VALUING BOND FUTURES AND THE QUALITY OPTION

by

Peter Carr
Morgan Stanley
Equity Derivatives Research
1585 Broadway, 6th Fl.
New York, New York 10036
(212) 761-7340

and

Ren-Raw Chen
Faculty of Management
SOB/NB, Department of Finance
Rutgers University
Janice Levin Bldg., Livingston Campus
New Brunswick, NJ 08903
(908) 445-4236

February, 1997

" This paper isarevision of the paper under the same title by Peter Carr. We would like to thank Michael
Brennan, Eduardo Schwartz, Sheridan Titman, David Butz, Bryan Ellickson, Warren Bailey, Bruno
Gerard, David Hirshleifer, Craig Holden, Farshid Jamshidian, Walter Torous, and Louis Scott for
comments and Gikas Hardouvelis for the T-Bill data. Carr would like to thank an All state Disgertation
Fellowship from UCLA and Chen would like to thank the CBOT Educational Research Foundation for
financial support.



VALUING BOND FUTURES AND THE QUALITY OPTION
ABSTRACT

This paper develops a model for determining Treasury bond futures prices when the short
position hes a quality option. The model is developed in a general equili brium ecnomy
where futures prices are driven by one or two fadors. The main advantage of a fador
based model over the exchange option based model is the aility to permit a redistic
number of bonds in the deliverable set. The two fador quality option model is tested
against two popular models which ignore the quality option, namely the CIR model (1981)
and the cost of carry model using the cheapest to deliver bond.



1 INTRODUCTION

The Chicago Board of Trade's US Treasury Bond futures contrad is one of the most
adively traded seaurities in history. Given its volume, it is not surprising that there has
been considerable interest in developing accurate pricing models for these contracts.

Historicdly, the futures price has been below that predicted by the traditional cost-
of-carry model." This deficiency has been attributed to severa delivery options which the
short retains. Kane and Marcus (1986 caegorize these options as ether timing options
or quality options. Timing options have value becaise the short may deliver on any
business day in the delivery month. Additional value aises because trading in the cah
market continues after the futures price has settled.

The quality option gives the short position the opportunity to deliver any US
Treasury bond that has at least fifteen yea's to maturity or first cdl. Currently, more than
thirty bonds, widely varying in coupon, cdlability and maturity, med these aiteria. The
empiricd evidence suggests that it is extremely difficult to predict which bond will be
optimally delivered by the short. A system employing conversion fadors for the various
bonds has been developed by the Chicago Board of Trade (CBOT) in an effort to mitigate
the scope of the short's option. However, the profitability of ead position still depends
heavily on which bond is delivered, after acounting for the dfed of conversion fadors.
For this reason, the long position in the futures contrad is sid to face onversion fador
risk.

Models for the quality option in Treasury bond futures can be divided into those
which assume astochastic processdiredly on bond prices and those which model interest
rates instead. The former class of models includes Cheng (1985, Chowdry (1986,
Hemler (1990 and Boyle (1989. The latter classof models includes Cox, Ingersoll, and
Ross (1981), Ritchken and Sankarasubramanian (1992, Cherubini and Esposito (1996,
and Bick (1996. We dso develop and test a model of the quality option based upon the
term structure of interest rates.

We develop tradable procedures in a general equili brium economy where futures
prices are driven by one or two fadors, rather than by the prices of over thirty different
bonds. In a series of papers, Vasicek (1977, Richard (1978, Brennan and Schwartz

! The traditional cost-of-carry model relates the futures price to the spot price of the underlying ass,

which in this case is the bond which is currently cheapest to deliver.

2 For thefirst 15 or 16 days of each delivery month, thereis a 6 hour period during which the csh market

remains open after the futures price has been settled. Futures trading ceases entirely for the last 7 trading

days. These options have been termed the wild card option and the end-of-the-month option respectively.



(1979, Courtadon (1982 and Cox, Ingersoll and Ross (1985 heredter CIR) have
developed a methodology for pricing interest rate dependent clams. The methodology
has been applied to determining bond spot and futures prices. This paper extends this
methodology towards determining bond futures prices when the short postion hes a
quality option.

In the one fador case, a dosed form solution is developed which requires
evaluating only univariate distribution functions. A more genera two fador model can be
extended from the one fador model in a number of ways. CIR (1985 develop severa
two and threefador models of the term structure. Using the same methodology as CIR,
Longstaff and Schwartz (1992 derive atwo fador term structure model in which the
short rate and the volatility move randomly. Chen and Scott (1992 also follow the CIR
framework and decompose the spot rate into two fadors. Jamshidian (1993 and Duffie
and Kan (1992) extend the Chen and Scott model to an arbitrary number of factors.

Aside from increased tradability, a term structure gproach hes sveral other
advantages over models which speafy bond pricediffusons diredly. One alvantage isthe
paucity of inputs required to caculate the futures price, when there ae aredistic number
of bonds in the deliverable set. For our model, one needs only the values of at most two
interest rates rather than the prices of over thirty different bonds. In contrast, when over
thirty bonds are deliverable, over 465 bond return variances and covariances must be
estimated® to implement models which spedfy bond price diffusions. Furthermore, those
models generally do not predude negative spot or forward rates of interest.* Moreover,
the models employing bond price diffusions must assume that the coupon is a onstant
fradion of the bond pricein order to obtain analyticd solutions. Since bond coupons are
constant, there is an internal inconsistency in these models unless the @upon rate is
asumed to be zeo. In contrast, term structure goproadhes allow for constant coupons.
Finally, generdizing the analysis to alow for the cdlability feadure of several of the
underlying bonds is much more eaily handled in a term structure framework. Including
the cdl feaure is particularly important becaise it increases the likelihood that the bond is
optimally delivered.

The plan of thiswork is as follows. In Sedion Il, we develop a model where the
short rate of interest is taken as the single state variable. Analytic valuation formulae ae
obtained for the futures price with the quality option. Since the CBOT quality option is

% Imposing a single factor asset pricing model such as the CAPM reduces the number of parameters to be
estimated.

* An important exception is Flessker and Hughsten (1996. It would be interesting to apply their
approach to quality options.



over long term bonds, the state spaceis augmented in Sedion Il with a second fador that
takes into acount the dfed of the long rate of interest. Sedion IV provides an empiricd
study of the two factor model. Section V concludes the paper.

2 ONE FACTOR MODEL

2.1  Assumptions and Notation

The following assumptions describe the structure of the model:

Al) Perfect Spot and Futures Markets

There are no transactions costs, margin requirements, limit moves, indivisibilities,
differential taxes or short sdlling restrictions. Trading and marking-to-market occur
continuously in time.

The import of this assumption is to rule out frictions of any sort and to cast the analysisin
continuous time and space In redity, marking-to-market occurs daily® and prices move in
thirty seconds of a point subject to a three point daily price limit.

A2) Delivery Process

Delivery occurs at the contract expiration date. The short receives the futures price
times the relevant conversion factor.

This asuumption simplifies the analysis by excluding the short’s timing option from
consderation. The timing option will have smaller relative value when considering long
maturity futures contracts.

A3) Deliverable Set

The coupon rate and maturity of all bonds in the deliverable set is known on the
valuation date.

This assumption eliminates uncertainty as to the terms of any bonds issued between the
valuation date ad expiration. Since Treasury bonds are issued querterly, this assumption
is lessvalid for longer maturity contrads. If an eligible bond is cdlable, the assumption
also eliminates uncertainty as to the call date.

A4) Mean Reverting Square Root Process

In the one factor model, the following dynamics is assumed for the instantaneous rate:

Eql dr =k(u-r)dt+o+rdz

® Flesaker (1988 and Chen (1991) have shown that the dfed of daily marking to market on the futures
price differs very little from that of continuous marking to market.



where K, U, and o are podsitive constants. The increment of a standard Brownian motion
isrepresented by dz. In a two factor model, the instantaneous short rate is decomposed
into two independent factors, each of which follows a square root process.

EqQ2 r=y +y,
where

Eq3 dy =k (kg —y)dt +0,dz

andi=1,2.

This assumption rules out jump processes for the spot rate and disallows its dependence
on variables other than its current lev@nd calendar time

A5)  Market Price of Spot Rate Risk

For any interest rate contingent claim, the excess return per unit of volatility risk is
AJr | 0 where A isa constant.

This assumption is consistent with log utility function for the representative agent in the
economy.

2.2  Valuation Results
CIR (1985) show that the value of a unit bond with time to matdfitis:

~rB(T,)

Eq4 P(r,T,) = A(T,)e

where
A(T) =

2yelkFANITI2 2kula?
(k+A+y)(e" -1)+2y

B(T) = — 20

(k+A+y)(e" -1)+2y

¥ =k +2)* +20°

Let F(r,T) bethefutures priceof a dam with time to expiration T. Using the CIR result
(1985), the solution can be calculated by taking the following expectation:



Eq5 F,(r,T;T,) = E[P(7,T,)]

Inthe above euation, r isthe terminal spot rate and E[[j] denotes expedations under the
following risk-neutralized process:

Eq6 dr =[k(u-r)—Ar]dt+o+/rd2

It can be shown that the expedation of Eq 5Sunder Eq 6 leads to CIR’'s formula for the
futures price of a pure discount bond (1981):

Eq7 F,(r,T,,T,)=C(T,)e""

where
0 2kl a?
M) =[] AT,)

e’(K*/\)Tf
D(T;) = gy B(T,)

2(k+A)
UZ(l_e’(K*/\)Tf )

n =
Both the spot and futures prices of the pure discount bond are deaeasing, convex
functions of the spot rate r. While the spot price of the bond is dedining in its time to
maturity T, the futures price may be increasing or deaeasing in the time to expiration
T, , ceteris paribus. Since the futures price is nothing more than an expedation under a
certain process there is no reason why changing the expiration date should unambiguoudly
affect the futures price.

By CIR (1981), the futures price of a cupon bond, F,(r,T,), can be spedfied as
follows:

F(r,T,) = E[B(T,T,)]

m
o]

(oe]
1

C,E[P(7,T,)]

CF,(r,T;T)]

b
JZI
b
JZI



where

Eq9 B(f,T,)=2’.,CP(r.T,)

andC,; is the coupon foj =1---,b -1 and the coupon plus face value for b.

Next, we cdculate the futures price, F (r, T, ), when the short can deliver either
of two Treasury bonds. Of course, the short seleds the bond which maximizes his profit,
after acounting for the mnversion fadors ¢,,® which leads to the following terminal
condition:

r r L
Eql0 R (r,0) = min%B(r ’Tbl), B(r 1sz)[

O 9 q, L

The terminal futures priceis just the smaller of the two “adjusted” bond prices, where the
adjustment occurs by dividing ead bond’s price by its conversion fador. Depending on
the coupons and maturities of the two bonds, one bond may be deger to deliver for all
terminal interest rates, or one bond may be preferred for certain rates, while the other
bond is preferred for different rates. In the former case, Eq 8 applies for the dhegoer to
deliver bond. Inthe latter case, the ajusted price of the dhegoer bond must be determined
for ead level of the short rate & expiration. Suppose for simplicity that bond 1is cheger
for interest rates below some aiticd level r* while bond 2 is chegper for higher rates.
Then:

u . OB(r,T, B(r,T.)
FIJ(Z)(r1Tf)_ED[n|nD (I’ bl) (I’, bz)ED

O 0 % %
Eql1l —J' minDB(r Tey) B(qubz)Erp( rydr
2
B(I’ Tbl) © B(F,sz)

= J’ @(r)dr

= )+ |

2

® The mnversion factor isthe fraction of par value for which the bond would sell, if it were priced to yield
8%.



where @(r) isthe probability density function of the terminal interest rate under the drift-
adjusted mean-reverting square root process Eq 6. The Appendix presents this density
functionen route to proving the following result which is used to evaluedel >

BB gy = 5 0T T )X 20 + BT )

=1

E12J'

where x?[x;v,A] is the non-central chi-square distribution function evaluated at x with
2n% exp(=(k +M)T;)

v=4kulo® degrees of freedom and noncentrality parameter A = 7T
Applying this result tdeq 11implies that the current futures price is:

bl C. .2 C. .
Eq13 F?(r,T,)= Z q_lJFp(r1Tf;Tj)X2(r )+Z in(an;Tj)Xz(r )
J=1 1 =1 2

where x*(r") = x*[2(n + B(T;))r ;v;A] .

2.3 Multiple Crossover Points

The pricing equation Eq 13is predicated on there being at most one aossover point for
the two underlying bond prices a expiration. Theoreticdly, there is no reason why the
prices of the two bonds cannot cross themselves more than once Furthermore, in any
delivery month, there ae 20 to 30 bonds deliverable against the CBOT Treasury bond
futures contrad. Fortunately, the biggest problem in extending our results to an arbitrary
number of crosover points and deliverable bonds in mainly notational. The terminal
condition whem bonds are deliverable is:

~ . B(T,T, B(r,T,,)C
Eql4 Fb(”)(r,O):mlnD( bl),--- ( bz)[

O G ’ q, L

Employing the same tedhnique & used to derived Eq 12 the aurrent futures price
generalizes to :

b
Eql5 F"(r,T,)= S Fo (T Tw;
' f



where w; = Z L L [X2(n ) = x5(re)]>0, i =1---n, j=1---bi, are weights simming
to unity acossbonds. i.e. Z_,w; =1 for all j, and where r,,k =01,---,m are qosver
points arranged in increasing order as 0=r, <r, <---<r, , <r, =o. |, isanindicaor
variable equal to one if bonds cheapest in the interval and 0 otherwiisel,,2.

Eq 15is easier to use than its formal form might suggest. Figure 1 illustrates that
if there ae only threebonds which are dhegoest to deliver in their respedive subinterval,
then Eq 15will consist of only threeterms, ead of which is the futures price of the bond
integrated against the probability kernel over the relevant spot rate range.

Figure 1: Three Adjusted Bond Prices Crossing Twice

The CBOT futures price is a weighted average of the futures prices of the
component cash flows of eah deliverable bond. The weight applied refleas’ the
probability (risk neutral) that the cah flow belongs to the chegpest deliverable bond at
expiration. The futures priceis adeaeasing convex function of the aurrent short rater. It
may be deaeasing or increasing in the time to expiration, holding the underlying bond
maturities constant.

Eq 15 can be used to develop the wst-of-carry relationship between the futures
price ad the underlying bond prices. Recdl that B is the bond price of the i-th bond.
Then:

Eq16 R"(T)=3 xB

(
1=1

wherex, = Zf’ﬂ SR Fp(rq'T Bf"TJ =

Unlike the traditional cost-of-cary model, our model relates the futures price to
severa underlying bond prices. EQ 16 also indicates that the long position can eliminate
conversion fador risk by always sorting x, units of the i-th bond. At maturity, the long
will only be shorting the degpest deliverable bond. He can then use the bond receved
from his long position to cover this short.

" Note that the weight does not equal this probebility but refleds it in that w;; isincreasing in the
probability and equals 0 and one when the probability does.



Eq 15can also be used to expressthe CBOT futures price in terms of the bond
futures pricesk, that obtain when no quality option exits:

Eql/ Fb(n)(r1Tf):Z Yi Fui

1=1

b C‘J i
_ 3 SR

b C‘J i
> A ROTT)

with 'y, 0,i=1--,n

Thus the futures price may be written as a positively weighted average of ead of
the futures prices in the dsence of the quality option. Eacd weight refleds the totd
probability that the assciated bond is chegpest to deliver at expiration. Noticethat Eq 17
reduces to the futures price of a single bond if the bond is chegpest with probability one.
If the individual futures contrads exist or can be synthesized, then Eq 17 also indicaes
how along position can eliminate cnversion fador risk. By aways dorting y, contrads
on ead bond, the long will only be short the contrad on the degpest deliverable bond at
maturity. He can then deliver the bond recaved from his long position to close out his
short.

Eq 17 can be used to determine the impad of the quality option on the futures
price Suppose that the futures contrad is nominally written on bond n but that the short
owns the option to substitute any other bond if so desired. Of course, the short exercises
this exchange option if one of the other bonds is lesscostly. The payoff of the option at
expiration is:

0B, . B_,OUO B . B L
Eq18 maxg—”—mlné,Bl—,---,L‘lEOD:—”—mmé,.gl—,---,—”[

an th On-1 [ [l an th O C
Consequently, the currefutures price of this option is given by:

.[B . O B, [ -
EGLO EE"-mingt .. —tI= F, - K =R A-y)-) Ry
1=1

[gn Dql qn ED

8 For simplicity, we assume that the onversion factor system till existsin that the invoice priceresulting
from delivery of bond is gF,



Eq 19 shows that the bond futures price is affeded by the futures price of the
quality option rather than its got price Asin most option pricing modes, Eq 19 shows
that the (futures) price of the option is a probability-weighted difference in the (futures)
prices of the optioned asset and the exercise ast. The weight on the futures price of the
nominal bond is related to the probability that this bond is not chegpest to deliver. This
weight measures the likelihood that the quality option finishes in the money. The weights
on the futures prices of the other bonds reflect their respective probabilities of delivery.

3 TWO FACTOR MODEL

A disadvantage of single fador models is that bond returns of different maturities are
perfedly correlated locdly. Another disadvantage that arises when the single fador is the
spot rate is that insufficient varianceis generated for long term bond prices. Infad, asthe
time to maturity tends to infinity, the bond yield approadches a mnstant. As the CBOT
quality option is defined over long term bonds and its value is ®nsitive to the underlying
bond variances, a second fador is neaded in order to induce the variability observed in
long interest rates.

To empiricdly examine the neeal for the afador, we use the parameter estimates
of the single factor model by Chen and Scott (1993):

K =0.6248 u =0.09304 0 = 010540 A = -0.0923¢<

Using these parameters, we determine the aosover rates for the one fador model for our
sample period from March, 1989 till December, 1991 There ae 20 contrads in this
sample period. We cdculate the aljusted bond prices, i.e. B/q, for al bonds that are
eligible for delivery at ead expiration date for all levels of interest rates.” The best bond
to deliver for the short is the minimum of al adjusted bond prices at expiration. The
results are shown in Table 1. With a single exception,™® there exists no crossover rate for
any other contrad under the one fador model. Asaresult, Eq 13reduces to the standard
CIR futures priceEqg 8 and the quality option will have no value.

Table 1 Crossover Rates for the One Factor Model

°® We use an increment of 0.001 for interest rates.
9 The exception was for Decenber 1990where 8.75, May, 2020is the cheapest when r is lessthan 1.5%
and 7.25, May, 2016 is the cheapest whenhigher than 1.5%.
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This problem is slved in this sedion by augmenting the state spacewith a seoond
fador. We use the framework laid out by Cox, Ingersoll, and Ross (1985 in ther
eguations (56)-(60). CIR develop a linea decomposition of the nominal rate r into two
fadors.™* With an orthogonal transformation of the two fadors, the nominal rate r can be
expressed as the sum of the two orthogonal fagtoend y, .

Chen and Scott (1993 find that the first fador covaries with the short term
interest rate while the second fador refleds the long term rate impad. This
decomposition is similar in spirit to the Brennan-Schwartz model.

Given r =y, +Y,, the dosed form solution for the discount bond is clealy the
product of two CIR bond prices:

Eq20 P(y1,Y,,T,) = P(y1, Tp)P(y2, Ty)

where P(y,T) is defined in Eq 4 Similarly, the futures price of a pure discount bond
separates into the product of two single factor futures prices:

Eq21 F (Y. Y, TiiT,) = RV, T TR (Y., Tis T,)

where F,(y,T;;T,) isdefined inEq 7. The CBOT futures price with an embedded quality

option will therefore become:

n © o OB(Y,,Y,,T BY,Y, T..)0 - — .
Fb()(yl’yz’Tf):J;J'o ming (yl y2 bl)1"‘1 —— myyyz)dyldyz

[l q, . U
B(Y,,V,,T. ~ o~ o~
Eq22 = H M(Kypyz)dyldyz gatiiin
.Y, UA ql
B(Yy: Yo Ton)

@Y, Y, )dy, dy,
Y1.Y20A, n

where V. is the terminal fador level, i = 1,2, A indicaes the region of the state space
where bond k is chegest to deliver, and where A 0 A,0---0A, = 02 isthe whole space

1 See the original paper pp. 404-405 for details.

11



Using the same tedhnique & in the Appendix, we can write the integrals in terms of
bivariate non-central chi-squared distributions:

b1l

C, o
FO0LY2 T =S R0y TiT) [ oR)AR)R R, +

Eq23 - Cl R A
Z — Fo(Yi, Y2, T3 T)) II AX, )X, )dx, dX;,
= On X, X, OA,

where x; =2(n+B(T,))y,, for i = 1,2 and ¢(x;) is a non-central chi-squared density
function. A closed form solution to this integral is difficult to obtain because the domain
of ead integral is a cmplicated region. Although the double integrals can be computed
numericdly, we adually implemented a lattice model which Longstaff and Schwartz
(1992) advocate as equally efficient.

4 EMPIRICAL STUDY

In this £dion, we empiricdly examine our model, Eq 23 by comparing it against the CIR
futures pricing model which does not incorporate the quality option and the popular cost
of carry model (COC) asaumes that the diegoest to deliver (CTD) bond at maturity is the
current CTD bond.

4.1  Methodology

The model used in the enpiricd test is the two fador model of Eq 23 The model isasum
of two dimensional integrations. These integrals require CTD regions to be identified
first. To identify the relevant regions, we need parameter values. There have been drastic
developments in estimation techniques in recent yeas.** In this paper, we use the two
fador model estimated by Chen and Scott (1993 with a weekly data set from 1980 to
1988 Ther two fador model fits the yield curve reasonably well (for both in sample,
198088, and out of sample, 1989391, periods). Three month, six month, five yea, and
the longest maturity Treasury isues are used to estimate the parameters for the two fador
model as follows:

12 For maximum likelihood estimation, see Chen and Scott (1993 and Pearson and Sun (1993; for
Generalized method of moments, see Gibbas and Ramaswamy (1993 and Heston (1989); for the state
space model with Kalman filtering, see Lund (1994, Chen and Scott (1995 and Duan and Simonato
(1995).
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K, =18341 1, = 0051480, = 015431, = -01253
K, =0.005212u, = 0.030830, = 0.06689, = —0.0665

With these parameter values, we can then cdculate the regions where the degoest bonds
are delivered. Then bivariate integrations are implemented via a lattice model.

To implement Eq 23 in addition to the 8 parameter values, we dso neead two
initial fador values. Chen and Scott (1993 recommend that initial fador values can be
determined by matching two bonds from the yield curve — one short maturity and one
long maturity. To satisfy our neals, we solve for the two fador values 9 that the long
maturity bond is exadly the arrent CTD bond suggested by the COC method. In other
words, we set the fador values © that the yield of the CTD bond is fitted perfedly. This
result is then compared with the COC model.

The moddl we use, i.e.,, Eq 23 assumes away timing options. In order to
investigate the importance of the timing options, we looked at the a¢ua deliveries of the
Treasury bonds in our sample period. The ex-post evidence presented by Table 2 shows
that the daily timing option (including the wild card) has virtually no value. Table 2
presents adual deliveries in cumulative percentages. The “Last day” column presents the
deliveries in the last day of the delivery month as a percentage of total deliveries in the
delivery month. The “day -1" column is the deliveries for the last two days of the delivery
month as a percentage of the total. Following this logic, Table 2 shows the amulative
(badkwards) quantities of adual deliveries in the delivery month. For example, for
contrad 8703 the delivery month is March, 1987 The last day in that month is the 31<t,
a Tuesday. On that day, 7 issues are delivered, totaling 11014 bond contrads and
representing 7010% of total deliveriesin March, 1987 which is 14428 On day -1, which
is the 30th, 4 iswues of 2210contrads are delivered. Since this acounts for 15.32% of
the total, the awumulative percentage for two days is 85.42%. There ae only 3 out of 20
contrad months where most deliveries occur prior to the last week.** In contrast, more
than threequarters of the contrad months are mmpletely delivered in the last week of the
delivery month. There is me flexibility in timing delivery during the last week of the
delivery month when the futures market closes, the so cdled end-of-month timing option.
But it is hard to find any significance for this value. Most deliveries in the last week
concentrate on the last two days of the week. With the exception of the 3 contrads

13 These three contracts are March 1989, June 1989, and December 1990.
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previously mentioned, al the contrads had more than 70% of the deliveries occurring
during the last two days.

Table 2 Deliveries in Last Week

4.2 Data

In this empiricd study, we use daily settlement futures prices from January, 1987 through
Deceanber, 1991 We sdled this sample period becaise we would like to conduct both in-
sample and out-of-sample tests. The Chen-Scott parameter values are estimated for the
period 19801988 Therefore our sample period covers the in-sample period, 87-88, and
the out-of-sample period, 89-91. The data set was aaquired dredly from the CBOT. We
seled prices of contrads that have maturities between 6 weeks and 4.5 months because of
their liquidity and interest to traders.”® Figure 2 presents a plot of futures prices. Since
prices are taken from contrads that have 6 weeks to 4 and half months to maturity, there
is little overlapping of any two conseautive mntrads. In other words, for every trading
day, we have only price Table 3 bre&s the time series down by the maturity of the
contrad. For a given contrad month, the fluctuation is snaller and we can discern a
definite pattern in the prices. Futures prices gart out high, plunge in the midde of the
sample period, and then climb badk by the end of the sample period. It is dso seen that
prices are more volatile in 1987 and 1988 and stabilize after 1989.

Table 3 Summary Statistics of Daily Futures Prices
Figure 2: Daily Futures Prices

4.3 Results — Daily Testing

To cdculate theoreticd futures prices using Eq 23 we need the two fador values, y, and
y, dally. To cdculate daily fadtor values for our study, we would need al deliverable
bond prices daily, which is difficult to handle. Fortunately, Chen and Scott (1993 have
shown that the sum of the two fadors which should yield the theoreticd instantaneous
rate goproximates extremely well the 3 month T Bill rate. Asaresult, we shall use daily 3
month Treasury hill rates to badk out the second fador value with weekly updating the
first fador. This approximation should have little dfed on our model futures prices

14 The data of actual deliveries are obtained from CBOT Financial Updates and CBOT Financial Futures
Professional.
15 This selection of maturities was based upon a conversation with CBOT.
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because the first fadtor contributes very little (lessthan 1%, see Chen and Scott (1993) to
the long term bond variability. The 1275 aily fador values for the second fador are
calculated from January 1987 through December 1991.

Before using Eq 23to cdculate theoreticd prices, we neel to identify al possble
deliverable bonds at maturity. This is acamplished by smulating all bond prices at
delivery dates. We seled al deliverable bonds for every delivery month in the sample
period (8703through 9112, cdculate their theoreticd prices usng Eq 9 and Eq 20 and
use their conversion fadors to identify the degpest bonds for various interest rate regions.
The results are reported Trable 4

Table 4 Deliverable Bonds in the Two Factor Model

Table 4 presents a sharp contrast to Table 1. All contrads now have & least three
possble bonds to deliver. For some @ntrads, there ae 5 possble bonds for delivery. If
the quality option is valued under the exchange-option framework, we nead 2 to 4
dimensional integrations. Under the two fador model, we neal just 2 dmensional
integrations for any number of deliverable bonds. As we have pointed out, this is one of
the major advantages of using our model.

With parameter and fador values, we can then use Eq 23to cdculate theoreticd
futures prices. Mean squared errors (MSES) are cdculated for ead contrad and reported
in Table 5. For comparisons, we dso compute the MSEs of al potentially deliverable
bonds reported in Table 4 as well as a benchmark bond with an 8% coupon and 20yeas
to maturity. In Table 5, we report the MSEs of our model, labeled Eq 23 the benchmark
bond, and the minimum and maximum MSEs over all potentially deliverable bonds.

Table 5 MSE’s for Daily Testing

The magnitude of these MSEs is based upon a $100facevalue. Other than the first two
contrads (8703and 8706, the combined MSE for the whole sample period is 3.14 (or the
root MSE is 1.77). It isinteresting to note that the performance of our model is close to
the minimum M SE over al potentially deliverable bonds. This is in spite of the fad that
the bond that generates the minimum MSE is not known at valuation date. Also the
maximum MSE over al bonds is large. This indicates that the mnsequences of seleding

18 The 3- month Treasury bill rates are the average of the bid and ask. We thank G. Hardouvelis for this
data set.
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the wrong bond in a single deliverable model are severe.'” The large difference between
the maximum MSE and the minimum MSE suggests that the quality option value is
potentially large.

It iswidely accepted that the most important input for an option is the volatility of
the underlying asset and unfortunately this parameter is nonstationary. Although there
have been models that ded with stochastic volatility option pricing problems, the most
popular method adopted by praditioners is 4gill the “implied volatility” method.
Analogously, we update o> daily. o2 computed at current date is used for the next day.
With this adjustment, the performance of our model is indeed significantly improved.
Except for March, 1987 all contrads are priced within 1% error. The results are
presented in Table 6.

Table 6 MSE’s for Daily Testing with Constantly Updated;

4.4  Data and Results — Weekly Testing
The st of cary mode uses the airrent chegoest bond as the assumed only deliverable
bond and uses the cost of carry formula to determine the futures price:

cq2a F, = B TADAYR) AL,
qctd

where B, is the diegpest bond on the transadion date (after acwounting for its
conversion fador), and where Al, is the accued interest on the trade date, Al, is the
acaued interest on the delivery date, and R, is the short term risk freerate that matches
the time to maturity of the futures contract.

Since the test of the COC model requires data on al deliverable bonds, the test is
done on weekly data. We seled Thursday's prices to be onsistent with the Chen and
Scott study (1993."® We find the dhegpest to deliver bond by minimizing B/q for every
given week and then use Eq 24to compute futures prices. The results of this cdculation
as well as the weekly futures prices from the CBOT are plotted in Figure 3. The MSE is

171t should be kept in mind that all bonds considered here will potentially be the cheapest if the interest
rates at maturity settle in its relevant region.

18 |f Thursday prices are not avail able, we use Friday’s prices. This sledion is also consistent with Chen
and Scott (1993) so that the factor values for the model are consistent with the COC model.
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cdculated as 7.8838for the whole period. The brekdown of ead contrad is given in
Table 7

Figure 3: Weekly Futures Prices
Table 7 MSE’s for the Cost of Carry Model

To test our model against the COC model, we need to compute Eq 23once aweek. We
repea the procedure used to generate Table 5 and the results are given in Table 8. The
MSE of our model for the whole sample period is 1.7197, representing an 80% reduction
in error over the COC model.

Table 8 MSE’s for weekly testing
5 SUMMARY

This paper derives and empiricdly tests a quality option model which overcomes sveral
disadvantages of previous models. First, it is consistent with a genera equili brium theory
of the term structure. Seaond, it avoids the use of multi-dimensional bond price processes
which are difficult to implement. Third, it provides closed form solutions in the single
factor case.

The ampiricd work in this paper is very supportive of the two fador model. The
evidence suggests that the magnitude of the quality option in T-Bond futures contrads is
not trivial. It also shows a significant difference between the two fador CIR model and
the aost of carry model. Further reseach should focus on parameter estimation of the two
factor model.

APPENDIX

This Appendix finds an expresson for the first truncated moment of the terminal adjusted
bond price:

f: B(Fc;Tb)‘ o(F)dr = i % P (r T TX[2(n + B(T))r v, Al
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We begin by substituting the cupon bond definition into the integral on the left hand side
of the above equation:

IgB(r o) 57)dr = Z ’P(r T)@(F)dr

b I' Cj —~ —~ —~
:z I —P(r, T,)@(r )dr
= 0 q

b C 8z
=Y AT e " er)dr
2, 0L

The integral here is reaognized as the truncaed Laplacetransform of the density function

@), evaluated at the point B(T,). Using the density function provided in CIR (1989

under the square root process:

AFr) = ne‘“‘“% 1, (2Vwv)

where:
r] - 2(k+A)

o2(1-e T

-(k+A)T
u=ne My
v=nr

q_ZKu 1

|, (0} is the modified Bessel function of the first kind of order q:

_e _(x/12)™
072 fir@rie)

Substituting this expression back to the integral yields:

AT e V)T = AT e e %@q > j!ﬁ‘;‘(;)ﬂﬂ)dr

r (s F d H(nr)a ~
1=0

ji'M(g+1+j)
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In order to represent the integral as the distribution function of a non-central chi-squared
distribution, consider the affine transformatipr 2(n7 + B(T,))r :

ny q+j
A(T) J_z(n B(T,)r* e V,ZZ [2(n+B(T ))] B 1
jir(q+1+j) 2(n+B(T)))

dy

i a+]
2n+B(T )+ @ V2 = [n+B(T)] [ ]

AT, )%+B(T % I Z IF(q+1+])

o 2(n+B(T ) e_u_wy% - '[W+B(T)] y!
= C(T ) fHB(TJ I - dy
° 2 S jir(q+1+j)2
2(n+B(T,)r* e_wz_mgirm I [ B(T)] yq+J
=F,(r,T:T) . d d
Tk 20 JZO jIr(g+1+j)2’
(y*+A) ) )
2(n+B(T;)r* e 2 = N yV/2+j—l
=F_(r,T ,T : B
(0T )I 2"2 JZO jIr(v/2+j)2% Y

=R, (T )X [2(n + B(T))r v, Al

where v (degrees of freedom) and A (non-centrality parameter) are defined in the text.
We complete the proof by substituting this result into the original equation.
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Tablel

Crossover Rates for the One Factor Model

Contract | Cheapest Deliverable Bonds Crossover Rate
Bond 1 Bond 2

8703 9.25, Feb, 2016 N.A. N.A.
8706 7.25, May, 2016 N.A. N.A.
8709 8.875, May, 2018 N.A. N.A.
8712 7.25, May, 2016 N.A. N.A.
8803 8.875, May, 2018 N.A. N.A.
8806 7.25, May, 2016 N.A. N.A.
8809 8.875, May, 2018 N.A. N.A.
8812 7.25, May, 2016 N.A. N.A.
8903 8.875, May, 2018 N.A. N.A.
8906 7.25, May, 2016 N.A. N.A.
8909 8.125, Aug, 2019 N.A. N.A.
8912 7.25, May, 2016 N.A. N.A.
9003 8.125, Aug, 2019 N.A. N.A.
9006 7.25, May, 2016 N.A. N.A.
9009 8.125, Aug, 2019 N.A. N.A.
9012 8.75, May, 2020 7.25, May, 2016 0.015
9103 7.875, Feb, 2021 N.A. N.A.
9106 8.125, May, 2021 N.A. N.A.
9109 7.875, Feb, 2021 N.A. N.A.
9112 8.125, May, 2021 N.A. N.A.

Note: The parameter values used to smulate the aosover rate are the etimates of the one factor CIR
model in Chen and Scott (1993. Eq 9is used to calculate various bond prices. The dceapest bond is
identified by minimizing B/q (where q is the conversion factor) across various bonds. Bond 1 is the
cheapest bond in the interest rate region lower than the cossover rate and Bond 2 is the dheapest bond in

the interest rate region higher than the crossover rate.
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Table2
Deliveries in Last Week

Contrac Total Lastday day-1 day-4 day-3 day-4 day -5
8703 100.00% 70.109% 85.42% 99.98% 99.99% 100.00% 100.009
8704 100.00% 99.85% 99.85% 99.93% 100.00% 100.00% 100.009
8709 100.00% 99.44% 99.89% 99.89% 99.89% 99.91% 100.009
8717 100.00% 65.009 74.169% 74.169 74.88% 74.88% 76.509
8803 100.00% 93.18% 94.62% 97.219% 97.249% 97.249% 97.249
8804 100.00% 100.00% 100.00%4 100.00%4 100.00% 100.00% 100.009
8809 100.00% 99.87% 99.92% 99.92% 100.00% 100.00% 100.009
8812 100.00% 51.419% 85.10% 85.67% 88.00% 93.59% 94.319
8903 100.009 0.019% 0.96% 2.95% 13.45% 15.31% 15.319
8906 100.00% 21.359% 22.05% 22.05% 22.219% 27.77% 28.16%
8909 100.00% 70.559% 71.159% 73.29% 77.279% 79.89% 79.899%
8912 100.00% 49.24% 94.93% 94.93% 94.93% 96.18% 96.209
9003 100.00% 99.89% 99.89% 100.00% 100.00% 100.00% 100.009
9004 100.00% 97.429% 99.86% 99.86% 99.87% 99.93% 99.93¢9
9009 100.00% 87.14% 99.99% 100.00% 100.00% 100.00% 100.009
9017 100.00% 1.92% 1.92% 4.05% 4.05% 4.13% 4.13%
9103 100.00% 96.58% 99.90% 99.94% 100.00% 100.00% 100.009
9104 100.00%4 98.29% 100.00% 100.00%4 100.00% 100.00% 100.009
9109 100.00% 99.83% 99.94% 99.94% 99.94% 99.96% 100.009
9112 100.00%4 99.13% 99.59% 99.83% 99.83% 99.83% 99.839

Note: The percentage numbers are auimulative actual deliveries from the last day in the delivery
month. The “Last day” column presents the deliveries in the last day of the delivery month as a
percentage of total deliveriesin the delivery month. The “day -1" column is the deliveries for the
last two days of the delivery month as a percentage of the total. The remaining columns sow the
cumulative (backwards) quantities of actual deliveries in the delivery month. For example, for
contract 8703 the delivery month is March, 1987. The last day in that month is 31st, a Tuesday.
On that day, 7 isaues are delivered, totaling 11014bond contracts and representing 7010% of
total deliveriesin March, 1987, which is 14428 On day -1, which is the 30th, 4 issues of 2210
contracts are delivered, representing 1532% of the total. Therefore, the aumulative percentage for
two days is 85.42%.
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Table3
Summary Statistics of Daily Futures Prices from 1/87 till 12/91

N Mean Std Dev Min Max
All maturities | 1275 | 92.65 4.7686 77.78 104.75
8703 21 100.62 0.6833 99.47 101.59
8706 63 97.23 3.2328 88.56 101.38
8709 64 90.72 1.5606 86.84 93.19
8712 65 84.59 3.3369 77.78 90.09
8803 63 88.23 2.1470 83.72 93.91
8806 64 91.19 1.9662 97.34 94.16
8809 64 86.68 1.2191 84.44 89.56
8812 65 87.53 2.1673 83.94 91.41
8903 63 89.09 1.1461 86.97 91.44
8906 64 88.73 1.0879 86.50 91.28
8909 64 95.23 3.1389 88.34 100.38
8912 65 97.42 1.1772 95.25 99.84
9003 63 98.29 1.9000 93.22 100.28
9006 64 92.26 1.6765 88.59 94.72
9009 64 93.15 1.1783 89.78 95.19
9012 65 89.60 1.2881 87.16 93.09
9103 63 94.91 1.6509 91.09 97.56
9106 64 95.95 1.1031 93.44 97.94
9109 63 93.83 0.9250 92.28 95.94
9112 64 98.17 1.4522 95.25 100.41

Note: The face value of the underlying bond is assumed to be $100.
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Table4

Possible Deliverable Bonds

Contract Bond 1 Bond 2 Bond 3 Bond 4 Bond 5
8703 10.75,2,03 |8.375,8,03 | 7.625,2,07 |9.25,2,16
8706 11.625,11,0| 7.875,11,02 | 8.25,5,05 7.25,5,16
8709 2 8.375,8,03 | 7.625,2,07 | 8.875,8,17
8712 10.75,2,03 | 7.875,11,02 | 8.25,5,05 7.25,5,16
8803 10.75,2,03 |8.375,8,03 | 7.625,2,07 |9.25,2,16 8.875,8,17
8806 11.125,8,03| 7.875,11,02 | 8.25,5,05 7.25,5,16
8809 11.875,11,0| 8.375,8,03 | 7.625,2,07 | 9.25,2,16 8.875,8,17
8812 3 7.875,11,02 | 8.25,5,05 7.25,5,16
8903 13.75,8,04 |8.375,8,03 | 7.625,2,07 |9.25,2,16 8.875,8,17
8906 12.3755,04 | 8.25,5,05 7.25,5,16
8909 13.75,8,04 | 7.625,2,07 | 9.25,2,16 8.875,8,17 | 8.125,8,19
8912 7.875,11,02 | 8.25,5,05 7.25,5,16
9003 8.375,8,03 | 7.625,2,07 |9.25,2,16 8.125,8,19
9006 7.875,11,02 | 10.375,11,0 | 7.25,5,16
9009 10.75,2,05 |7 9.25,5,16 8.125,8,19
9012 12.75,11,05| 7.625,2,07 | 7.25,5,16
9103 9.375,2,06 |10.375,11,0|9.25,2,16 8.875,8,17 | 8.125,8,19
9106 13.875,5,06 | 7 7.25,5,16
9109 12,8,08 7.625,2,07 | 9.25,2,16 8.125,8,19 | 7.875,2,21
9112 14,11,06 10.375,11,0| 7.25,5,16

12,8,08 7

14,11,06 7.625,2,07

10.375,11,0
7

Note: These bonds are the posshble deliverable bonds for each contract. The table is smilar to Table 1
except that a two factor version of Eq 9, i.e, Eq 9with Eq 20 is used. All bonds are reported by their
coupons (first number) and maturity month (second number), and maturity year (third number).
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Table5
MSEs for Daily Testing

Contract Eq 23 Minimum Maximum Standard No. of
month MSE MSE bond observations
8703 49.7002 50.7703 79.1000 78.7916 22
8706 26.8069 31.8355 42.1938 46.6872 63
8709 7.4268 8.1547 18.3405 17.3513 64
8712 3.4922 3.5766 13.4459 10.3625 65
8803 3.7274 4.0159 17.1279 12.7534 63
8806 3.2481 3.0677 13.7105 11.5997 64
8809 3.0263 3.1512 21.1838 11.6031 64
8812 1.3520 0.8502 15.9503 9.7288 65
8903 0.8782 0.9223 9.8478 7.3389 63
8906 3.4598 3.4136 5.1505 6.3542 64
8909 5.4144 2.1401 4.8693 5.5764 64
8912 3.2872 3.6892 3.9476 8.3660 65
9003 2.7328 0.5997 2.3080 5.1455 63
9006 2.8513 2.7955 5.3054 6.7327 64
9009 1.8728 1.7265 2.7025 6.4281 64
9012 3.3684 3.3324 8.8694 7.6758 65
9103 3.8978 1.9298 3.6592 6.1190 63
9106 2.4051 2.4568 7.3579 9.4754 64
9109 2.5173 2.7798 6.4933 9.0371 63
9112 1.5190 1.8175 3.2730 7.7540 64

Note: The standard bond is 8%, 20 years. Minimum MSE is the smallest MSE of al deliverable bonds
(given in Table 4) and Maximum MSE isthe largest MSE of all deliverable bonds. Except for the wlumn
labeled Eq 23 all futures prices are @ culated using Eq 8. All numbers are based upon $100face value.
The parameter values used are the etimates of the two factor CIR model provided by Chen and Scott
(1993).
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Table6
MSE'’s for Daily Testing with Constantly Updatexdt

March June September December
87 13.74 0.77 0.85 1.27
88 0.68 0.48 0.53 0.27
89 0.31 0.72 0.91 0.58
90 0.29 0.82 0.71 1.18
91 0.55 0.23 0.24 0.32

Note: The MSE's reported are alculated the same way as Eq 23in Table 5 except that the volatility
parametew is updated daily. We use the impligdor the next day’s futures price calculation.
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Table7

MSE’s for Cost of Carry Model

March June September December
87 0.50 9.46 14.17 7.49
88 3.73 19.36 3.87 0.08
89 3.02 15.57 5.10 11.69
90 8.66 2.64 11.79 2.97
91 6.42 1.45 9.07 8.35

Note: The cheapest to deliver bond on a given date is determined as the minimum value of B/q for all
deliverable bonds at that date. The @st of carry model uses this calculation as an input to Eq 24 to

compute the theoretical futures price for the that date.
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Table8

MSEs for Weekly Testing
Contract Eq 23 minimum maximum Standard No. of
month MSE MSE bond observations
8703 0.7369 0.9160 1.8727 4.3480 5
8706 2.7926 4.5609 4.9210 11.4634 13
8709 0.8227 1.1015 9.1228 8.2017 13
8712 2.3235 1.6407 20.5019 11.7122 13
8803 2.9988 3.4097 18.7796 11.3540 13
8806 1.6132 1.1850 12.5321 10.3990 13
8809 4.8756 4.9762 16.6053 7.2182 13
8812 2.5149 1.5748 20.5235 11.8615 13
8903 2.2478 2.4881 15.1713 11.8820 13
8906 1.7584 1.3174 12.2034 10.5474 13
8909 0.5034 0.9473 5.2865 8.3225 14
8912 0.1722 0.3414 2.3993 6.8495 13
9003 0.2096 0.7002 1.7925 5.3077 12
9006 1.2687 1.0714 10.7484 11.5240 14
9009 1.4389 1.6704 4.5730 8.8719 13
9012 1.7394 1.4108 16.2757 12.2948 13
9103 1.1707 1.3718 3.4492 8.1110 13
9106 0.7994 0.8725 7.1878 9.1853 13
9109 1.8887 2.3356 7.0130 7.8561 13
9112 1.8911 2.2348 3.3466 7.6364 13

Note: The standard bond is 8%, 20 years. Minimum MSE is the smallest MSE of al deliverable bonds
(given in Table 4) and Maximum MSE is the largest MSE of al deliverable bonds. Except for Eq 23 all
futures prices are @lculated using Eq 8 All numbers are based upon $100 face value. This table is
similar to Table 5 except that weekly prices instead of daily prices are used. The parameters are taken

from Chen and Scott (1993).
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Daily (Actual) Futures Prices
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Figure 2: Daily Futures Prices — Actual
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