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EMBEDDED OPTIONS IN TREASURY BOND 

FUTURES PRICES: NEW EVIDENCE 

 

ABSTRACT 

 

The Treasury bond futures contract has known embedded options, namely the quality option 

that permits the short side to deliver the cheapest bond and the three timing options that permit 

the short side to delivery at the most favorable time.  The literature has provided only partial 

solution to this pricing problem.  Some have used the exchange option methodology that does 

not calibrate to the Treasury yield curve.  Others have used a term structure model and yet 

ignored the fact that the futures price is not a risk-neutral expectation of the cheapest-to-deliver 

bond price but a forward expectation. 

In this paper, we use a two-factor Cox-Ingersoll-Ross term structure model that is 

calibrated to the Treasury yield curve and compute the futures price with the forward pricing 

methodology.  Using weekly futures prices from January 1992 till December 2000, we discover a 

substantial difference between the risk neutral expectation used in the literature and the forward 

expectation that requires a recursive algorithm.  We find that the correctly estimated futures 

price with the quality option is 1% lower on average than the futures price estimated in the 

literature.  We also estimate the end-of-month timing option to be 23 basis points on average.  

This indicates that the end-of-month timing option value has been over-estimated in the 

literature because of a wrongly estimated quality option value. 
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EMBEDDED OPTIONS IN TREASURY BOND 

FUTURES PRICES: THEORY AND EMPIRICAL 

EVIDENCE 

I. INTRODUCTION 

 

The delivery options in Treasury bond futures are generally known as the quality option and the 

three timing options. The quality option gives the short the right to deliver any eligible bond (no 

less than 15 years to maturity or first call) and the various timing options give the short the 

flexibility of making the delivery decision any time in the delivery month. The end-of-month 

timing option refers to the deliveries occurring at the last 7 business days in the delivery month 

when the futures market is closed to trading. For the remaining about 15 business days of the 

delivery month, the wild card timing option refers to the period from 2:00 p.m. to 7:00 p.m. 

(Chicago time) every day when the futures market is closed but the bond market is open while 

the accrued interest timing option refers to the period from 7:20 a.m. to 2:00 p.m. when both 

futures and its underlying bond markets are open. 

 Delivery options in Treasury bond futures are difficult to price.  A recursive algorithm 

based upon a lattice model must be used for valuing such options accurately, as Boyle (1989) 

demonstrates that the futures price is effectively a forward price.1  To this date, the literature 

has been approximating the forward price valuation with a futures price valuation due to the 

high computational cost.  Aided with today’s computing power, we can now compute accurately 

the Treasury bond futures price with the proper recursive algorithm.  In this paper, we estimate 

the value of the quality option as well as the value of the end-of-month timing option.  Using a 

two-factor Cox-Ingersoll-Ross model calibrated to the cheapest-to-deliver bond and weekly 

futures prices data from January 1992 till December 2000, we discover a substantial difference 

between the risk neutral expectation used in the literature and the forward expectation that 

requires a recursive algorithm.  We find that the correctly estimated futures price with the 

quality option is 1% lower on average than the futures price estimated in the literature.  We also 

estimate the futures price with both the quality option and the end-of-month timing option to be 

23 basis points on average.  This indicates that the end-of-month timing option value has been 

over-estimated in the literature because of a wrongly estimated quality option value. 

                                            
1 Furthermore, we note that the wild card timing option is a series of compound options on the 

forward price which cannot be priced accurately without a multi-recursive system.  As a result, 

an accurate valuation of these delivery options is very expensive. 
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 An early discussion of the valuation of the quality option appears in Cox, Ingersoll, and 

Ross (1981) in which they state that their valuation can be applied to futures with the quality 

option when the single spot bond price is replaced with the minimum from the deliverable set. 

Jones (1985) argues that although there are multiple bonds eligible, bonds with extremely high 

and low durations are the ones to be delivered. His argument holds if the yield curve is flat. If 

the yield curve is not flat, then durations of different maturity bonds are not directly comparable 

and therefore his extreme duration rule fails.  Hemler (1988) uses Margrabe’s (1978) exchange 

option formula to price the quality option but the pricing formula becomes intractable as the 

number of deliverable bonds increases. Carr (1988) was the first to use factor models to price the 

quality option and Carr and Chen (1996) extend the Carr model to include a second factor. 

Ritchken and Sankarasubramanian (1992) use the Heath-Jarrow-Morton (1992) framework to 

find the quality option value. Livingston (1987) analyzes the quality option on the forward 

contract. 

 Timing options in general have no closed form solutions and are therefore studied with 

lattice methods. Kane and Marcus (1986a) lay out a general framework for analyzing the wild 

card option. Broadie and Sundaresan (1987) develop a lattice model to value the end-of-month 

option. Their focus is strictly on the futures price in the end-of-month period.  Boyle (1989) uses 

a two-period model to show that the timing option could have a significant impact.  His analysis 

assumes constant interest rates and does not directly apply to Treasury bond futures.  These 

papers remain theoretical and provide no empirical evidence. 

 Empiricists in general agree that the quality option and the end-of-month timing option 

have non-trivial values.2  Yet, there is no consensus as to the magnitudes of these option values.3  

This is because (1) most studies do not distinguish between the quality option value and the 

value from the other timing options, let alone values among various timing options and (2) none 

of these models adopts a factor-based, general equilibrium term structure model to value these 

various embedded options.  As a result, this paper contributes to the literature by using a two-

factor Cox-Ingersoll-Ross term structure model (1985) to estimate the end-of-month timing 

option value. 

 The paper is organized as follows. The next section derives the proper pricing model for 

the quality option and discusses how each timing option should be estimated.  We show how the 

futures price with the quality option is effectively a forward price when the futures market is 

                                            
2 See, for example, Carr and Chen (1996), Kilcollin (1982), Benninga and Smirloc (1985), Kane 

and Marcus (1986b), and Hegde (1990). 
3 See, for example, Arak and Goodman (1987), Hegde (1988, 1990), Gay and Manaster (1984, 

1986), and Kane and Marcus (1986a, 1986b).  The evidence from these studies is inconclusive. 
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closed and the bond market is open.  Section III contains an empirical study where a two-factor 

equilibrium term structure model is estimated under the Chen and Scott (1993) technique. The 

quality option value and the end-of-month timing option are estimated using weekly futures 

prices from 1992 till 2000.  Finally, the paper is concluded in Section IV. 

 

II THE QUALITY OPTION AND THE FUTURES PRICE 

 

The delivery option that has the most economic value is the quality option that gives the short 

of the futures contract the right to choose the cheapest bond to deliver at the delivery date.  

Other delivery options that are embedded in Treasury bond futures are known as the three 

timing options.  The short can choose any time in the delivery month to make a delivery.  The 

short can make a delivery even when the futures market is closed.  At the end of the delivery 

month, for 7 business days, the futures market is closed but the short can still make a delivery.  

This is understood as the end-of-month timing option.  For the remaining about 15 business days 

in the delivery month, the short can deliver either between 7:20 a.m. and 2:00 p.m. (Chicago 

time) when both the futures market and the underlying bond market are open or after 2:00 p.m. 

when the futures market is closed.4  The former timing option is called accrued interest timing 

option and the latter timing option is also known as the daily wild card play.  The following 

picture explains graphically various timing options. 

 

Both
markets
open

Futures
market
closed

7:20am 2pm 8pm

DELIVERY MONTH

Last 7 business days

. . . e.o.m.

w.c.a.i.

u

v

u +h

T

t

i i

 

 

                                            
4 Treasury bond market is an over the counter market that has no official closing time, even 

though market practice adopts 3:00 p.m. Eastern time as a symbolic closing time.  The futures 

market allows the short up to 8:00 p.m. Eastern time to make the delivery announcement, and 

hence theoretically there is a 5-hour window for the wild card. 
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The period of the last 7 business days is the end-of-month period. Throughout the paper we use v 

for the starting time and T for the ending time of this period. For the rest of the delivery month, 

there are two sections of each day, the accrued interest period and the wild card period.  For a 

regular futures trading day i between 7:20 a.m. and 2 p.m. Chicago time, both bond and futures 

markets are open simultaneously.  The futures market closes at 2 p.m. but there is no official 

closing time for the bond market.  Since the short has till 8 p.m. to make the delivery decision, 

the wild card period is defined over 3 p.m. ( iu ) to 8 p.m. ( iu h+ ) Eastern time. 

 The notation and symbols used in the paper are also summarized as follows: 

 

*

**

( )  "quoted" futures price with all delivery options

( )  futures price with the quality option and continuous marking to market

( )  futures price with the quality option at the absence of conti

t

t

t

Φ =

Φ =

Φ = nuous MTM 

 

( )  futures price of the th quoted bond price

( )  forward price of the th quoted bond price

( )  accrued interest of the th bond

( , )  discount bond price at time  of $1 at time 

( )  "qu

i

i

i

i

t i

t i

a t i

P t T t T

Q t

Φ =

Ψ =

=

=

= oted" coupon bond price of the th bond

 conversion factor of the th bond

( , )  random discount factor between  and 

i

i

q i

t T t Tδ

=

=

 

 

Before we start our analysis, we need Jamshidian’s separation theorem (1987) and his definition 

of the forward measure.5 

 

Theorem 1 (Forward Measure) 

Let ( , )P t T  be the price of a pure discount bond delivering $1 at some future date and it follows 

the dynamics as: 

 

 
( , )

( ) ( , ) ( )
( , )

QdP t T
r t dt b t T dW t

P t T
= +  

 

where r is the instantaneous risk-free rate, b is maturity dependent bond volatility, and ( )QdW t  is 

the standard Wiener process defined under the risk-neutral space.  Then the forward measure is 

defined as: 

 

                                            
5 Also see Hull (2003). 
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 ( )2 ( )( , )
( ) ( , ) ( , ) ( )

( , )
F TdP t T

r t b t T dt b t T dW t
P t T

= − +  

 

where ( )( ) ( ) ( , )F T QdW t dW t b t T dt= + .  Under this forward measure, all expected values taken will 

be forward prices, that is: 

 

 

( )

( )

[ ( , ) ( )] [ ( , )] [ ( )]

( , ) [ ( )]

F TQ Q
t t t

F T
t

E t T X T E t T E X T

P t T E X T

δ δ=

=
 

 

where ( )( , ) exp ( )T
tt T r u duδ = −∫  and ( )[ ( )]F T

tE X T  computes the forward price of X. 

 

A simple proof of this theorem is given in an appendix although the original proof is available in 

Jamshidian (1987). 

 

A. The Quality Option with Continuous Marking to Market 

 

In the absence of all timing options, the quality option gives the short the right to deliver the 

cheapest bond only at maturity, T, and the short receives the following payoff: 

 

(1) { }max ( ) ( )i iq T Q TΦ −  

 

Note that the accrued interests of both bond and futures contracts are equal and canceled. Since 

the delivery value of (1) has to be identically 0 for all states, we can solve for the futures price at 

maturity as: 

 

(2) 
( )

( ) min i

i

Q T
T

q

   Φ =     
 

 

and today’s futures price is merely a risk-neutral expectation of this payoff: 

 

(3) 

{ }
{ }

{ }

*

1 1

1 1

1 1

1 1

( )
( ) min

[ ( )] ( ) ( )
max

( ) ( ) ( )
max

iQ
t

i

Q
iQt

t
i

iQ
t

i

Q T
t E

q

E Q T Q T Q T
E

q q q

t Q T Q T
E

q q q

 
Φ =  

  
 

= − − 
  

Φ  
= − − 
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Note 1 1( ) [ ( )]Q
tt E Q TΦ =  is the futures price of the first bond with no option and *( )tΦ  is the 

futures price of the cheapest bond at maturity. This result has been shown previously by Carr 

(1988) and other authors. This equation says that the futures contract with the quality option is 

equivalent to a futures contract without the quality option (only bond 1 is eligible for delivery) 

with an exchange option held by the short.  With a specific term structure model, equation (3) 

becomes an analytical solution.6 

 

B. The Quality Option with no Marking to Market When the Futures Market Is 

Closed 

 

Equation (3) is correct only if marking to market is applied continuously throughout the life of 

the futures contract. Unfortunately, in the last 7 business days of the delivery month, the futures 

market is not open and the futures contract is not marked to market. The futures price used for 

settlement in this period is the last settlement price at the beginning of the 7-day period. Since 

the futures price is already determined, the actual payoff at the last delivery day, T, is not 

necessarily 0. The short can actually gain or lose. To avoid arbitrage, the futures price at the 

beginning of the 7-day period should be set so that the expected present value of payoffs at 

maturity is 0. Under this circumstance, the futures price at the beginning of the 7-day period is a 

forward price, not a futures price. Formally, label the futures price as **( )vΦ  to represent the 

futures price at the beginning of the end-of-month period, v, should be so set that: 

 

(4) **[ ( , )max{ ( ) ( )}] 0Q
v i iE v T v q Q Tδ Φ − =  

 

where δ is the stochastic discount factor assumed to be strictly less than 1. Using Theorem 1, we 

can then rewrite (4) as: 

 

(5) ( ) **[max{ ( ) ( )}] 0F T
v i iE v q Q TΦ − =  

 

which can be expanded as follows: 

 

                                            
6 For example, the closed form solution under the one-factor Cox-Ingersoll-Ross model can be 

found in Carr (1988). 
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(6) 

( ) **

( ) ** **
1 1 1 1

** ( ) **
1 1 1 1

0 [max{ ( ) ( )}]

0 [ ( ) ( ) max{ ( )( ) ( ( ) ( )), 0}]

0 ( ) ( ) [max{ ( ) ( ) ( )( ), 0}]

F T
v i i

F T
v i i

F T
v i i

E v q Q T

E v q Q T v q q Q T Q T

v q v E Q T Q T v q q

= Φ −

= Φ − + Φ − − −

= Φ − Ψ + − −Φ −

 

 

and the futures price at time v can be written as: 

 

(7) { }( )1** **
1

1 1

( ) 1
( ) max ( ) ( )F T

v i i
v

v E Q T Q T K
q q

Ψ  Φ = − − −   

 

where ** **
1( ) ( )i iK q q v= − Φ .  Note that ( )

1 1( ) [ ( )]F T
vv E Q TΨ =  is the forward price of the first 

bond. The interpretation of this result is similar to that of (3), except that the risk neutral 

measure is replaced by the forward measure defined in Theorem 1 and the futures price becomes 

the forward price. However, unlike (3), the futures price at time v has no easy solution, because 

it appears on both sides of the equation. This futures price has to be solved recursively using a 

numerical method.  In a lattice framework suggested by Boyle (1989), we first choose an initial 

value for the futures price at time v, calculate payoffs at various states at maturity T, and then 

work backwards along the lattice. We adjust the futures price until the discounted payoff 

computed from the lattice is 0. Once the futures price at time v is set, we can then travel back 

along the lattice and use the risk neutral probabilities till the end of the last wild card period, 

nu h+ .  Then the similar procedure for the end-of-month period is repeated for the last wild 

card period to arrive at the futures price at the beginning of the wild card period nu .  Again, the 

risk neutral expectation is taken at 1nu h− +  and a recursive search is to compute the futures 

price at 1nu − .  The process is repeated until the delivery month is over.  Since the futures price 

becomes a forward price which cannot be obtained without a recursive search.  The search for 

the “forward price” takes place at every node at all the times (i.e., 1u , 2u , ⋯ , nu , v). As a 

result, to compute the futures price with the quality option is prohibitively expensive. 

 

C. The Timing Options 

 

Besides the quality option, there are three timing options embedded in the Treasury bond futures 

price.  The most valuable one is the end-of-month (EOM) timing option.  Without the EOM 

timing option, we know that the futures price should be set according to (7).  With the EOM 

timing option, deliveries can occur any time in the end-of-month period as long as the current 

delivery payoff is more than the present value of the expected payoff.  This is similar to the early 

exercise decision of an American option.  There is no closed form solution to compute American 
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option prices.  Precisely as Boyle (1989) has observed, the pricing of quality and timing options 

would need a lattice model. 

 Given that the two factors in the Cox-Ingersoll-Ross model are orthogonal, we use the 

method introduced in Hull and White (1990a) for both factors.  As in an American option, early 

delivery (i.e. early exercise) is activated if the delivery payoff is larger than the continuation 

value (expected value of future payoffs).  However, this delivery decision is intertwined with the 

recursive process in computing the quality option value.  That is, every time we start with a trial 

value for the futures price at the beginning of the EOM period.  This futures price will not 

change throughout the EOM period since the futures market is closed.  We then work backwards 

from the end of the EOM period with an early delivery decision checked at every node until we 

reach the beginning of the EOM period.  If the expected payoff computed via this backward 

induction at the beginning of the EOM period is not 0, then the trial futures price must be 

revised.  The process continues until the payoff at the beginning of the EOM period is 0.  The 

computation cost of such a recursive algorithm in a two-dimensional lattice is high. 

 In addition to the EOM timing option that refers the last 7 trading days of the delivery 

month, there are two other timing options in the rest 15 days of the delivery month – the 

accrued interest timing option and the wild card timing option.  The accrued interest timing 

option refers to the flexibility for the short to deliver the cheapest bond any time in the delivery 

month when both futures and spot markets are open. This is everyday from 7:20 a.m. to 2:00 

p.m. (Chicago time) from the first day of the delivery month to right before the end-of-month 

period. Since the futures market is open, the futures contract is marked to market and deliveries 

can take place any time. As a result, the futures price can never be greater than the cheapest-to-

deliver bond price. If the futures price were greater than the cheapest bond price, then deliveries 

would take place instantly. The short will sell the futures, buy the cheapest bond, make the 

delivery, and earn an arbitrage profit. Formally, for t v< , 

 

(8) { }( )
( ) min max ( ) ( ) 0i

i i
i

Q t
t t q Q t

q

   Φ > ⇔ Φ − >    
 

 

Therefore, the futures price in the period where both markets are open must be less than the 

cheapest-to-deliver bond price to avoid arbitrage. On the other hand, if the futures price is lower, 

one can long futures and short spot but the delivery will not occur because the short position of 

the futures contract will lose money if he makes a delivery. Consequently, the delivery will be 

postponed and there is no arbitrage profit to be made. If the futures price is always less than the 

cheapest-to-deliver bond price (adjusted by its conversion factor), the delivery payoff now is 

negative as opposed to 0 at the end. As a result, the short will never deliver until the last day. 
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Consequently, the accrued interest timing option has no value. We restate this result in the 

following proposition. 

 

Proposition 1 

The accrued interest timing option without the wild card and end-of-month options has no value.7 

□  

 

The existence of the other timing options will lower the current futures price, further reducing 

the incentive for the short to deliver early. We state this result in the following Corollary. 

 

Corollary 1-1 

The accrued interest timing option with the end-of-month options has no value. 

□  

 

While the accrued interest timing option is worthless, the wild card timing option is not. When 

the futures market is closed, there is no marking to market in the futures market and the futures 

contract becomes a forward contract. Boyle (1989) has demonstrated that in a case of forward 

contracts timing options will have value. We shall extend Boyle’s analysis to the wild card 

option in Treasury bond futures.  Similar to the end-of-month option, the wild card option refers 

to the flexibility in delivery in a 5-hour period every day for about 15 days where the futures 

market is closed but the bond market is open.  However, the wild card option is different from 

the end-of-month option in that the futures market will reopen after each wild card period and 

the futures contract will be marked to market. If bond prices drop in the wild card period, given 

that the futures price is fixed, the short can benefit from delivering the cheapest bond. However, 

the short can equally benefit from the marking to market when the futures market reopens on 

the next day. As a result, the incentive for the short to deliver in the wild card period is minimal. 

Delivery can take place in a wild card period only when the payoff from immediate delivery 

exceeds the expected present value of marking to market on the next day. 

The modeling of the wild card period requires a very fine grid.  To model the wild card 

option properly, we need at least two steps in each wild card period to allow for early exercise.  

As a result, it requires a minimum of four steps per day.8  Given that practically the wild card 

                                            
7 The name “accrued interest” comes in because in the delivery month, the bond price increases 

due to accrued interests.  Here, Q is a traded price that included accrued interests. 
8 If we ignore the 1 and ½ hour difference in the lattice between the accrued interest period that 

is 6 and ½ hours and the wild card period that is 5 hours. 
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option has very little value due to the next-day marking-to-market, we will not evaluate the wild 

card option in this paper. 

 

III EMPIRICAL STUDY 

 

In this section, we empirically examine the magnitude of each bound using a two-factor CIR 

model.  We empirically estimate the weekly values of the quality and end-of-month options for 

the period from November 7, 1991 to November 2, 2000.  These prices cover contracts from 

March 1992 to December 2000.  Our term structure estimation employs weekly Treasury data 

from January 4, 1991 to December 29, 1998.  Hence, we perform both in-sample (March 1992 ~ 

December 1998) and out-of-sample (March 1999 ~ December 2000) tests. 

We start with the estimation of the term structure.  Then we demonstrate how to value 

the quality option properly as a forward price and how it is intertwined the end-of-month timing 

option.  Finally we show the empirical results. 

 

A. Term Structure Model Estimation 

 

In estimating the two-factor CIR term structure model, we use weekly (Friday) four Treasury 

interest rate series: the 3-month and 6-month Treasury-bills and the 5-year and 30-year Constant 

Maturity Treasury (CMT) interest rates to estimate the parameters of the model.  The weekly 

data is from January 4, 1991 to December 29, 1998, which contains 416 observations in total. 

Data source is the Aremos USFIN databank.  The estimation procedure is identical to that 

described in Chen and Scott (1993).  In addition to our estimates, as a robustness comparison, 

we also use the results from Chen and Scott (1993) who use a weekly data set from 1980 to 1988 

and the estimates from both estimations are reported in Table 1.  We can see that the estimates 

do not change much from one period to another, while the new estimates do show slightly lower 

reverting level and slower mean reversion.  The first factor remains strong mean reversion while 

the second remains to be close to a random walk. 

 In addition to estimating the parameters, we also estimate factor values.  In Chen and 

Scott (1993), factor values are computed by fitting the long and short rates of the yield curve.  

For our purposes (that we need to price the cheapest-to-deliver bond correctly), 9 the factor 

values are solved for by matching the short rate and the cheapest-to-deliver bond price.  In 

reality, the delivery options are priced off the cheapest-to-delivery bond and a series of exchange 

                                            
9 Treasury bond futures prices are affected by all bonds underlying the yield curve, and yet 

doubtlessly the cheapest-to-deliver bond has the most influence. 
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options to the next cheapest, the third cheapest, and so on.  By calibrating the term structure 

model of Chen-Scott to the cheapest-to-delivery bond, we shall provide the most accurate 

valuation of the delivery options using the two-factor CIR model.  It is generally understood that 

the two-factor CIR model does not fit the yield curve well.10  In order to mitigate the concern of 

Jagannathan, Kaplin and Sun (2003), we must examine how good our term structure fit is for the 

set of deliverable bonds.  We are not particularly concerned with the whole yield curve fit 

because the majority of the risk of the delivery options resides in the set of deliverable bonds.  

Furthermore, as a practical concern, we present the fitting performance of the three most 

relevant bonds – the cheapest, second cheapest, and third cheapest.  The probability of other 

bonds become the cheapest is small and the impact of other deliverable bonds is believed to be 

negligible. 

 Theoretically, the cheapest bond at any point in time should be fitted perfectly by 

tweaking the second factor, since there is one equation and one unknown.  However, there is no 

solution to the second factor at the following dates when we try to fit the cheapest bond: 980903, 

980910, 980917, 980924, 981001, 981015, 981029, 981203, 981210, and 981217.  Figure 1 plots the 

yield curves for a sub-period (January 2, 1998 ~ December 28, 2000) from our CMT dataset.  It 

can be seen that the above dates where the second factor fails to coincide (CTD bond fails to fit) 

with the period when the yield curve is steeply sloped and the short rates are small.  This is a 

problem already described in Chen and Scott (1993).  Chen and Scott recommend a three-factor 

model to improve the fit.  However, due to the reality that this problem is only present for 10 

cases and the complexity of estimating a three-factor model, we decide to stay with the two-

factor model.11  Or alternatively, we can allow the first factor to be flexible until we are able to 

fit the CTD bond.  But in order to maintain consistency, we allow the CTD bond to be not 

perfectly fitted for those 10 dates.12  The following summary illustrates the cheapest bond that 

fails to be fitted and the difference between the market price and the model price. 

 

                                            
10 See, for example, Chen and Scott (1993) and Jagannathan, Kaplin and Sun (2003). 
11 Chen and Scott (1993) argue that the three-factor model does not necessarily dominate the 

two-factor model in that the three-factor model, although fits better the term structure, 

generates extra volatility.  See Chen and Scott for details. 
12 The result of the alternative fitting is available upon request. 
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date coupon maturity market price model price % diff 

980903 11.250 150215 164.6250 159.2477 3.38% 

980910 11.250 150215 167.9063 158.6218 5.85% 

980917 11.250 150215 167.2500 163.3068 2.41% 

980924 11.250 150215 168.3438 163.2337 3.13% 

981001 11.250 150215 171.7188 163.7861 4.84% 

981015 11.250 150215 169.3438 165.2365 2.49% 

981029 11.250 150215 168.2813 164.6084 2.23% 

981203 11.250 150215 168.7813 162.1672 4.08% 

981210 11.250 150215 169.3438 161.4943 4.86% 

981217 11.250 150215 167.9688 161.1123 4.26% 

 

Note that other than these 10 dates, the CTD bond is fitted perfectly.  In order to mitigate the 

criticism of Jagannathan, Kaplin and Sun (2003), we must also examine the fitting performance 

of the second cheapest and the third cheapest.  Figure 2 presents the fitting performance of the 

two-factor model (with the 3-month short rate and the CTD bond perfectly fitted).  The 

percentage fitting error (theoretical price ÷ market price – 1) is plotted.  The second CTD bonds 

are fitted very well.  The average percentage error (APE) is 10 basis points in the sample period 

(1992 ~ 2000).  The root mean square errors (RMSE) is 1.04%. 

 The fitting performance of the third CTD bonds presents a very different profile.  The 

third CTD bonds are fitted substantially poorly in the sample period (1992 ~ 2000).  As opposed 

to 10 basis points APE and 1.04% RMSE, the errors of fitting the third CTD bond are 26 basis 

points APE and 1.61% RMSE. 

 

B. Futures Data and Results 

 

Daily futures prices are obtained from the Chicago Board of Trade (CBOT) between January 2, 

1987 and December 29, 2000 and the summary statistics starting 1992 are given in Table 2.  In 

this study, we choose weekly (Thursday) prices from November 7, 1991 through November 2, 

2000 (470 observations).  These are March 1992 through December 2000 futures contracts.  We 

perform our empirical study on weekly prices as opposed to daily prices for the following reasons: 

(i) the computation cost is too high for daily estimation; (ii) the computation of the cheapest 

bond requires the information of all the bonds in the term structure and hence daily data 

collection of the entire term structure is impossible; and (iii) most importantly, the end-of-month 

timing option value is too costly to estimate daily. 
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We select futures prices that have time to maturity between 6 weeks to 4½ months to 

assure that there is no overlap between two consecutive contracts.  Also the futures contract 

with time to maturity between 6 weeks to 4½ months is the most liquidly traded one.  Note that 

the sudden drop in the futures price for the March 2000 contract is due to the change of the 

discount rate in the conversion factor (from 8% to 6%).  In this study, we only report the 

empirical result between 1992 and 2000 using our estimates of the term structure model.  The 

result using the Chen-Scott estimates for the period before 1992 are omitted due to space 

limitation and can be obtained upon request. 

 The main result of the paper is the comparison of the model price and the market price 

of the Treasury bond futures.  The model price is computed by a two-factor CIR model with the 

quality and the end-of-month delivery options.  The difference is plotted in Figure 3 (market 

price minus model price).  We observe a few interesting results.  First, the pricing errors are 

bigger when the times to maturity are longer.  This is intuitive because as the contract 

approaches maturity, the uncertainty is smaller and the model predicts the price more accurately.  

Secondly, there is no specific pattern of errors for the in-sample period (1992 ~ 1998) and yet the 

model severely underestimates the market value for the out-of-sample period (1999 ~ 2000).  

Finally, the period that shows the most substantial errors (second half of 1998) is when the yield 

curve demonstrates the most curvature and the model provides the poorest fit (see Figure 2 and 

the previous section for a discussion). 

A summary result is presented in Table 3.  In this table, we group the prices by their 

contract month which is shown in the first column.  The second column contains the number of 

observations (weekly) for the corresponding contract.  For example, the contract that expires in 

March 1992 (i.e. 9203) has been collected 13 weekly historical prices from 11/07/1991 till 

1/30/1992.  Similarly, the June 1992 contract has 13 weekly prices from 2/6/1992 till 4/30/1992.  

The remaining columns present average market price of each contract, the average model price 

after taking into account the quality option with risk-neutral expectation valuation (no recursive 

algorithm), the average model price after taking into account the quality option with the forward 

expectation valuation (with recursive algorithm), and finally the average model price after taking 

into account of the end-of-month timing option. 

 In their seminal paper, Cox, Ingersoll, and Ross (1981) show that the forward price of an 

interest derivative must be strictly lower than the futures price of the same security.13  The 

Treasury bond futures price is a futures price with a short exchange option.  Under equation (3) 

which is a “risk neutral expectation” evaluation, the Treasury bond futures price is a futures 

price of a chosen bond with a short exchange option under the risk neutral expectation.  Under 

                                            
13 See page 332 of the paper. 
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equation (7) which is a “forward expectation” evaluation, the Treasury bond futures price is a 

forward price of a chosen bond with a short exchange option under the forward expectation.  

According to Cox, Ingersoll, and Ross, both terms in equation (3) are greater than their 

counterparts in equation (7) and yet the difference of the second terms (exchange option) is 

larger than the difference of the first terms, resulting in a less value in equation (7) than in 

equation (3).  Our numerical result confirms the observation made by Cox, Ingersoll, and Ross.   

Indeed, equation (7) yields uniformly lower prices than equation (3).  In the entire 

sample period, on average, the difference is roughly 1% which is larger than the end-of-month 

timing option value which is 23 basis points.  This result demonstrates how the literature 

overestimates the end-of-month timing option value simply because it underestimates the quality 

option value.  The quality option value should be computed by equation (7) via a forward 

expectation as opposed to equation (3). 

Next we compare the model values with the market values.  We find that the model 

underestimates the market value.  However, this is due to largely the underpricing of the second 

half of 1998 where the two-factor CIR model does not calibrate well to the yield curve.  We find 

that the model underestimates the market value by roughly 50 basis points.  Three contracts 

9809, 9812, and 9903 alone contribute 30 basis points of the underpricing and the rest 33 

contracts contribute to only 20 basis points.  This reveals the importance of the calibration of 

the term structure model to the yield curve. 

Our final observation of the result is that the out-of-sample performance is substantially 

worse than the in-sample performance.  The 8 out-of-sample contracts yield 213 basis points 

error while the in-sample contracts yield only less than 28 basis points.  Even without the 

troubling 3 contracts the out-of-sample period still shows an error of 132 basis points.  This 

demonstrates an important fact that the entire shape of the yield curve is important in pricing 

Treasury bond futures.  Remember in the out-of-sample period, the cheapest-to-delivery bond is 

still perfectly calibrated (except for the troubling three contracts).  Yet the model futures prices 

under-represent the market much more severely than the in-sample period.  As a result, we learn 

that if the parameters of the model are not updated frequently, even though the underlying bond 

is priced perfectly, the Treasury bond futures contract can be significantly mispriced.  

 

VI CONCLUSION 

 

In this paper we first demonstrate that the literature mis-characterizes the values of the quality 

and end-of-month delivery options.  The literature under-estimates the quality option value and 

over-estimates the end-of-month timing option value.  This is because the past research 

computes the Treasury bond futures price as a risk neutral expectation of the cheapest-to-deliver 
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bond price (as equation (2) demonstrates).  We show in this paper that the Treasury bond 

futures price is in fact a forward price (as equation (7) demonstrates).  This increases the value 

of the quality option substantially (lower the value of the Treasury bond futures). 

 We also compute the end-of-month timing option value via a two-dimensional lattice 

proposed by Hull and White (1990a).  We find that the timing option value to be small. 

The model performs very well in overall fitting.  The average futures price over the 

entire sample period is 109.94 and the model value is 109.44.  The model in general under-

estimates the market price.  The in-sample average model price is 111.31 versus the average 

market price of 111.68.  The out-of-sample performance is worse.  The average model price is 

94.48 versus the average market price of 96.10.  We discover two important results.  First, we 

find that the calibration of the model to the underlying cheapest-to-deliver bond is important.  

We identify three contracts that are severely mispriced due to the failure of the calibration to the 

underlying bond.  Second, we find that the fitting of the overall yield curve is also important.  

This can be seen from the in-sample versus out-of-sample performance comparison.  In the out-

of-sample period, the underlying cheapest-to-deliver bond is fitted perfect and yet the pricing 

error is still much larger than that of the in-sample period. 

 

APPENDIX 

 

From Theorem 1, we have: 
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where δ  is strictly less than 1.  Due to the risk neutral pricing result we have, the LHS must 

equal ( )X t , and hence: 

 

(A2) 
( )[ ( )]

( )
( , )

F T
tE X T

X t
P t T

=  

 

Note that the forward measure is maturity dependent.  Clearly, the Radon-Nikodym Derivative 

(RND) is: 
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Since the measure is T-dependent, so should be the RND (usually, RND is just ( )tη .)  Let the 

interest rate process be: 

 

(A4) ˆ( ) ( , ) ( , ) ( )Qdr t r t dt r t dW tµ σ= +  

 

Applying Ito’s lemma, 
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Letting: 

 

(A6) 
( , ) ( , )

( , )
( , )

rr t P t T
t T

P t T

σ
θ = −  

 

and moving the first two terms to the left: 
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This implies the Girsanov transformation of the following: 
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The interest rate process under the forward measure henceforth becomes: 
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Note that the forward measure is quite general.  It does not depend on any specific assumption 

on the interest rate process. 

 

REFERENCES 

 

Arak, M. and L. Goodman, “Treasury Bond Futures: Valuing the Delivery Option,” Journal of 

Futures Markets, 1987. 

Benninga, S. and M. Smirlock, “An Empirical Analysis of the Delivery Option, Marking to 

Market, and the Pricing of Treasury Bond Futures,” Journal of Futures Markets, V. 7, 

No. 3, p. 269-286, 1985. 

Boyle, P., “The Quality Option and Timing Option in Futures Contracts,” Journal of Finance, 

V. 44, No. 1, March, 1989. 

Broadie, M. and S. Sundaresan, “The Pricing of Timing and Quality Options: An Application to 

Treasury Bond Futures Markets,” Working Paper, 1987. 

Carr, P. and R. Chen, “Valuing Bond Futures and the Quality Option,” Working paper, Rutgers 

University, November, 1996. 

Carr, P., “Valuing Bond Futures and the Quality Option,” Working Paper, University of 

California at Los Angeles, 1988. 

Chen, R. and L. Scott, “Maximum Likelihood Estimation of a Multi-Factor Equilibrium Model of 

the Term Structure of Interest Rates,” Journal of Fixed Income, 1993. 

Chen, R. and S-K. Yeh, “Analytical Bounds for American Option Prices,” Journal of Financial 

and Quantitative Analysis, March, 2002. 

Chowdry, B., “Pricing of Futures with Quality Option,” Working paper, University of Chicago, 

December, 1986. 

Cohen, H., “Isolating the Wild Card Option,” Mathematical Finance, V. 5, No. 2, p. 155-165, 

April, 1995. 

Cox, J., J. Ingersoll, and S. Ross, “The Relation Between Forward Prices and Futures Prices,” 

Journal of Financial Economics, p. 321-346, 1981. 

Cox, J., J. Ingersoll, and S. Ross, “A Theory of the Term Structure of Interest Rates,” 

Econometrica, March, 1985. 

Fleming, J., and R. Whaley, “The Value of Wildcard Options,” Journal of Finance, V. 49, No. 1, 

p. 215-36, March 1994. 



 

 18 

Gay, G. and S. Manaster, “The Quality Option Implicit in Futures Contracts,” Journal of 

Financial Economics, V. 13, p. 353-370, 1984. 

Gay, G., and S. Manaster, “Implicit Delivery Options and Optimal Delivery Strategies for 

Financial Futures Contracts,” Journal of Financial Economics, V. 16, p. 41-72, 1986. 

Heath, D., R. Jarrow, and A. Morton, “Bond Pricing and the Term Structure of Interest Rates: 

A New Methodology for Contingent Claims Valuation,” Econometrica, V. 60, No. 1, pp. 

77-105, 1992. 

Hegde, S., “An Empirical Analysis of Implicit Delivery Options in the Treasury Bond Futures 

Contract,” Journal of Banking and Finance, V. 12, No. 3, p. 469-492, 1988. 

Hegde, S., An Ex Post Valuation of the Quality Option in Treasury Bond Futures Contract, 

Journal of Banking and Finance, V. 14, No. 4, p. 741-760, 1990. 

Hemler, M., “The Quality Delivery Option in Treasury Bond Futures Contracts,” Journal of 

Finance, V. 45, No. 5, December, 1990. 

Hull, J., and A. White, “Valuing Derivative Securities Using the Explicit Finite Difference 

Method,” Journal of Financial & Quantitative Analysis, V. 25, p. 87-100, 1990a. 

Hull, J. and A. White, “Pricing Interest-Rate-Derivative Securities,” The Review of Financial 

Studies, V. 3, No. 4, p. 573-592, 1990b. 

Hull, J., Options, Futures, and Other Derivative Contracts, Prentice Hall, 5th ed., 2003. 

Jagannathan, R., A. Kaplin, and S. Sun, “An Evaluation of Multi-Factor CIR Models Using 

LIBOR, Swap Rates, and Cap and Swaption Prices,” Journal of Econometrics, V. 116, p. 

113-146, 2003 (September-October). 

Jamshidian, F., “An Exact Bond Option Formula,” Journal of Finance, 1989. 

Jamshidian, F., “Pricing of Contingent Claims in the One-Factor Term Structure Model,” 

Working Paper, Merrill Lynch Capital Markets, 1987. 

Kane, A. and A. Marcus, “Conversion Factor Risk and Hedging in the Treasury Bond Futures 

Market,” Journal of Futures Markets, V. 4, No. 1, p. 55-64, 1984. 

Kane, A. and A. Marcus, “The Quality Option in the Treasury Bond Futures Market: An 

Empirical Assessment,” Journal of Futures Markets, V. 6, No. 2, p. 231-248, 1986a. 

Kane, A. and A. Marcus, “Valuation and Optimal Exercise of the Wild Card Option in the 

Treasury Bond Futures Market,” Journal of Finance, V. 41, No. 1, p. 195-207, 1986b. 

Kilcollin, T., “Difference Systems in Financial Futures Markets,” Journal of Finance, V. 37, 

1982. 

Langetieg, T., “A Multivariate Model of the Term Structure,” The Journal of Finance, V. 35, No. 

1, p. 71-97, 1980. 

Livingston, M., “The Delivery Option on Forward Contracts,” Journal of Financial and 

Quantitative Analysis, V. 22, March, 1987. 



 

 19 

Longstaff, F., and E. Schwartz, “Interest Rate Volatility and the Term Structure: A Two-Factor 

General Equilibrium Model,” Journal of Finance, V. 47, No. 4, p. 1259-1282, 1992. 

Margrabe, W., “The Value of an Option to Exchange One Asset for Another,” Journal of 

Finance, V33, p.177-186, 1978. 

Ritchken, P. and L. Sankarasubramanian, “Pricing the Quality Option in Treasury Bond 

Futures,” Mathematical Finance, V. 2, No. 3, p. 197-214, July, 1992. 

Stulz, R., “Options on the Minimum or the Maximum of Two Risky Assets: Analysis and 

Applications,” Journal of Financial Economics, V. 10, p. 161-185, 1982. 

Turnbull, S., and F. Milne, “A Simple Approach to Interest-Rate Option Pricing,” The Review of 

Financial Studies, V. 4, No. 1, p. 87-120, 1991. 

Vasicek, O., “An Equilibrium Characterization of the Term Structure,” Journal of Financial 

Economics, November, 1977. 



 

 20 

Table 1: Parameter Estimates of the Two-factor Cox-Ingersoll-Ross Model 

 Chen-Scott Estimation   New Estimation   

          

 factor 1 std.err. factor 2 std.err.  factor 1 std.err. factor 2 std.err. 

α 1.834100 0.222800 0.005212 0.115600 α 0.879967 0.001014 0.004423 0.000014 

µ 0.051480 0.005321 0.030830 0.683300 µ 0.043822 0.000009 0.029555 0.000097 

σ 0.154300 0.005529 0.066890 0.002110 σ 0.097855 0.001429 0.095974 0.000018 

ς -0.125300 0.180600 -0.066500 0.115400 ς -0.146140 0.000151 -0.178846 0.000361 

          

 likelihood function = 7750.82   likelihood function = 11722.81  

 # of obs. 470    # of obs. 416   

Note: 

Chen-Scott estimates are taken from Exhibit 2, Panel B on page 21 of Chen and Scott (1993) 

who take Thursday weekly prices of 13-week, 26-week, 5-year, and longest maturity Treasuries.  

The period of study is January 1980 to December 1988.  The new estimates use Friday weekly T-

Bill rates of 3 months and 6 months and CMT rates of 5 years, and 30 years.  The period of 

study is January 1991 to December 1998.  The new estimates are estimated with RATS where 

the number of usable observations in the estimation is 387. 
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Table 2: Summary Statistics of Daily Futures Prices 

Contract 

Month 

N Mean Std. Dev Min Max 

      

All 

maturities 

3537 103.69 11.4274 77.78 134.66 

      

9203 62 101.25 2.106 97.78 105.25 

9206 62 98.94 0.8243 97.28 100.31 

9209 64 100.79 2.0015 97.31 105.16 

9212 64 104.46 1.1772 102.31 106.91 

      

9303 61 103.9 1.7221 100.28 107.22 

9306 64 109.79 1.9499 105.69 112.66 

9309 64 112.3 2.3068 108.44 115.97 

9312 64 118 2.83 102.63 121.94 

      

9403 62 110.33 0.9456 113.34 117.44 

9406 64 108.69 3.4739 103.25 115.34 

9409 64 103.02 1.2617 100.31 105.44 

9412 64 100.08 1.9172 97.06 103.81 

      

9503 60 98.64 1.5588 95.44 101.47 

9506 64 103.57 1.4609 100.5 106.31 

9509 64 112.34 2.2275 106.97 115.75 

9512 61 113.51 2.6347 108.69 117.44 

      

9603 63 119.33 1.4683 116.75 121.56 

9606 65 112.94 3.5877 106.75 120.22 

9609 62 108.1 1.0822 105.88 111.84 

9612 62 109.72 1.7013 106.41 113 

      

9703 59 113.06 1.9931 109.78 120.06 

9706 61 109.45 1.9678 106.63 113.44 

9709 62 111.83 0.3393 108.31 116.75 

9712 62 114.62 1.7645 112.06 118.47 

      

9803 59 120.13 1.8508 117.03 123.72 

9806 61 120.56 0.8548 118.66 122.44 

9809 63 122.1 1.3907 118.88 124.16 

9812 62 127.7 2.8354 122.97 134.66 

      

9903 58 127.75 1.4533 124.72 130.63 

9906 64 121.89 1.4661 119.47 126.19 

9909 63 116.3 1.4175 113.63 119.38 

9912 62 113.38 1.2839 110.84 116.16 

      

0003 60 92.38 1.9398 89.22 95.66 

0006 63 95.8 1.7785 92.47 99.34 

0009 63 96.46 1.8667 92.66 99.38 

0012 62 99.54 0.8819 97.63 101.22 

Note: 

Daily futures prices between 1/2/1992 and 12/31/2000 are taken with maturity between 6 weeks 
and 4½ months for each contract. Such a selection enjoys high liquidity and rare overlapping 
between contracts. 
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Table 3: Empirical Result of the Quality and the End-of-month Options 

contract 

month 

# of obs. Quoted 

Futures 

Price 

Q.O. - fut Q.O.-fwd E.O.M. 

9203 13 101.216 102.959 101.594 101.467 

9206 13 98.875 102.161 101.231 101.021 

9209 13 100.930 103.408 102.041 101.924 

9212 13 104.577 106.505 105.482 105.271 

      

9303 13 103.926 106.158 104.976 104.759 

9306 13 110.099 111.952 110.638 110.41 

9309 13 112.274 112.481 111.313 111.068 

9312 13 118.125 118.106 116.968 116.714 

      

9403 13 115.250 116.262 114.708 114.435 

9406 13 108.777 110.551 109.441 109.2 

9409 13 103.132 104.899 103.711 103.484 

9412 13 100.277 103.04 102.799 102.584 

      

9503 13 98.438 98.8111 97.7802 97.5432 

9506 13 103.394 105.749 104.506 104.244 

9509 14 112.212 113.245 112.576 112.314 

9512 12 113.485 115.895 114.164 113.842 

      

9603 14 119.299 118.216 117.756 117.477 

9606 13 112.681 115.37 113.624 113.321 

9609 13 108.375 110.081 109.328 109.06 

9612 13 109.630 112.551 110.975 110.681 

      

9703 13 112.834 113.692 113.061 112.774 

9706 13 109.301 112.319 110.749 110.453 

9709 13 111.875 112.642 111.931 111.662 

9712 13 114.690 116.781 114.958 114.653 

      

9803 13 120.329 119.323 118.996 118.679 

9806 13 120.625 121.672 119.524 119.208 

9809 13 122.120 120.582 120.238 119.934 

9812 13 127.772 124.971 122.746 122.428 

      

9903 13 127.916 123.796 123.731 123.418 

9906 13 121.709 122.628 120.398 120.081 

9909 13 116.298 116.12 115.521 115.237 

9912 13 113.397 114.498 112.764 112.459 

      

0003 13 92.378 92.3245 91.6551 91.4675 

0006 13 95.856 95.1406 94.3988 94.2028 

0009 14 96.574 96.0491 95.2603 95.0649 

0012 13 99.606 98.272 97.3958 97.1698 

      

all 

maturities 

470 109.940 110.811 109.693 109.436 

Note: The theoretical values are computed using the new estimates (right panel of Table 1).  The 
period of 92 ~ 98 is in-sample and of 99 ~ 00 is out-of-sample (shaded).  The futures price with 
the quality option valued as the risk neutral expectation (Q.O.-fut; equation (2)) is reported in 
the 4th column.  The futures price with the quality option valued as the forward expectation 
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(Q.O.-fwd; equation (7)) is reported in the 5th column.  The future price with both quality 
option and the end-of-month timing option (E.O.M.) is reported in the last column. 
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Figure 1: Yield Curves for the Selected Period 
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Figure 2: Fitting Performance Of The Second And Third Cheapest-to-deliver Bonds 

Contracts 3/92 ~ 12/00 
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Note: The pricing error is measured as percentage error of the market price: model price ÷ market price – 1.  The average percentage errors are 10 

basis points and 26 basis points for the 2nd CTD and 3rd CTD respectively.  The root mean square errors are 1.04% and 1.61% respectively. 
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Figure 3: Weekly Time Series the Difference between the Actual Futures Prices and the End-of-month Model Prices 

Contracts 3/92 ~ 12/00 
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