Define additional notation ( , , ) [ ( , )]Q
i j t i jt T T E P T TΦ =  to be the futures price of a pure discount 

bond delivered at time iT , and ( , , ) ( , )/ ( , )i j i jt T T P t T P t TΨ =  to be the forward price of a pure 

discount bond.  These general results are independent of model assumption and of the number of 

factors. 

 

A. Single-Factor Model 

 

For the sake of easy exposition and no loss of generality, we shall derive analytical lower bound 

for the futures price at time v (beginning of end-of-month period).  The lower bound at an 

arbitrary time t can be derived similarly.  Assume 1 iQ Q>  for 1i ≠ .  We follow Carr (1988) that 

in a single factor model the whole distribution of r can be partitioned into n disjoint segments, 

denoted by * *
( ) 1 ( )[ , )i k i k ir r−Ω ≡  where *

0 0r =  and *
nr = ∞ , each of which represents a segment 

where iQ  maximizes the payoff function: *
1max{ ,}i iQ Q K− − .  The analytic result of the 

expected value (taken at time v) of (15) is then derived as follows: 

 

(29) 

{ }

1

2

*
1

(1) ( ) *
1 12 1 1

( ) *
1 11 2 1

max , 0

( , ) ( , ) ( )

( , ) ( ) ( , ) ( )

i

n
i i i

Q
v v i i

n b b i

j i ij ii j j

m n b i

j i ij ij i j

W E Q Q K

c P T T c P T T K r dr

c P T T r dr c P T T r dr K

ϕ

ϕ ϕ

=

= = =
Ω

= = =
Σ Ω Ω

 = − −  
 

= − − 
  

= − −

∑ ∑ ∑∫

∑ ∑ ∑∫ ∫

 

 

where ( )b i  is the last coupon payment time for bond i, * *
1( ) ( )i iK q q v= − Φ , and *( )vΦ  is the 

futures price under continuous marking to market (defined by (3)).  Note that in each region iΩ , 

bond i maximizes the payoff 1max{ ,0}i iQ Q K− −  and ( )rϕ  is the risk-neutral density of the 

interest rate. 
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 Without the consideration of any wild card, the lower bound for the futures price at any 

arbitrary time t is a risk neutral expectation of (29): 

 

(30)

{ }

{ }

*1
11

1 1

1
1 2 1

1

*
1

1

( ) ( , ) ( , )
( ) ( , ) max ( ) ( )

( ) ( , )
( ) ( ) ( ) ( , ) ( )

( , )
( )max ( ) ( ) (

nQ
t j j i ij i

n

n j jj

i i
i

v v T v T
t E u u h Q T Q T K

q q

v v T
dr u dr u dr u u u h dr v

q

v T
dr T Q T Q T K r

q

δ

δ

ϕ

=

∞ ∞ ∞ ∞ ∞

=−∞ −∞ −∞ −∞ −∞

∞

−∞

  Φ ∆ ∆  Φ = + − − −      
Φ ∆

= +

∆
− − −

∏

∏∫ ∫ ∫ ∫ ∫

∫

⋯

1

1
1 2 1

1

(1) ( ) *
1 1 12 1 1

1

1 1

( ), , ( ))

( ) ( , )
( ) ( ) ( ) ( , ) ( )

( , )
( , ) ( , ) ( ( ), , ( ))

( ) ( ) ( ,

i

n

n j jj

n b b i

j i ij ii j j

n

n j jj

u r T

v v T
dr u dr u dr u u u h dr v

q

v T
c P T T c P T T K r u r T

q

dr u dr u u u

δ

ϕ

δ

∞ ∞ ∞ ∞ ∞

=−∞ −∞ −∞ −∞ −∞

= = =Ω

∞ ∞

=−∞ −∞

Φ ∆
= +

∆  
− − − 

  

=

∏∫ ∫ ∫ ∫ ∫

∑ ∑ ∑∫

∏∫ ∫

⋯

⋯

⋯

⋯
1

1
1 1

( ) ( , ) ( , )
) ( ) ( ( ), , ( ))v

v v T v T
h dr v W r u r v

q q
ϕ

∞

−∞

Φ ∆ ∆
+ −∫ ⋯

 

where vW  is defined in (29). 

 In the case of CIR, the interest rate process follows the square root process: 

 

(31) ( ( ) ) Qdr r dt rdWαµ α ς σ= − + +  

 

where α  is the reverting speed, µ  is the reverting level, σ  is the volatility parameter, and ς  is 

the market price of risk which is constant under log utility.  The futures price with only the 

quality option is in Carr (1988) as: 

 

(32) 

( )
* 2 * 2 *

11
1 1

( ) ( , , ) [ ( ) ( )]

b in
mij

ij ik j k j kk
ii j

C
t t T T I r r

q
χ χ −=

= =

Φ = Φ −∑∑ ∑  

 

where 

 

( ) ( , , )( , , ) ( , , ) r t D t u vt u v C t u v e−Φ = , 

( )
22 /( , )

( , ) ( , )
( , , ) ( , )

t u

t u B u v
C t u v A u v

αµ σ
η

η +=  

( )( )( , ) ( , )

( , ) ( , )
( , , )

u tB u v t u e

t u B u v
D t u v

α ςη

η

− + −

+=  

( )

2
2( )( )/ 2

( )

2

( ) 1 2
( , )

v u

v u

e

e
A u v

αµ

σα ς γ

γ

γ

α ς γ γ

+ + −

−+ + − +

 =   
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( )
( )

( )

( )

2 1

( ) 1 2
( , )

v u

v u

e

e
B u v

γ

γα ς γ γ

−

−

−

+ + − +
=  

( )2 ( )( )

2( )

1
( , )

u te
t u

α ς

α ς

σ
η − + −

+

−
=  

2

( )( )42 * 2 *( ) [2 ( , ) ; ,2 ( , ) ]ijT t
j r t u r t u re

α ςαµ

σ
χ χ η η

− + −=  

 

Note that ikI  is the indicator function equal to 1 for the i-th bond and between the critical values 

of *
1kr −  and *

kr  and 2( , , )x y zχ  is a non-central chi-square probability function with limit x, degrees 

of freedom y, and degrees of non-centrality z. 

Under the CIR model, equation (29) becomes: 

 

(33) 
{ }

{ }
CIR *

1

1 2 2 * 2
1 1 1 11 1 1

max , 0

( , , ) ( ) ( , , ) ( ) ( )

Q
v v i i

n m n

j i ij i ii j j

W E Q Q K

c v T T r c v T T r K rχ χ χ
−

= = =

 = − −  
 = Φ − Φ −   ∑ ∑ ∑

 

 

and the lower bound under the CIR model of the term structure is still equation (30) but with 

CIR
vW  replacing vW . 

 Carr and Chen (1996) show that one-factor term structure models are incapable of pricing 

delivery options because all bonds are perfectly correlated and hence crossover strike rates are 

rarely identified.  Hence, for this study, we adopt a two-factor Cox-Ingeroll-Ross model for the 

empirical work.  We derive the analytical solution to the lower bound. 

 

B. Two-Factor Model 

 

We use the two-factor model of the following kind:10 

 

(34) 1 2r y y= +  

 

where each factor follows a square root process as in (31): 

 

(35) ( ( ) ) Q
i i i i i i i i idy y dt y dWα µ α ς σ= − + +  

 

                                            

10 This two-factor model is adopted by a number of authors.  See Chen and Scott (1993), Turnbull 

and Milne (1991), Langetieg (1980), Hull and White (1990). 
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where 1,2i =  and 1 2 0Q QdW dW = .  Under this framework, the two-factor model works the same 

way as the one-factor models.  The difference is that the univariate integrals in the one factor 

models are replaced with two dimensional integrals. 

 

(36) 
1 1

CIR(2)1
1

1 1

( ) ( ) ( ) ( , )

( ) ( , ) ( , )
ˆ( ) ( ( ), , ( ))

n

n j jj

v

t dr u dr u u u h

v v T v T
dr v W r u r v

q q

δ

ϕ

∞ ∞ ∞

=−∞ −∞ −∞
∞ ∞

−∞ −∞

Φ = +

Φ ∆ ∆
−

∏∫ ∫ ∫ ∫

∫ ∫

⋯

⋯

 

 

where 

 

1

1
1

1CIR(2)
1 1 1 2 1 21 1

*
1 2 1 2 1 2 1 21

ˆ( , , ) ( , )

ˆ( , , ) ( , ) ( , )

i

i

n
i i i

n m

v ji j

m
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The bivariate integrals may become quadruple integrals as we move backwards in time.  The 

lattice approach proposed by Longstaff and Schwartz (1992) can be efficiently implemented to 

calculate the result.  Since the lower bound requires only risk neutral expectations, it can be 

computed without recursive loops and be extremely fast. 

 

V EMPIRICAL STUDY 

 

In this section, we empirically examine the magnitude of each bound using a two-factor CIR 

model.  We provide evidence for two non-overlapping periods: 1987 ~ 1991 and 1992 ~ 2000.  In 

each period, we perform both in-sample and out-of-sample tests.  The results of two periods are 

similar, implying that the model is robust.  Furthermore, for both periods, out-of-sample 

performance is pleasantly satisfactory. 

 

A. Term Structure Model Estimation 

 

In estimating the two-factor CIR term structure model, we use weekly (Friday) four Treasury 

interest rate series: the 3-month and 6-month Treasury-bills and the 5-year and 30-year Constant 

Maturity Treasury (CMT) interest rates to estimate the parameters for the two-factor CIR model.  

The weekly data is from January 4, 1991 to December 29, 1998, which contains 416 observations 
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in total. Data source is from the Aremos USFIN databank.  The estimation procedure is identical 

to that described in Chen and Scott (1993).  In addition to our estimates, as a robustness 

comparison, we also use the results from Chen and Scott (1993) who use a weekly data set from 

1980 to 1988 and the estimates from both estimations are reported in Table 1.  We can see that 

the estimates do not change much from one period to another, while the new estimates do show 

slightly lower reverting level and slower mean reversion.  The first factor remains strong mean 

reversion while the second remains to be close to a random walk. 

 The term structure estimation must also estimate factor values.  In Chen and Scott 

(1993), factor values are computed by fitting the long and short rates of the yield curve.  For our 

purposes (that we need to price the cheapest-to-deliver bond correctly),11 the factor values are 

solved for by matching the short rate and the cheapest-to-deliver bond price.  In reality, the 

delivery options are priced off the cheapest-to-delivery bond and a series of exchange options to 

the next cheapest, the third cheapest, and so on.  By calibrating the term structure model of 

Chen-Scott to the cheapest-to-delivery bond, we shall provide the most accurate valuation of the 

delivery options using the two-factor CIR model.  It is generally understood that the two-factor 

CIR model does not fit the yield curve well.12  In order to mitigate the concern of Jagannathan, 

Kaplin and Sun (2003), we must examine how good our term structure fit is for the set of 

deliverable bonds.  We are not particularly concerned with the whole yield curve fit because the 

majority of the risk of the delivery options resides in the set of deliverable bonds.  Furthermore, 

as a practical concern, we present the fitting performance of the three most relevant bonds – the 

cheapest, second cheapest, and third cheapest.  The probability of other bonds become the 

cheapest is small and the impact of other deliverable bonds is believed to be negligible. 

 Theoretically, the cheapest bond at any point in time should be fitted perfectly by 

tweaking the second factor, since there is one equation and one unknown.  However, there is no 

solution to the second factor at the following dates when we try to fit the cheapest bond: 980903, 

980910, 980917, 980924, 981001, 981015, 981029, 981203, 981210, and 981217.  Figure 1 plots the 

yield curves for a sub-period (January 2, 1998 ~ December 28, 2000) from our CMT dataset.  It 

can be seen that the above dates where the second factor fails to coincide (CTD bond fails to fit) 

with the period when the yield curve is steeply sloped and the short rates are small.  This is a 

problem already described in Chen and Scott (1993).  Chen and Scott recommend a three-factor 

model to improve the fit.  However, due to the reality that this problem is only present for 10 out 

of 722 cases (252 observations in the first sub-period: 1987 ~ 1991 and 470 observations in the 

                                            

11 T bond futures prices are affected by all bonds underlying the yield curve, and yet doubtlessly 

the cheapest-to-deliver bond has the most influence. 

12 See, for example, Chen and Scott (1993) and Jagannathan, Kaplin and Sun (2003). 
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second sub-period: 1992 ~ 2000) 13  and the complexity of estimating a three-factor model, we 

decide to stay with the two-factor model.14  Or alternatively, we can allow the first factor to be 

flexible until we are able to fit the CTD bond.  But in order to maintain consistency, we allow the 

CTD bond to be not perfectly fitted for those 10 dates.15  As it will be clear later, the ill-fitted 

CTD bonds for those 10 dates will hurt the tightness of the bounds.  The following summary 

illustrates the cheapest bond that fails to be fitted and the difference between the market price 

and the model price. 

 

date coupon maturity market price model price % diff 

980903 11.250 150215 164.6250 159.2477 3.38% 

980910 11.250 150215 167.9063 158.6218 5.85% 

980917 11.250 150215 167.2500 163.3068 2.41% 

980924 11.250 150215 168.3438 163.2337 3.13% 

981001 11.250 150215 171.7188 163.7861 4.84% 

981015 11.250 150215 169.3438 165.2365 2.49% 

981029 11.250 150215 168.2813 164.6084 2.23% 

981203 11.250 150215 168.7813 162.1672 4.08% 

981210 11.250 150215 169.3438 161.4943 4.86% 

981217 11.250 150215 167.9688 161.1123 4.26% 

 

Note that other than these 10 dates, the CTD bond is fitted perfectly.  In order to mitigate the 

criticism of Jagannathan, Kaplin and Sun (2003), we must also examine the fitting performance of 

the second cheapest and the third cheapest.  Figure 2 presents the fitting performance of the two-

factor model (with the 3-month short rate and the CTD bond perfectly fitted).  The percentage 

fitting error (theoretical price ÷ market price – 1) is plotted.  The second CTD bonds are fitted 

very well.  The average percentage error (APE) is 30 basis points in the first period (1987 ~ 1991) 

and 10 basis points in the second sub-period (1992 ~ 2000).  The root mean square errors (RMSE) 

for both periods are 1.07% and 1.04% respectively.  The numbers may seem to suggest that the 

second sample period provides a better fit, but by eyeballing the graphs we can see most of the 

                                            

13 All 10 cases are in the second sub-period: 1992 ~ 2000. 

14 Chen and Scott (1993) argue that the three-factor model does not necessarily dominate the two-

factor model in that the three-factor model, although fits better the term structure, generates 

extra volatility.  See Chen and Scott for details. 

15 The result of the alternative fitting is available upon request. 
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time in the first sample period the second CTD is well fitted and only half of time in the second 

period is well fitted. 

 The fitting performance of the third CTD bonds presents a very different profile.  In the 

first sample period (1987 ~ 1991), the third CTD bonds are fitted as well as the second CTD 

bonds but substantially poorly in the second sub-period (1992 ~ 2000).  As opposed to 30 basis 

points APE and 1.07% RMSE for the second CTD bond, the APE and the RMSE for the third 

CTD bond are 14 basis points and 1.2% in 1987 ~ 1991.  However, in the period of 1992 ~ 2000, 

the APE and RMSE grow from 10 basis points and 1.04% respectively for the second CTD bond 

to 26 basis points and 1.61% respectively for the third CTD bond.  The worse fit of the third 

CTD bond and the 10 cases of unsuccessful fit of the CTD in the second sub-period might explain 

the slightly worse bound performance (show later) of the second period. 

 

B. Futures Data 

 

Daily futures prices are obtained from the Chicago Board of Trade (CBOT) between January 

1987 and December 2000.  The summary statistics are given in Table 2.  Note that the drop in 

the futures price in for March 2000 contract is due to the change of the discount rate in the 

conversion factor (from 8% to 6%).  But for our study, the futures prices are collected weekly 

(Thursday) for two different (non-overlapping) periods.  One is from January 8, 1987 through 

October 31, 1991 (252 observations) and the other is from November 7, 1991 through November 2, 

2000 (470 observations).  The first period, which covers the quarterly contracts of March 87 

through December 1991, uses the Chen-Scott estimates and the second period, which covers 

contracts of March 1992 to December 2000 uses the new estimates.  We select weekly futures 

prices that have 6 weeks to 4½ months to maturity from the CBOT daily price data set. 

 The cost of carry model requires the knowledge of all deliverable bonds at the trade date. 

We collect all deliverable bonds from the Wall Street Journal for all the trade dates. We use the 

average of the bid and ask for the bond price. We also use the three-month T bill rates for the 

cost of carry model. There are about 26 bonds for any given trade date. Conversion factors are 

computed by the CBOT formula.16 

 

C. Results 

 

We assume no gap between the close of the bond market for any given day and the open of the 

futures market in the next morning. As a result, in order to correctly date all the timing periods 

                                            

16 Hull (2003) has an excellent demonstration of such a computation. 



 

 24 

in the lattice, we have to count the number of trading days. As been pointed out previously, there 

are about 22 trading days in a month. The last 7 days attribute to the end-of-month period and 

each of the remaining 15 days has about 6 hours for the day period where both bond and futures 

markets are open and another about 6 hours for the night period where only bond market is open. 

In order to accurately calculate various timing option values, the time to maturity in this study is 

not measured by calendar days but by business days.17  Accurate day count is necessary because 

we need to calculate expectations at various times. 

 We first rank all deliverable bonds by their conversion factors.  We then choose the bond 

with the largest conversion factor as our primary bond to deliver and calculate its futures price 

using the two-factor version of the Cox-Ingersoll-Ross model (1981).  The quality option 

represents the option for the short to exchange a cheaper bond for this bond at delivery.  Various 

timing options give the short additional flexibility of choosing the best timing. 

 To calculate the upper bound value for the end-of-month option for any given time prior 

to v, we first need to calculate (36) and then use (14).  As noted earlier, the wild card value can 

be ignored if the lower bound of the futures price at the beginning time of the end-of-month 

period, v, is already low enough. That is, if we use the lower bound for the end-of-month option to 

substitute for ( )vΦ , the loss of the wild card value is translated into the end-of-month option. In 

other words, we can efficiently incorporate the wild card value into the lower bound for the end-

of-month option. If the wild card value is eliminated completely by this substitution, then the 

lower bound for the end-of-month option becomes a lower bound for both end-of-month and wild 

card options. As we shall see this is indeed the case for the periods we examine. 

 Finally, the cost of carry model of (24) is computed to compare with the futures price 

with only the quality option, i.e. (3), and the actual futures price. 

 The empirical examination of the upper and lower bounds is presented in two periods 

where the term structure model is separately estimated.  The first period contains the futures 

contracts from March 1987 to December 1991.  The empirical results in this period use the 

parameter estimates of Chen and Scott (1993), which use data from January 1980 to December 

1988 to estimate the term structure.  Hence, contracts from March 1987 to December 1988 are 

considered in-sample and contracts from March 1989 to December 1991 are considered out-of-

sample.  The second period contains the futures contracts from March 1992 to December 2000.  

We re-estimate the parameters with the Treasury data from January 1991 till December 1998 to 

estimate the term structure and perform also in-sample and out-of-sample tests.  We re-estimate 

the parameters because we observe that interest rates are significantly lower in the later period. 

                                            

17 That is, we do the business day count between trade day and the last day of the delivery month 

and assume 252 trading days for a given year. 
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 The first part of Table 3 presents results in averages for the 20 contracts (8703 through 

9112) studied in the paper. The first 3 columns of Table 3 present actual futures prices, lower 

bound futures prices using (36) which considers only the end-of-month option, and upper bound 

futures prices using which is the cost-of-carry model. The average of the whole period is given at 

the bottom of the table. The cost of carry model is on average 2% higher than the actual futures 

price while the lower bound is 2% lower than the actual futures price. Weekly prices of these 

three series are plotted in Figure 1. Since the futures price with only the quality option should be 

a tighter upper bound, we report this result using (3) in column 4. It is seen that the futures price 

with only the quality option not only provides a tighter upper bound, it also approximates the 

actual futures price amazingly well. For all 20 contracts together, the average futures price with 

the quality option is 92.909 which is less than 50 basis points higher than the average actual 

futures price. This result supports Carr and Chen (1996) in which the value of the quality option 

should explain most of the total delivery option value. It also supports the evidence that the cost-

of-carry model is insufficient to explain the total delivery option value. 

 Since the true futures price contains all embedded options, the total value of timing 

options can be implied by subtracting the actual futures price from the futures price with the 

quality option, i.e., subtracting column 1 from column 4.18 The results are reported in column 5. 

As we have argued, this value is quite small. Nonetheless, an average of 70 basis points is not a 

negligible quantity. 

 The end-of-month option bound values are given in column 6. This value includes both 

the quality option and the timing option values.  It is difficult to separate these two values 

because there is no consistent way to measure the quality option.19  It is seen in Figure 3 that the 

lower bound for the futures price provided by this upper bound is conservative enough to include 

all daily wild card values. And the bound is as tight as the cost of carry model, about 2% on 

average lower than the actual futures price. 

 We also estimate the two-factor Cox-Ingersoll-Ross term structure model for a more 

recent dataset (weekly, from January 4, 1991 through December 29, 1998).  The in-sample test is 

for the contracts from March 1991 to December 1998 and the out-of-sample test is for the 

contracts from March 1999 to December 2000.  We see somewhat different and yet very 

                                            

18 The futures price with the quality option sometimes is less than the actual futures price. In this 

case, the timing option value is recorded as 0. 

19 Carr and Chen (1996) measure the quality option value by looking at the difference between 

column 3 and column 4 in the Table. The quality option value, on the other hand, can be defined 

as the difference between the futures price without the quality option and the futures price with 

the quality option. Then, there is more than one measure for the quality option. 
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interesting results.  Similar to the first half of Table 3, the second half of the table presents the 

results from the second period in a parallel fashion.  First, we note that, even theoretically so, the 

futures price with the quality option on longer is an upper bound for the actual futures price.  

This is a clear indication of the poor fitting result in the term structure model, as mentioned the 

previously in the sub-section Term Structure Model Estimation.  Since the futures price with the 

quality option can be an upper bound only when the term structure model is correct, a poor fit of 

the term structure model certainly affects its performance.  On average, we find that the model-

dependent futures price with the quality option falls below the actual futures price by 84 basis 

points.  In short, the two-factor Carr-Chen futures pricing model (1996) with the quality option 

performs poorly in the second period, which includes in-sample (for 1992 ~ 1998 contracts) and 

out-of-sample (for 1999 ~ 2000 contracts).  The plot of the weekly actual futures prices and 

theoretical futures prices with the quality option is provided in Figure 4. 

 Interestingly, the model-free upper bound, the cost-of-carry model, performs equally well 

as in the first period.  It remain roughly 2% above the actual price, a very robust result. 

 The very surprising result is the model-dependent lower bound.  With the same term 

structure model, the lower bound on average remains within about 2% below the actual futures 

price.  Furthermore, from Table 3 (second part), throughout all contracts, the lower bound 

constantly falls below the actual futures price.  The lower bound performance, week by week, can 

be seen in the second part of Figure 3.  This observation raises an interesting issue.  When we use 

an ill-fitted term structure model to estimate the value of a contract, the performance of the 

estimate relies extremely on the performance of the underlying model.  However, when we 

estimate a range of values for the contract, the accuracy of the underlying model becomes less 

sensitive.  In reality, no trader is seeking “the price,” since model assumptions are always 

inconsistent with reality.  However, robust models (models that are robust to parameter changes) 

are useful in that they provide useful implications traders can use to gain insights.  What we have 

learned from this empirical test precisely enhances this point. 

 

D. Discussions 

 

The importance of the bounds is clear if one realizes that it is nearly impossible to compute the 

delivery options accurately.  Yet it is almost equally important to recognize that violating such 

bounds implies arbitrage opportunities.  This is particularly interesting for the upper bound 

because the upper bound of the futures price – the cost of carry, is model-free.  Our results show 

that 164 out of 722 (or 22.71%) weeks that the futures price exceeded its upper bound.  The 

magnitude of violation is on average 28.6 basis points (annualized) or half a basis point a week 

should such violation occur.  In such times, investors can sell futures and buy the CTD bond and 
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then dynamically switch to the new CTD bond if necessary.  Such a strategy, as suggested by the 

forward measure, should yield an arbitrage profit of half a basis point each time.  This profit must 

overweigh the transaction costs to be profitable. 

 The violation of the lower bound only generates arbitrage profits when the adopted model 

is true.  Our results show that there are 32 out of 722 cases (or 4.4%) where the lower bound is 

violated.  Note that the fewer violations of the lower bound than upper bounds are mainly due to 

a more conservative estimate of the lower bound (i.e., we compound upper bound values of the 

embedded delivery options).  The results suggest that there is a more efficient lower bound to be 

discovered.  We defer that for future research. 

 From Figure 3, we note that there are periods where bounds are tight and others where 

bounds are loose.  To examine any potential systematic biases, we run regressions of the 

“tightness” of the bound against a number of possible factors that affect the futures price.  For 

consistency, we run the following regressions for the period of January 2, 1992 till November 2, 

2000, total of 462 weekly observations. 
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and the results are reported in Table 4.  It is interesting to note that the lower bound 

performance is more sensitive to the fitting of the second cheapest bond and the upper bound 

performance is more sensitive to the long rate.  This result is not surprising because the lower 

bound is a model-driven result while the upper bound is model-free and hence relies on the long 

rate. 
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 Finally, we can argue that the timing options are more valuable in the first period than in 

the second period.  Note that the timing options are negatively related with the interest rates.  

Lower interest rates in the second period reduce the value of the timing options. 

 

VI CONCLUSION 

 

In this paper, we derive lower and upper bound formulas for the Treasury bond futures price. The 

lower bound of the futures price is obtained by integrating all upper bounds for the delivery 

options. The cost of carry model is found to be an upper bound of the futures price. These bounds 

are model free and can be used with any choice of the term structure model.  Analytical results 

are obtained when a two-factor Cox-Ingersoll-Ross model is used.  They provide investors with 

efficient range of how much futures prices can move. In two sample periods of 1987~1991 and 

1992~2000, the cost of carry model is found to be about 2% above the actual futures price and the 

lower bound is found to be about 2% below. 

 It is generally believed that a tighter upper bound is the futures price with the quality 

option (equation (3)), since it ignores the timing options.  However, this is true only if the chosen 

term structure model correctly specifies the markets.  We show empirically that the futures price 

with the quality option approximates the actual futures price well in the first period but not in 

the second period.  Nevertheless, the same model-dependent lower bound performs robustly in 

both first and second periods. 

 As opposed to recursively using the lattice model to iteratively obtain an accurate 

estimate of the futures price, which is prohibitively expensive, as Boyle (1989) demonstrates, the 

bounds provide in the paper can be computed quickly and accurately.  Thus, these bounds can 

provide traders with a useful guideline of the true futures price. 

 

APPENDIX 

 

From Theorem 1, we have: 

 

(A1) 
[ ] ( )

( )

( , ) ( ) [ ( , )] [ ( )]

( , ) [ ( )]

F TQ Q
t t t

F T
t

E t T X T E t T E X T

P t T E X T

δ δ=

=
 

 

where δ  is strictly less than 1.  Due to the risk neutral pricing result we have, the LHS must 

equal ( )X t , and hence: 
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Note that the forward measure is maturity dependent.  Clearly, the Radon-Nikodym Derivative 

(RND) is: 

 

(A3) 
( , )

( , )
( , )

t T
t T

P t T

δ
η =  

 

Since the measure is T-dependent, so should be the RND (usually, RND is just ( )tη .)  Let the 

interest rate process be: 
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Applying Ito’s lemma, 
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Letting: 
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and moving the first two terms to the left: 
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This implies the Girsanov transformation of the following: 
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The interest rate process under the forward measure henceforth becomes: 
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Note that the forward measure is quite general.  It does not depend on any specific assumption on 

the interest rate process. 
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Table 1: Parameter Estimates of the Two-factor Cox-Ingersoll-Ross Model 

 Chen-Scott Estimation   New Estimation   

          

 factor 1 std.err. factor 2 std.err.  factor 1 std.err. factor 2 std.err. 

α 1.834100 0.222800 0.005212 0.115600 α 0.879967 0.001014 0.004423 0.000014 

µ 0.051480 0.005321 0.030830 0.683300 µ 0.043822 0.000009 0.029555 0.000097 

σ 0.154300 0.005529 0.066890 0.002110 σ 0.097855 0.001429 0.095974 0.000018 

ς -0.125300 0.180600 -0.066500 0.115400 ς -0.146140 0.000151 -0.178846 0.000361 

          

 likelihood function = 7750.82   likelihood function = 11722.81  

 # of obs. 470    # of obs. 416   

Note: 

Chen-Scott estimates are taken from Exhibit 2, Panel B on page 21 of Chen and Scott (1993) who 

take Thursday weekly prices of 13-week, 26-week, 5-year, and longest maturity Treasuries.  The 

period of study is January 1980 to December 1988.  The new estimates use Friday weekly T-Bill 

rates of 3 months and 6 months and CMT rates of 5 years, and 30 years.  The period of study is 

January 1991 to December 1998.  The new estimates are estimated with RATS where the number 

of usable observations in the estimation is 387. 
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Table 2: Summary Statistics of Daily Futures Prices 

Contract 
Month 

N Mean Std. Dev Min Max 

      
All 
maturities 

3537 103.69 11.4274 77.78 134.66 

      
8703 21 100.62 0.6833 99.47 101.59 
8706 63 97.23 3.2328 88.56 101.38 
8709 64 90.72 1.5606 86.84 93.19 
8712 65 84.59 3.3369 77.78 90.09 

      
8803 63 88.23 2.147 83.72 93.91 
8806 64 91.19 1.9662 97.34 94.16 
8809 64 86.68 1.2191 84.44 89.56 
8812 65 87.53 2.1673 83.94 91.41 

      
8903 63 89.09 1.1461 86.97 91.44 
8906 64 88.73 1.0879 86.5 91.28 
8909 64 95.23 3.1389 88.34 100.38 
8912 65 97.42 1.1772 95.25 99.84 

      
9003 63 98.29 1.9 93.22 100.28 
9006 64 92.26 1.6765 88.59 94.72 
9009 64 93.15 1.1783 89.78 95.19 
9012 65 89.6 1.2881 87.16 93.09 

      
9103 63 94.91 1.6509 91.09 97.56 
9106 64 95.95 1.1031 93.44 97.94 
9109 63 93.83 0.925 92.28 95.94 
9112 64 98.17 1.4522 95.25 100.41 

      
9203 62 101.25 2.106 97.78 105.25 
9206 62 98.94 0.8243 97.28 100.31 
9209 64 100.79 2.0015 97.31 105.16 
9212 64 104.46 1.1772 102.31 106.91 

      
9303 61 103.9 1.7221 100.28 107.22 
9306 64 109.79 1.9499 105.69 112.66 
9309 64 112.3 2.3068 108.44 115.97 
9312 64 118 2.83 102.63 121.94 

Note: 

Daily futures prices are taken with maturity between 6 weeks and 4½ months for each contract. 

Such a selection enjoys high liquidity and rare overlapping between contracts. 
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Table 2 Continued 

Contract 
Month 

N Mean Std. Dev Min Max 

      
9403 62 110.33 0.9456 113.34 117.44 
9406 64 108.69 3.4739 103.25 115.34 
9409 64 103.02 1.2617 100.31 105.44 
9412 64 100.08 1.9172 97.06 103.81 

      
9503 60 98.64 1.5588 95.44 101.47 
9506 64 103.57 1.4609 100.5 106.31 
9509 64 112.34 2.2275 106.97 115.75 
9512 61 113.51 2.6347 108.69 117.44 

      
9603 63 119.33 1.4683 116.75 121.56 
9606 65 112.94 3.5877 106.75 120.22 
9609 62 108.1 1.0822 105.88 111.84 
9612 62 109.72 1.7013 106.41 113 

      
9703 59 113.06 1.9931 109.78 120.06 
9706 61 109.45 1.9678 106.63 113.44 
9709 62 111.83 0.3393 108.31 116.75 
9712 62 114.62 1.7645 112.06 118.47 

      
9803 59 120.13 1.8508 117.03 123.72 
9806 61 120.56 0.8548 118.66 122.44 
9809 63 122.1 1.3907 118.88 124.16 
9812 62 127.7 2.8354 122.97 134.66 

      
9903 58 127.75 1.4533 124.72 130.63 
9906 64 121.89 1.4661 119.47 126.19 
9909 63 116.3 1.4175 113.63 119.38 
9912 62 113.38 1.2839 110.84 116.16 

      
0003 60 92.38 1.9398 89.22 95.66 
0006 63 95.8 1.7785 92.47 99.34 
0009 63 96.46 1.8667 92.66 99.38 
0012 62 99.54 0.8819 97.63 101.22 

Note: 

Daily futures prices are taken with maturity between 6 weeks and 4½ months for each contract. 

Such a selection enjoys high liquidity and rare overlapping between contracts. 
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Table 3: Empirical Performance of Upper and Lower Bounds 

March 1987 ~ December 1991 

contract 
month 

# of obs. (1) (2) (3) (4) (5) (6) 

8703 4 100.703 99.486 100.585 100.990 0.562 1.505 
8706 13 97.875 96.136 100.132 98.228 0.740 2.092 
8709 13 90.719 89.204 93.853 91.235 0.528 2.031 
8712 13 84.546 83.357 86.323 85.244 0.867 1.887 
8803 13 88.269 87.545 89.407 89.753 1.483 2.208 
8806 13 91.267 89.973 95.513 91.945 0.712 1.971 
8809 13 86.628 84.728 87.053 86.684 0.999 1.956 
8812 13 87.269 85.947 87.530 88.314 1.045 2.367 
8903 13 89.123 87.205 89.912 89.700 0.972 2.496 
8906 13 88.712 86.533 92.655 89.024 0.631 2.491 
8909 14 94.980 92.763 96.251 95.357 0.401 2.594 
8912 13 97.471 95.300 100.400 97.563 0.103 2.264 
9003 12 98.430 96.106 100.170 98.598 0.170 2.491 
9006 14 92.252 90.549 95.804 92.971 0.733 2.421 
9009 13 93.238 91.168 94.006 93.470 0.570 2.302 
9012 13 89.572 88.004 92.559 90.149 0.772 2.146 
9103 13 95.195 93.275 95.982 95.278 0.377 2.003 
9106 13 96.003 94.693 97.561 96.547 0.555 1.855 
9109 13 93.902 92.723 94.322 94.579 0.898 1.856 
9112 13 98.152 96.792 100.638 98.395 0.581 1.603 

        
all 
maturities 

252 92.414 90.758 94.306 92.909 0.691 2.151 

Note:  

(1) is actual futures price 

(2) is lower bound (equation (36)) 

(3) is cost of carry price, also upper bound (equation (24) 

(4) is the futures price with the quality option (equation (3)) 

(5) is average of (4) - (1), a measure of the market value of the timing options 

(6) is average of (1) - (2), a measure of bound tightness 

The theoretical values are computed using the Chen-Scott estimates (left panel of Table 1) 
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March 1992 ~ December 2000 

contract 
month 

# of obs. (1) (2) (3) (4) (5) (6) 

9203 13 101.216 99.800 102.820 103.402 2.349 1.392 
9206 13 98.875 95.497 101.650 100.550 1.944 3.315 
9209 13 100.930 98.520 101.607 101.803 1.116 2.366 
9212 13 104.577 100.955 106.022 104.363 -0.029 3.563 
9303 13 103.926 101.612 107.472 104.020 0.274 2.267 
9306 13 110.099 107.530 110.817 109.325 -0.732 2.531 
9309 13 112.274 109.783 113.701 110.169 -2.086 2.463 
9312 13 118.125 115.264 120.051 114.977 -3.226 2.843 
9403 13 115.250 114.138 117.530 113.434 -1.877 1.096 
9406 13 108.777 107.669 110.239 108.880 0.131 1.090 
9409 13 103.132 100.401 104.535 104.280 1.324 2.712 
9412 13 100.277 97.763 100.997 102.553 2.505 2.473 
9503 13 98.438 94.237 100.829 101.028 2.832 4.153 
9506 13 103.394 100.743 104.408 105.689 2.424 2.616 
9509 14 112.212 108.228 113.331 112.049 -0.187 3.958 
9512 12 113.485 112.215 114.642 114.273 0.746 1.240 
9603 14 119.299 115.368 123.136 117.049 -2.362 3.905 
9606 13 112.681 111.661 113.476 113.569 0.858 0.993 
9609 13 108.375 104.510 108.601 108.917 0.574 3.840 
9612 13 109.630 108.310 111.131 111.098 1.473 1.294 
9703 13 112.834 109.111 116.659 112.241 -0.634 3.700 
9706 13 109.301 108.105 110.123 110.984 1.679 1.172 
9709 13 111.875 107.909 114.585 111.327 -0.578 3.944 
9712 13 114.690 113.795 115.964 115.040 0.270 0.871 
9803 13 120.329 116.394 124.512 117.533 -2.939 3.911 
9806 13 120.625 120.158 121.157 119.546 -1.241 0.443 
9809 13 122.120 118.071 123.111 118.598 -3.681 4.026 
9812 13 127.772 124.326 129.021 122.219 -5.497 3.054 
9903 13 127.916 121.848 131.740 120.926 -6.878 5.584 
9906 13 121.709 121.580 122.289 120.135 -1.737 0.104 
9909 13 116.298 112.651 116.150 114.429 -1.973 3.629 
9912 13 113.397 111.580 114.369 113.170 -0.305 1.797 
0003 13 92.378 89.690 93.742 91.195 -2.603 3.746 
0006 13 95.856 93.482 97.851 93.488 -3.020 2.848 
0009 14 96.574 95.796 97.963 96.060 -2.724 2.662 
0012 13 99.606 97.489 101.067 98.023 -3.324 3.729 

        
all 
maturities 

470 109.940 107.378 111.584 109.326 -0.8427 2.651 

Note:  

(1) is actual futures price 

(2) is lower bound (equation (36)) 

(3) is cost of carry price, also upper bound (equation (24) 

(4) is the futures price with the quality option (equation (3)) 

(5) is average of (4) - (1), a measure of the market value of the timing options 

(6) is average of (1) - (2), a measure of bound tightness 

The theoretical values are computed using the new estimates (right panel of Table 1) 
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Table 4: Regression Results 

 Lower Bound  Upper Bound  

 coefficient std.err. t coefficient std.err. t 

Intercept 2.620156 0.080332 32.61647 1.62892 0.097364 16.73019 

CTD SCTDt t−  0.615754 0.240687 2.558313 0.043733 0.291717 0.149915 

13MTB 3MTBt t−−  -0.85906 1.056233 -0.81332 -1.35587 1.280171 -1.05913 

130YTB 30YTBt t−−  -1.55869 0.919818 -1.69456 -3.24591 1.114835 -2.91156 

CFt  -0.79337 0.970453 -0.81753 -0.42436 1.176205 -0.36079 

Adjusted R2 2.28% 1.87% 

# of obs. 462 462 

Note: Regression period is from January 2, 1992 till November 2, 2000, total of 462 weekly 

observations.  Regression equations are: 

0 1 2 1 3 1 4

0 1 2 1 3 1 4

(CTD SCTD ) (3MTB 3MTB ) (30YTB 30YTB ) (CF )

(CTD SCTD ) (3MTB 3MTB ) (30YTB 30YTB ) (CF )

tt t t t t t t t t

t t t t t t t t t t

a a a a a e

b b b b b u

− −

− −

Φ −Φ = + − + − + − + +

Φ −Φ = + − + − + − + +
 

where 

market futures price

upper bound (COC)

lower bound

CTD cheapest to deliver bond

SCTD second cheapest to deliver bond

3MTB three-month T bill rate

30YTB 30-year T bond rate

CF conversion factor of the c

Φ =

Φ =

Φ =

=

=

=

=

= heapest bond

 

 



 

 39 

Figure 1: Yield Curves for the Selected Period 
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Figure 2: Fitting Performance Of The Second And Third Cheapest-to-deliver Bonds 

Contracts 3/87 ~ 12/91 
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Note: The pricing error is measured as percentage error of the market price: model price ÷ market price – 1.  The average percentage errors are 30 

basis points and 14 basis points for the 2nd CTD and 3rd CTD respectively.  The root mean square errors are 1.07% and 1.20% respectively. 
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Contracts 3/92 ~ 12/00 

-4.00%

-3.00%

-2.00%

-1.00%

0.00%

1.00%

2.00%

3.00%

4.00%
1

/2
/9

2

5
/2

/9
2

9
/2

/9
2

1
/2

/9
3

5
/2

/9
3

9
/2

/9
3

1
/2

/9
4

5
/2

/9
4

9
/2

/9
4

1
/2

/9
5

5
/2

/9
5

9
/2

/9
5

1
/2

/9
6

5
/2

/9
6

9
/2

/9
6

1
/2

/9
7

5
/2

/9
7

9
/2

/9
7

1
/2

/9
8

5
/2

/9
8

9
/2

/9
8

1
/2

/9
9

5
/2

/9
9

9
/2

/9
9

1
/2

/0
0

5
/2

/0
0

9
/2

/0
0

2nd CTD

3rd CTD

 

Note: The pricing error is measured as percentage error of the market price: model price ÷ market price – 1.  The average percentage errors are 10 

basis points and 26 basis points for the 2nd CTD and 3rd CTD respectively.  The root mean square errors are 1.04% and 1.61% respectively. 
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Figure 3: Weekly Time Series Plot of Actual Futures Prices (Actual), Their Upper (COC) and Lower (LBB) Bounds 

Contracts 3/87 ~ 12/91 
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Figure 4: Weekly Time Series Plot of Actual Futures Prices (Actual), and the Theoretical Futures Prices with the Quality Option (Fut/Q) 

Contracts 3/87 ~ 12/91 
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