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An Artificial Intelligence Approach to the Valuation of 
American-style Derivatives:  

A Use of Particle Swarm Optimization 

Abstract 

In this paper, we evaluate American-style, path-dependent derivatives with an artificial 

intelligence technique.  Specifically we use swarm intelligence to find the optimal exercise 

boundary for an American-style derivative.  Swarm intelligence is particularly efficient 

(computation and accuracy) in solving high-dimensional optimization problems and hence 

perfectly suitable for valuing complex American-style derivatives (e.g. multiple-asset, path-

dependent) which require a high-dimensional optimal exercise boundary. 
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An Artificial Intelligence Approach to the Valuation of 
American-style Derivatives:  

A Use of Particle Swarm Optimization 

I. Introduction 

Evaluating American-style derivatives is a challenging task.  In a uni-variate setting (e.g. option 

on one stock), lattice models – either the binomial model (e.g. Cox, Ross, and Rubinstein (1979)) 

or finite difference methods (e.g. see Hull (2015)) are an efficient method.1  However, once the 

derivative contract is written on multiple assets (e.g. exchange options), lattice models would 

become infeasible (with regard to both computation time or memory space).  Furthermore, path-

dependent derivatives cannot be evaluated with lattice models. 

As a result, modifying the Monte Carlo method to evaluate American-style derivatives is a 

popular alternative.  There are two approaches to achieve this goal.  The first approach is 

proposed by Longstaff and Schwartz (2001) who approximate the continuation value of the 

option by a regression function (functional form can be arbitrary).  They recognize that the early 

exercise decision is merely a comparison of the exercise value and its continuation value of the 

option.  If the continuation value can be reasonably accurately estimated, then the early exercise 

problem can be easily solved and hence one can readily compute the value of an American-style 

derivative.  The drawback of this approach is apparent – it is hard to know in advance which 

functional form of the regression will provide an accurate estimate for the continuation value. 

The other approach is to recognize that derivatives pricing in general is a free-boundary PDE 

(partial differential equation) problem.  If we can accurately estimate the exercise boundary, then 

it is just an easy integration over the boundary (as the first passage time problem).  In other 

words, if we can accurately estimate the boundary, then the value of an American-style derivative 

can be calculated as it would be a barrier option.2 

This approach is more computational efficient than the Longstaff-Schwartz model; yet if suffers 

the same drawback of the Longstaff-Schwartz model – the accuracy of the American-style 

derivative value relies upon an accurate exercise boundary.  Moreover, the literature of this 

approach lacks the evidence on derivatives on multiple assets. 

                                                 
1 By efficient, we refer to the balance between speed and accuracy. 
2 For recent work, see Bunch and Johnson (2000) and Carr, Jarrow, and Myneni (2008).  Also see Nunes 
(2008) for a nice review/comparison of various boundaries. 
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In this paper, we introduce an artificial intelligence method, i.e. swarm intelligence, to locate the 

optimal exercise boundary.  In particular, we use an optimization algorithm within the realm of 

swarm intelligence named PSO (particle swarm optimization) to locate the optimal exercise 

boundary.  The intelligence by the swarm can efficiently decide piece-wise values of the 

boundary, one for each time step, without an approximated functional form as in the literature.  

As in any artificial intelligence model, PSO is efficient in high dimensional optimization 

problems.  In the case of a truly free boundary (i.e. piece-wise), we find that PSO can ideally 

provide the best solution to complex (e.g. American-style, multi-asset, path-dependent) 

derivatives problems. 

II. Monte Carlo in American-style derivative Pricing 

In this section, we briefly describe the two Monte Carlo methods in American-style derivative 

pricing.  It is generally understood that Monte Carlo simulations are only suitable for pricing 

European-style derivatives.  This is because American-style derivatives require a backward 

induction.  In other words, the optimal exercise decision at any given time depends on all future 

optimal exercise decisions.  The first method proposed by Longstaff and Schwartz (2001) 

recreates such a recursive structure in Monte Carlo and the second method adopts a free-boundary 

property in PDE (partial differential equation) solutions. 

1. The Longstaff-Schwartz Model 

The Longstaff-Schwartz model (2001) is the most popular model in the financial industry.  It is 

an efficient Monte-Carlo model for American-style derivatives.  Longstaff and Schwartz propose 

a regression method to estimate the “continuation value” at each time step.3  The option value tx  

at any time t  is the larger of the exercise value tE  and the continuation value tC  as follows: 

(1) max{ , }t t tE Cx   

where  

(2)  1
Q

t ttC x     

is the continuation value of the option at time t  (which is the risk-neutral expected value, [ ]Q
t  , 

of the next period’s option price); and tE  is the exercise value at time t .  In the case of a put 

option (which is what we use throughout the paper), t tE K S  .   

                                                 
3 As a reminder, a continuation value in option literature refers to the expected value of future maximum 
payoff at any given point in time.  Since the continuation value is the expected future payoff, it is compared 
to the exercise value at the given time to see if (early) exercise is worthwhile. 
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Longstaff and Schwartz cleverly recognize that the conditional expectation of future maximum 

payoff is a function of today’s stock price: 

(3)  1 ( )Q
t ttE f Sx    

where ()f   is an arbitrary function.  They propose the simplest (and it works amazingly well) 

quadratic equation: 

(4) 
 1

2
0 1 2

( )Q
t tt

t t

E f S

a a S a S

x  

  
 

which can turn into a regression model as follows: 

(5) 2
1 0 1 2 1t t t ta a S a S ex       

with the boundary condition max{ ,0}T TK Sx   .   

As mentioned earlier, the major criticism of the model is the choice of the functional form of the 

regression.  It is ad-hoc and it is not possible to know which form is most suitable for which 

payoff.4 

2. Explicit Boundary Method 

In an alternative (relatively unsuccessful) attempt, researchers have tried to solve American-style 

derivatives by using an explicit exercise boundary.5  The approach is built upon the nice property 

that option prices of any kind are solutions to a class of differential equations which can be solved 

as a “free boundary problem”.  In other words, as long as the exercise boundary of an option is 

known, its price is no more than a simple integration along the exercise boundary.   

Unfortunately, not only is the exercise boundary of an American-style derivative unknown, but it 

is recursive (i.e. the boundary value at the current time depends on the boundary value at the 

immediately later time – resulting a recursively dependent structure of boundary values).  In other 

words, the boundary function can only be achieved via a lattice model (e.g. binomial model).  In 

doing so, the option is guaranteed to be exercised optimally and the valuation can hence be at the 

maximum. 

                                                 
4 In the case of put options, the quadratic function works very well.  Yet in other forms of payoff, Longstaff 
and Schwartz do not provide any guidance. 
5 For example, see Carr (1998). 
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As Carr (1998), among others, points out, if we solve an American-style derivative premium as a 

free-boundary problem, then we can use an explicit boundary function and the American-style 

derivative premium is simply an integration of payoff function (e.g. put) over the boundary.   

(6)  ( ) max{[ ( ), 0}Q r
tt e Etx t   

where ( )E t  is the exercise value at the stopping time t .  If it is a put option without dividends 

which is the case in this paper, then ( ) ( )E K St t  .  On the boundary, ( ) ( )S Bt t  and hence 

( ) ( )E K Bt t   where ( )B t  is the boundary function given exogenously.  The way the 

boundary function works is that it serves as a stopping time.  Once the stock price at time t  hits 

the boundary ( )B t , the process stops and the option will be exercised and paid and hence the 

American-style derivative can be evaluated as a barrier option. 

The easiest way to perform the integration is through Monte Carlo simulations.  As the derivative 

price ( )tx  is given as an expected value: 

(7) 1
1( ) max{ ( ), 0}jN r

jjt e K B
N

tx t
   

We note that the recursively determined boundary function (via a lattice model) maximizes the 

option value, any other exogenously specified boundary function will only be “sub-optimal”, that 

is, generating a lower value than the lattice model.  This sub-optimal argument is convenient in 

that now we can simply try a large number of boundary functions and use the one that generates 

the highest option value as a good approximation.   

Researchers then have tried various approximations on the exercise boundary.  These 

approximations are explicit functions and hence can be easily integrated (and hence American-

style derivative value solved for).  According to a recent survey by Nunes (2008), the literature 

has the following functional forms: 

 Constant: 0( )B t a  

 Linear: 0 1( )B t a a t   

 Exponential: 1( ) a t
oB t a e  

 Exponential-constant: 10
a ta e  

 Polynomial: 1
1( ) n i

iiB t a t 
   

 Carr-Jarrow-Myneni (2008): ( ) min( , ) 1a T t a T tr
qB t K K e E e   

        

Note that the boundary is not a function of the stock price (i.e. free boundary problem).  Since 

these boundary functions are explicit, they can be easily integrated. 
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Certainly the accuracy of the American value depends on the accuracy of the approximated 

boundary function.  The problem of this approach is that there is no consensus of which 

functional form of the boundary can consistently be the best.  Often it varies with the parameters 

of the option (i.e. moneyness, interest rate, time to maturity, and volatility).  As a result, no 

conclusion can be drawn on a particular functional form. 

So far the literature has not reached any consensus and the boundary seems to be payoff-specific.  

In other words, different payoffs require different boundaries for accurate American-style 

derivative values.  As a result, it is quite natural to allow the boundary function to be absolutely 

free (i.e. one value per time step).  Yet this requires an optimization in high dimensions.  As the 

number of time steps increases, the cost of computation becomes exponentially prohibitively 

high. 

In this paper, we propose an artificial intelligence (AI) method which is based upon the theory of 

swarm (swarm intelligence, SI).  In the SI model, a school of fish (or a group of ants and bees or a 

flock of birds) will move (swim) around to look for the maximum value of the option. 

III. Swarm Intelligence 

In this section, we briefly “open the black-box” of swarm intelligence which is a branch of 

recently popular artificial intelligence. 

1. What is AI? 

Artificial intelligence (AI), machine learning (ML), and big data (BD) have recently been adopted 

into FinTech and been the fastest growing area in finance, both in private industry and academia.  

While these three areas are frequently used in combinations in developing valuable applications, 

these three areas are fundamentally different and deserve separate research.   

Strictly speaking, AI is a combination of computation (artificial) and biology (intelligence) which 

is quite different in nature from ML which is based upon statistical methodologies.  In the past, 

statistics have predominantly been presented in a parametric fashion, mainly due to insufficient 

computation power and lack of data.  This has been changed recently and non-parametric 

statistics with powerful computation capabilities fuel the growth of machine learning.  As non-

parametric statistics require a large amount of data, ML and BD (such as NLP, or natural 

language processing) have been combined in revolutionizing the financial world.  Together, they 

facilitate the progress of AI. 
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AI has three major branches: 

 swarm intelligence (birds, ants, bees, fish) 

 genetic algorithm (genes) 

 neural networks (neurons) 

These AI theories are behavioral models in that they “artificialize” natural intelligence (specified 

in parentheses above) which reflects biological behaviors.  As a result, they are different from 

ML methodologies.  The connection (and hence confusion) of these two is due to the fact that 

these AI models can be efficiently used to find optimal solutions (e.g. PSO) which then are 

similar to ML models.  Indeed, from the perspective of computation, one can hardly differentiate 

one tool from the other and in many instances these two distinctly different theories are used in 

combination. 

As we shall demonstrate in this section, swarm intelligence is a behavioral model and PSO is an 

optimization tool. 

2. Swarm Intelligence 

Wikipedia describes swarm intelligence as “the collective behavior of decentralized, self-

organized systems.”6  The basic idea of swarm intelligence is derived from those animals (such as 

birds, ants, bees, and fish) that rely on group effort to achieve their basic survival needs – seek 

food and avoid prey.  The intelligence behind this collective behavior is how they communicate 

among one another.  Reynold (1987)7 was the first to “artificialize” such natural intelligence and 

create a computer algorithm named Boids (for bird-oid object).  Reynold’s algorithm is 

amazingly simple.  For any given bird, Reynold devises a set of linear equations (vectors) 

combining which determines how the bird should fly to its next destination.   

The factors that determine how various vectors are combined are: separation, alignment, and 

cohesion.  As their names suggest, “separation” is to avoid collision with other birds, “alignment” 

decides how a particular bird should fly in a direction by referencing to its fellow birds, and 

“cohesion” decides how fast (speed) a particular bird should fly to its next target position. 

                                                 
6 https://en.wikipedia.org/wiki/Swarm_intelligence. 
7 According to Wikipedia (footnote 6), Reynold created Boid in 1986: “Boids is an artificial life program, 
developed by Craig Reynolds in 1986, which simulates the flocking behaviour of birds.” 
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There are countless versions of Boids.8  One can add obstacles.  One can add an objective 

destination (swim to target).  One can do Boids in a maze.  The basic Boids as described in Figure 

1 can be described by the following algorithm.   

[Figure 1 Here] 

Formally, let there be m  birds flying in an n -dimensional space.  Also let: 

 ( )i
tf  be the i th bird at time t  

 ( )i
tv  be a vector in the n  space representing the velocity of the i th bird 

 ( )i
tp  be a vector in n  space representing the position (coordinates) of the i th bird 

Finally let ( ){ | 1, , }i
tF f i m    be the collection of all birds.  Define a mapping function 

( )
1( )i

i tX f    which returns all ( ) ( )
1 1
j i i

t tf F f
    where a radius d  and an angle a  are 

predetermined such that ( 2 2|| , ||x y x y   and { , }x y  is the angle between two vectors) 

(8) 
( ) ( )

1 1

( ) ( )
1 1

|| , ||

|| , ||

i j i
t t

i j i
t t

v v d

p p d


 


 




 and 

( ) ( )
1 1

( ) ( )
1 1

{ , }

{ , }

j i i
t t

j i i
t t

v v a

p p a


 


 

  

  
 

are satisfied.  In words, what (8) describes is that for any given bird i , where it is heading 

depends on a reference group of birds “nearby”, described by a set of birds ( )
1( )i

i tX f   .  These 

reference birds must be “nearby” in the following sense –they must be within a distance 

(specified by the radius d ) and within an angle (specified by a ), as depicted graphically as:9  

 

 

 

 

 

 

 
 

 

 

 

                                                 
8 For example, see Google Scholar: 
https://scholar.google.com/scholar?q=boids+flocking+algorithm&hl=en&as_sdt=0&as_vis=1&oi=scholart 
9 These reference birds are like “my leaders” for a given bird. 
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where the circled bird is referencing to three nearby birds by the angle and the radius.  The 

alignment and cohesion (we ignore separation parameter for the moment) parameters are 

calculated as follows:10 

(9) 
 
 

( ) ( ) ( ) ( )
1 1 1,

( ) ( ) ( ) ( )
1 1 1,

avg |

avg |

i j i j i
t t tA t

i j i j i
t t tC t

v v f X v

v p f X p


  


  

  

  
 

and then an average velocity is calculated as follows: 

(10) ( ) ( ) ( )
,,

i i i
A Ct C tA tv w v w v   

where 1A Cw w   and each is positive.  Finally, velocity and position of each bird are updated 

as follows: 

(11) 
( ) ( ) ( )

1

( ) ( ) ( )
1

i i i
t tt

i i i
t tt

v v v

p p v





 

 
 

As emphasized earlier, a swarm is a behavioral model which describes how birds (ants, bees, fish) 

move and an artificial swarm is a mathematical (linear algebraical) algorithm that imitates this 

natural behavior by animals.  One can use an artificial swarm to solve a number of complex 

problems.11 

As we can see, Reynold’s boid model can be easily programmed and implemented.  For the sake 

of easy exposition, we shall refer birds, ants, bees, or fish as particles for the rest of the paper.   

Particle Swarm Optimization (PSO) can be viewed as simplified AI swarm.  Its objective is to 

find the global optimum.  While details can be seen in the next section, the idea of a PSO is to 

replace nearby birds/particles by the global optimum found by all birds/particles. 

3. Particle Swarm Optimization 

In theory, swarm intelligence is effective for optimization problems in a high-dimensional space.  

PSO is such an application.  The original version of PSO was first proposed by Eberhart and 

Kennedy (1995) who modify the behavioral model of swarm into an objective-seeking algorithm.  

                                                 
10 We ignore separation in our model because in our applications particles can take the same coordinates 
(i.e. collision is allowed). 
11 While this is out of the scope of this paper, we encourage the readers to view a popular YouTube clip on 
how drones use an artificial swarm: “‘Skynet’Drones Work Together for ‘Homeland Security’” 
(https://www.youtube.com/watch?v=oDyfGM35ekc). 
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Similar to Renold’s, their model “artificializes” the group behavior of a flock of birds seeking 

food.  Via bird-to-bird chirping (peer-to-peer communication), all birds fly to the loudest sound of 

chirping.  Subsequently, Eberhart and Shi (1998) improve the model by adding an inertia term 

(symbolized as w  later as we introduce the model) and it has become the standard PSO algorithm 

used today.  Setting a proper value of the inertia term is to seek the balance between exploitation 

and exploration.  A larger value of the inertia term gives more weight to exploration (as the bird 

is more likely to fly on its own) and a smaller value of the inertia term gives more weight to 

exploitation (as the bird intends more to fly toward other birds).12 

One can compare PSO to the grid search.  A grid search can find the global optimum and yet it 

takes an exploding amount of time to reach such a solution, especially in a high-dimensional 

space.  PSO can be regarded as a “smart grid search” where each particle performs a “stupid 

search” and yet by communicating with other particles and by having a large number of such 

particles we can reach the global optimum quickly. 

Imagine we would like to measure the deepest place of a lake whose bottom has an uneven 

surface.  A two-dimension grid search can easily find the global minimum.  An alternative would 

be PSO.  Imagine we have a number of “fish” (particles) who swim in the lake.  At each time 

step, all fish will measure the depth of the lake underneath them.  And each fish is 

communicating with all the other fish to decide whose depth is the deepest (minimum).  All fish 

now remember the minimum and then they swim for another time step.  At each time step they 

update the global minimum so far.  If we let these fish swim randomly for enough time, we will 

reach the global minimum. 

In the case of the lake, we may find the grid search to be more accurate and time-effective.  But in 

an n -dimensional lake, grid searches are becoming ineffective but the same number of fish may 

just do the same job with the same amount of time as in the two-dimensional lake. 

Currently there have been some limited number of applications of PSO in finance, mostly in 

portfolio selection.  In this paper, we use it for the first time in the literature to locate the exercise 

boundary of American-style derivatives (specifically, put option, option on min/max, and Asian 

option). 

                                                 
12 Similar to PSO, an ACO (ant colony optimization) by Dorigo, Bonabeau, and Theraulaz (2000) and ACS 
(ant colony system) by Dorigo and Gambardella (1997) are both based upon swarm intelligence.  The first 
ant system is first developed by Dorigo, Maniezzo, and Colorni (1991) and then popularized by Dorigo, 
Maniezzo, and Colorni (2000). 



 10

The PSO algorithm can be formally defined as follows.  For 1, ,i n   particles and each 

particle is a vector of 1, ,j m   dimensions, we have: 

(12) 
, , 1 1 , 2 2 ,

, , ,

( 1) ( ) ( ) ( ( ) ( )) ( ( ) ( ))

( 1) ( ) ( 1)
i j i j i j i i j

i j i j i j

v t w t v t r c p t x t r c g t x t

x t x t v t

          

     

   

where , ( )i jv t
 is velocity of the i th particle in the j th dimension at time t ; , ( )i jx t

 is position of 

the i th particle in the j th dimension at time t ; ( )w t  is a “weight” (less than 1) which decides 

how the current velocity will be carried over to the next period (and usually it is set as 

( ) ( 1)w t w ta   and 1a   to introduce diminishing velocity);13 and finally 1 2, ~ (0,1)r r u  follow 

a uniform distribution.   

In the swam literature, ( ) ( )iw t v t  is called inertia; 1 1( ( ) ( ))i ir c p t x t 
 is called the cognitive 

component and 2 2( ( ) ( ))ir c g t x t 
 is called the social component.  Coefficients 1c  and 2c  are 

known as acceleration coefficients. 

At each position there is “cost function” ()f   (sometimes called distance function) at which a 

“cost” (or penalty) is computed.  This cost function is the objective function to be minimized (or 

maximized). 

The global best at any given time is either the maximum or minimum value of the objective 

function generated by all particles at the time: 

(13) ( ) min{ ( ( ))}ii
g t f p t 

 

and the personal best at the time is: 

(14) ( ) min{ ( ( ))}i it
p t f x t 

 

and () : nf     is the “fitness function”.  The usual fitness function is  

(15) 2
1( ( )) ( )J

ii ij jj
xf x t xc c
  

 

where 1, , Jc c c   is a coordinate in a J -dimensional space. 

Later, we illustrate via a very simple example how the process is so easily implemented. 

                                                 
13 The reason is that as a particle is approaching the global best, the velocity should approach 0 (i.e. the 
particle should no longer move at the global optimum.) 
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As we can see, the algorithm (at least the standard one presented here) of PSO is quite different 

from that of a generic swarm by Reynolds (1978).  Yet they both share the same behavioral 

pattern of a natural swarm.  In other words, (1) both PSO and the generic swarm are based upon 

peer-to-peer communication in order to achieve the objective and (2) the particles in both PSO 

and the generic swarm are identical (like birds or ants) and each particle follows its neighbor 

particles.  The difference is just how each particle weighs its neighbors.  In PSO, each particle 

only cares of the global best discovered by its neighbors and in the generic swarm each 

neighbor’s position is important. 

i) Different Types of PSO 

The literature on PSO is voluminous.  Zhang, Wang, and Ji (2015) provide an excellent survey.  

They classify the existing PSO literature into the following strands:14 

 modifications,15  

 population topology,16  

 hybridization,17  

 extensions,18  

 theoretical analysis,19 and  

 parallel implementation.20 

However, Zhang, Wang, and Ji only provide applications in non-financial areas.21, 22  To date, 

there have been very limited number of applications in the area of finance.  Within the limited 

literature, most noticeably is in the area of portfolio selection.23 

                                                 
14 PSO can also vary in terms of parameterization such as center mass (see Jamous, Tharwat, Seidy, and 
Bayoumi (2015)). 
15 This includes quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO. 
16 This includes von Neumann, ring, star, random, among others. 
17 This is to combine PSO with genetic algorithm, simulated annealing, Tabu search, artificial immune 
system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and 
biogeography-based optimization. 
18 This includes multi-objective, constrained, discrete, and binary optimization. 
19 This includes parameter selection and tuning, and convergence analysis. 
20 This involves multi-core, multiprocessor, GPU, and cloud computing forms. 
21 They are electrical and electronic engineering, automation control systems, communication theory, 
operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. 
22 Kumar et. al. (2013) examines performance of various PSO algorithms: Canonical PSO, Hierarchical 
PSO (HPSO), Time varying acceleration coefficient (TVAC) PSO, Self-organizing hierarchical particle 
swarm optimizer with time-varying acceleration coefficients (HPSO-TVAC), Stochastic inertia weight 
(Sto-IW) PSO and Time varying inertia weight (TVIW) PSO have been used for comparative study.  These 
versions of PSO vary in only parameterization. 
23 See Huang (2019) for a survey. 
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ii) A PSO Demonstration 

As a demonstration, we use a conic function as follows: 

(16) 2 2( , )f x y x y   

The function is a cone as shown in the top plot in Figure 2.  In Figure 2a, we can readily see how 

particles move toward the center of the cone which is the global minimum.   

[Figure 2 Here] 

Another function as follows has multiple local minima. 

(17) 
2 2

( , ) cos[ ]cos 14000 2
x y xf x y x      

 

and the results are shown in Figure 2b. 

The major advantage of PSO is that it is particularly good at the problems with many local 

optima.  As we can see in Figure 2b.  However, in this situation, the convergence of the swarm is 

slower and each particle needs to “work harder” to identify the global minimum, since there are 

many local minima. 

Another advantage of PSO is its superior capability to find the global optimum when the 

objective function is discrete.  In Huang (2019), PSO is applied on the Sortino ratio 

maximization.  Different from the Sharpe ratio, the Sortino ratio only concerns the “down-side 

risk” and as a result, the ratio is not a continuous function of the portfolio weights. 

Thirdly, PSO is insensitive to initial value.  However, given the heuristic nature of PSO (or any 

AI-based optimization), accuracies are not as good as competing parametric methods.  As a 

result, PSO is best used in high-dimensional problems where parametric methods fail.  In this 

paper, we demonstrate how PSO can be used in evaluating complex derivatives.  These complex 

derivatives usually require optimization through a high-dimensional search, which leads to 

failures (or highly inaccurate estimates) by the parametric methods.  For the sake of easy 

exposition, we demonstrate simple American-style options such as put, put on min/max, and 

Asian options. 
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IV. American-style derivative Pricing 

As mentioned earlier, once the exercise boundary can be correctly specified, one can perform 

Monte Carlo simulations to solve for American-style derivative prices.  Moreover, with this 

capability, one can further solve path-dependent options which are impossible to be solved by 

lattice models.  Also mentioned earlier is the difficulty admitted in the literature how to identify 

such a truly free exercise boundary.  In this section, we demonstrate how to take advantage of 

PSO to achieve this goal.  In PSO, there is no need to specify any functional form for the exercise 

boundary.  Particles will collectively set the exercise boundary with no constraints, which in 

theory gives the best American-style derivative value. 

We first demonstrate a simple American put option on one and two assets where there are 

accurate estimates via a lattice model.  Then we demonstrate a path-dependent option (Asian 

option) that cannot be evaluated easily by lattice models. 

1. Uni-variate 

We first demonstrate how PSO is used in a simple American put option without dividends.  In 

this simple example, we can have the lattice result (binomial model) as the benchmark.  With the 

help of the binomial model, we can clearly see the exercise boundary of the option.  The input 

information to the American put option is as follows: 

stock price 100
strike price 100
volatility 0.3
risk-free rate 0.03
time to maturity 1
time steps 100
Monte-Carlo paths 10,000

Given that the binomial model and the PSO use the same number of time steps, we caution that 

the binomial model does not provide accurately enough result due to not enough steps (only 

100).24 

We use PSO to evaluate various boundary specifications.  Specifically, for any given boundary 

specification (i.e. flat, linear, exponential, piece-wise flat, and restricted piece-wise flat), we 

maximize equation (7) over  

                                                 
24 Certainly, we can increase the number of periods in the binomial model to achieve more accurate 
American values and yet this is not our main focus. 
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(18) max ( )tx


 

where   represents the set of parameters of the boundary function and ( )tx  is the option value 

defined in equation (7): 

1
1( ) max{ ( ), 0}jN r

jjt e K B
N

tx t
   

For example, in the linear boundary case, 0 1{ , }a a  .  Hence, equation (18) is a two-

dimensional search.  Note that ( )jB t  is the boundary value of the j th path at time jt .  Take a 

concrete example.  Given a boundary specification (e.g. linear 0 1( )B t a a t  ), 5t  (the fifth 

path) could be time step 26, and 42t  (the forty-second path) could be time step 74.25  The 

boundary values are consequently 5 0 1 26( )B a a Tt    and 42 0 1 74( )B a a Tt   .  In other words, at 

the fifth path of Monte Carlo, the option is early exercised at step 26, and the exercise value is 

equal to 5 0 1( ) ( 0.26 )K B K a at    .  Similarly, at the forth-second path of the Monte Carlo, 

the option is exercised early at step 74, and the exercise value is 42 0 1( ) ( 0.74 )K B K a at    . 

Note that in the piece-wise flat boundary case, there is no formula and each time period has its 

own boundary value.  In this case, 1 100{ , , }B B    and equation (18) is a 100-dimensional 

search.  In PSO, each particle is labeled with 100 coordinates.  The particles communicate with 

one another to update their coordinates (global best) at each iteration.  Iterations stop when all 

particles converge to the same set of coordinates and equation (18) is maximized. 

We compare different boundary conditions.  The results are given in Table 1. 

[Table 1 Here] 

The European value is 10.3656 by the Monte Carlo method, which is a little higher than the true 

value 10.3278 by the Black-Scholes model.  The binomial value for the European option is 

10.2984 which is lower than the Black-Scholes value.  Hence we can infer that the American 

value which is 10.5917 by the binomial model should be underestimated.  Hence we can view the 

binomial value as a lower bound. 

The piece-wise PSO value is 10.7714 which is the highest American value as expected as it 

imposes no restriction.  The restricted (monotonically) piece-wise PSO value is the next highest 

as 10.6908.  Given that the true exercise boundary is very close to an exponential function 

                                                 
25 Note that time step 100, or 100T , is equal to the maturity time which is 1 (year) in the example.  Hence 

26 0.26T   and 74 0.74T  . 
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(provided later in Figure 3), the exponential boundary result of 10.6647 should be very close to 

the true value. 

The Longstaff-Schwartz value (regression, which uses equation (5)) is 10.6217 which is lower 

than the above three results but higher than the linear boundary result of 10.5621 and the flat 

boundary result of 10.5591.  These results seem reasonable. 

We then compare the exercise boundaries from the various specifications and compare them to 

the “true exercise boundary” implied by the binomial model.  The exercise boundary is plotted in 

Figure 3. 

[Figure 3 Here] 

From Figure 3, it is clear that the exercise boundaries implied by the binomial, exponential, and 

piece-wise-monotonic cases are close to one another.  The unrestricted piece-wise boundary is 

also close if we ignore the low values but only focus on the high values.  The unrestricted piece-

wise boundary oscillates but clearly those low values have little impact on the valuation (as we 

can see from the result that this boundary yields the highest American-style derivative value in 

Table 1).  The flat and linear boundaries perform poorly (Table 1) as no surprise as they are far 

from the correct boundary. 

Clearly, both PSO and binomial algorithms can be improved.  First, the zigzag form of the 

binomial boundary is disturbing.26  This could be due to insufficient number of periods (which 

confirms the slow convergence of the binomial model).  Second, there are a substantial number of 

low values (at 60) by the unrestricted piece-wise boundary.  It is clear that these values are bad 

values and yet it does not impact the valuation much, which indicates that the exercise boundary 

does not need to be granular.  This is a numerical issue worthy of further investigation.  Yet it is 

future research and beyond the scope of the current paper. 

2. Multi-variate 

There are a number of multi-variate lattice models.  In principle, the challenge in building such a 

multi-dimensional lattice is the exploding memory usage and computation time.  In the simplest 

case where all assets are uncorrelated, the number of nodes necessary for the lattice is 

(( 1) 1)nm t   where m  is the number of economic states for any given asset and n  is the 

number of assets and t  is the number of time steps in the lattice.  For example in a tri-nomial 

                                                 
26 As mentioned in footnote 24, we can increase the number of steps in the binomial model to smooth the 
exercise boundary further. 
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lattice, 100 time steps to evaluate a three-asset derivative requires over 8 million nodes at 

maturity.27 

Another challenge for building a multi-variate lattice is the difficulty in incorporating the number 

of pair-correlations of assets.  In other words, it is not possible to match the number of equations 

(i.e. branches) and the number of unknowns (i.e. correlation pairs).28  In the simplest case where 

assets are independent, we need 2n  branches (where n  is the number of assets) in each time step.  

In order to incorporate correlation, Boyle (1988) and then modified by Kamrad and Ritchken 

(1991) devise a five-branch model.  The corner branches have the same stock prices as before and 

the middle branch assumes the same stock prices as the current.  By matching moments, there are 

six equations and five unknowns.  Hence, the solution is not so straightforward.  Boyle (1988) 

shows that the usual binomial setup with two assets X  and Y ,29 that is, 0 0 X t
u XX X u X es    

and 0 0 X t
d XX X d X e s    and similarly for Y .  Due to the mismatch of equations and 

unknowns, he must alter the assumption to X t
Xu els   and Y t

Yu els   where l  is free 

parameter so that he could solve for one stock first and then search for the solution to the second 

stock. 

The second model by Boyle, Evnine and Gibbs (1989) is a four-branch model.  As we can see 

that if we use four branches (i.e. four equations), we will not be able to match unknowns and 

equations.  Hence, Boyle, Evnine and Gibbs turn to characteristic functions.  They note that the 

above probabilities can all be nonnegative only if the time step becomes sufficiently small.  

Hence, this method is not very efficient.   

Finally is the model by Chen, Chung, and Yang (2002).  Their model is based upon complete 

markets.  In a complete market, the number of nodes does not grow exponentially but factorially, 

which save both computation time and memory usage.  Furthermore, the complete market setting 

is consistent with the binomial model in a single asset case and as a result risk-free no-arbitrage 

can be established.  In other words, like the binomial model, the Chen-Chung-Yang model is not 

just a numerical algorithm as Boyle (1988), Boyle-Evnine-Gibbs (1989), and Kamrad-Ritchken, 

but also an economic model. 

In the complete market setting, Chen, Chung, and Yang (2002) discover that the number of 

branches in each time step exactly matches the number of equations.  Consequently, one can 

                                                 
27 For 4 assets, it requires over 1.6 billion nodes. 
28 This problem has been solved by Chen, Chung, and Yang (2002).  Later we adopt their model as the 
benchmark for options on multiple assets. 
29 We assume the readers are fairly familiar with the standard binomial model of Cox, Ross, and Rubinstein 
(1989).  The notation used here is quite standard (e.g. see Hull (2015)) and straightforward. 
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easily solve for the probabilities as in the binomial model.  While the readers can find all the 

details in their original paper, in the Appendix, we excerpt a two-asset example where the two-

dimensional “binomial tree” can be visualized.  

We evaluate the following put option (note that the call option will never be early exercised: 

(19)  1 2,max max{ , }, 0V K S St t t   

with the parameters of the two stocks are given as: 

 asset 1 asset 2 
price 40 40 
volatility 0.2 0.3 
strike 35  
time to maturity 7/12  
risk free rate 0.03  
correlation 0.5  

Implementing the PSO algorithm, we recognize that there is a certain relationship between 

functions 1,B t  and 2,B t .  For example, it could be: 1, 2,B a bBt t   (linear) or 
2 2 2 2 2

1, 2,a B b B ct t   (elliptical/concave) where a , b  and c  are arbitrary constants, along with 

2,B t  to be decided by PSO.  In the current execution, we assume 1,B t  and 2,B t  to be independent. 

The results are given in Table 2.  Also in Table 2, we implement the Longstaff-Schwartz model 

with the following quadratic regression (compared to equation (5)): 

(20) 2 2
1 0 11 1 12 1 21 2 22 2 3 1 2t t t t t t ta a S a S a S a S a S Sx         

[Table 2 Here] 

Similar to Table 1, we find the PSO results and the Longstaff-Schwartz result to be very close to 

each other.  The Black-Scholes European value is 0.1948 and the binomial American value (i.e. 

Chen-Chung-Yang model) is 0.2557 with a European value as 0.1884.  Hence we know that the 

American value by the binomial model is underestimated. 

The Monte-Carlo European value is 0.1974 which is close to the Black-Scholes value.  The 

Longstaff-Schwartz value is 0.2386 which is lower than the binomial value.  Among all PSO 

values, again the unrestricted piece-wise boundary yields the highest value of 0.2426 followed by 

the exponential boundary of 0.2361.  The flat boundary continues to be the worst case at a value 

of 0.2318.  It is a little surprising to see that the exponential boundary yields a higher option value 

than the piece-wise-monotonic boundary of 0.2352. 
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3. Path-dependent 

The lattice approach for the valuation of American-style derivatives does not apply to those 

contracts whose payoffs depend on past values (i.e. path-dependent options).  On the other hand, 

Monte Carlo simulations are good for European path-dependent options.  Yet, there has been no 

good approach to evaluate American path-dependent options.   

Asian (Averaging) Option 

We use the simple Asian option as a demonstration.  An Asian option is an option whose payoff 

depends on a historical average (arithmetic or geometric, weighted or unweighted) of past values 

of the underlying asset.  As a result, an Asian option cannot be evaluated using the standard 

lattice method in that a lattice does not keep track of the historical values of the underlying asset.  

As a result, a Monte Carlo algorithm must be employed.  However, the Monte Carlo method 

cannot evaluate American style options.  As a result, evaluating American style Asian options 

remains a challenge.   

To date, there has been no other alternative to the Longstaff-Schwartz (1996) model which 

provides an approximation value to the American-style Asian option.  In this paper, a more 

superior alternative, using PSO, is proposed. 

First, we have to turn the valuation to a free-boundary problem.  As discussed earlier, PSO is 

suitable to evaluate any free-boundary valuation problem.  An American-style Asian option has 

the following payoff: 

(21)  max ,0V A Kt t   

where t  is the (early) exercise date and: 

1
0

1 n
iiA S

nt t


   

is the average of the stock price (in this example the average is arithmetic).  An American-style 

Asian option is to compare the above exercise value against the continuation value.  This nature, 

which is same for all American options, now is applicable to Asian options.  In other words, there 

exists a critical value touching which triggers the early exercise.  Hence, we can now use PSO to 

locate the exercise boundary. 
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Note that now the exercise boundary is located along the averaging value path At .  In Monte-

Carlo simulations, this can be handled along each path with no difficulty.  Valuation can be 

performed on At  just as it is on tS .  The results are in Table 3. 

[Table 3 Here] 

There is no closed-form solution to the European-style Asian option evaluated here.  Neither is 

there a benchmark American value by the lattice model.  Without knowing a benchmark, we 

cannot assess the accuracy of various PSO results and the Longstaff-Schwartz result.  Hence, 

Table 3 can only provide a comparison between the results by Longstaff-Schwartz and PSO. 

First, we can see that flat, linear, and exponential boundaries can hardly be accurate in that they 

generate an identical value to the American-style derivative (9.0117) which is very close to the 

European value (9.0109).  Secondly, piece-wise boundaries, restricted and unrestricted both, 

provide substantially higher value than the other three cases, 9.1912 and 9.1925 respectively.  

This indicates that we obtain substantially higher value once the boundary function is flexible.  

Lastly, Longstaff-Schwartz value is the highest (9.2415) and yet it is unclear if their value 

overestimates or underestimates the true value.  Hence, it is unable to assess the performance in 

this situation. 

4. Computational Efficiency 

In this section, we examine the issue of computation efficiency.  In general, AI-based algorithms 

are not fast.  As a result, computational efficiencies can be gained only in high dimensions.  This 

is because the increase of dimensionalities and the increase of particles are both linearly 

proportional to computation time.  This is sharply different from the traditional methods that 

suffer the well-known “dimensionality curse” where the increase of dimensions results in 

exploding computational time.  As a result, there is no benefit in using an AI-based model in low 

dimensions. 

Table 4 presents the results of (A) simple American put option and (B) American put option on 

two assets in various simulations.  For 100 particles, the computation time ranges from 25.10 

seconds to 46.88 seconds (with different seeds).  Note that there is no clear relationship between 

the accuracy of values and speed.  The fastest seed (#3143) takes 25.10 seconds but produces the 

second highest value; while the slowest seed (#41675) takes 46.88 seconds but produces the third 

highest value. 

[Table 4 Here] 
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We have the following observations.  First, given the heuristic nature of PSO, we provide results 

with various Monte Carlo seeds.  As we can see the variation in results is non-trivial.  Different 

Monte Carlo paths affect the results quite substantially.  Fortunately, we can observe a pleasant 

pattern in mean (average across seeds), max (maximum across seeds) and min (minimum across 

seeds).  In these results, more particles (higher swarm size) do take longer to compute and do 

converge to more accurate results (option values). 

Secondly, and more interestingly, we do not find differences in computation times between Panel 

A which is option on single asset and Panel B which is option on two assets.  This confirms the 

conjecture that PSO is not affected significantly by the number of assets.  This is drastically 

different from previous models where dimensionality matters.  For example, for a swarm size of 

100, the mean computation times are 37.48 seconds for 1 asset and 40.82 seconds for 2 assets. 

Lastly, note that one of the advantages of PSO is that computation time is linearly related to 

swarm size (number of particles).  Hence, to increase accuracy, we can simply increase the swarm 

size and the cost only increases linearly.  For example, the average speed for swarm size of 50 is 

20.71 seconds and for swarm size of 500 is 229.67 which is roughly 10 times more (and similarly 

swarm size of 100 is roughly twice (46.88 seconds) and swarm size of 200 is four times (87.67 

seconds).   

V. Conclusion 

In this paper, we demonstrate how complex (multi-asset or path-dependent) American-style 

derivatives can benefit from an artificial intelligent tool – PSO (particle swarm optimization).  

These options are otherwise nearly impossible to evaluate accurately and effiently.  In other 

words, PSO is particularly suitable for evaluating these complex derivatives. 

PSO is an optimization tool particularly suitable for high-dimensional problems.  Compared to 

other optimization tools (e.g. stochastic gradient descend), PSO is intelligence-based.  One can 

regard PSO (or any intelligence-based tools such as genetic algorithm and neutral networks) as 

“non-parametric” while other optimization tools (e.g. stochastic gradient descend) as “parametric.  

This analogy point out that PSO has more flexibility and can more likely find the better value. 

Another extraordinary advantage of PSO is its capability in parallel computing.  In other words, 

PSO can be GPU’ized (graphic processing unit).  This indicates that the computation time of PSO 

can be infinitely minimized (by adding GPUs).  The experiments on GPU computation is beyond 

the scope of this paper. 
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We also discover, presented in Table 4, PSO is quite sensitive to Monte Carlo paths.  Particles 

behave quite differently in a different environment.  This opens a door for another future 

research. 

 

VI. References 

Boyle, Phelim P., 1988 (March), “A Lattice Framework for Option Pricing with Two State 
Variables,” Journal Of Financial And Quantitative Analysis Vol. 23, No. 1,1-12. 

Boyle, Phelim P., Jeremy Evnine, and Stephen Gibbs, 1989 (April), “Numerical Evaluation of 
Multivariate Contingent Claims,” The Review of Financial Studies, Volume 2, Issue 2, 241-
250. 

Carr, Peter, 1998, “Randomizing and the American Put,” Review of Financial Studies, Vol 11, 
No 3, pp 597-626.  

Carr, Peter, Jarrow, Robert A., and Myneni, Ravi, 2008 (January), “Alternative Characterizations 
of American Put Options,” Financial Derivatives Pricing, pp. 85-103. 

Chen, Ren-Raw, San-Lin Chung and Tyler T. Yang, 2002 (December), “Option Pricing in a 
Multi-Asset, Complete Market Economy,” The Journal of Financial and Quantitative 
Analysis, Vol. 37, No. 4, 649-666. 

Cox, J., S. Ross, and M. Rubinstein, 1979, “Option Pricing, A Simplified Approach,” Journal of 
Financial Economics. 

David S. Bunch and Herb Johnson, 2000 (October), “The American Put Option and Its Critical 
Stock Price,” Journal of Finance, Vol. 55, No. 5, pp. 2333-2356. 

Dorigo, Marco, Luca Maria Gambardella, 1997, “Ant Colony System: a Cooperative Learning 
Approach to The Traveling Salesman Problem,” IEEE Transactions on Evolutionary 
Computation, , 1(1), 53- 66. 

Dorigo, Marco, Vittorio Maniezzo, and Alberto Colorni, 1991, “Ant System: An Autocatalytic 
Optimizing Process,” Technical Report 91-016. 

Dorigo, Marco, Vittorio Maniezzo, and Alberto Colorni, 1996, “The Ant System: Optimization 
by a Colony of Cooperating Agents,” IEEE Transactions on Systems, Man, and Cybernetics-
Part B, Vol.26, No.1, pp.1-13. 

Eberhart, Russell C., and James Kennedy, 1995, “A New Optimizer Using Particle Swarm 
Theory,” Sixth International Symposium on Micro Machine and Human Science, IEEE. 

Huang, Kaihua, 2019, “Particle Swarm Optimization Central Mass on Portfolio Construction,” 
Gabelli School of Business, Fordham University. 

Hull, John, 2015, Options, Futures and Other Derivatives, Prentice Hall. 



 22

Jamous, R.A., Al-Aguizy Tharwat, Essam El Seidy, and B.I. Bayoumi, 2015, “A New Particle 
Swarm with Center of Mass Optimization,” International Journal of Engineering Research 
and Technology, 4(5), 312 – 317. 

Kamrad, Bardia and Peter Ritchken, 1991, “Multinomial Approximating Models for Options with 
k State Variables,” Management Science, vol. 37, issue 12, 1640-1652. 

Kumar, Sajjan, Susmita Sau, Diptendu Pal, Bhimsen Tudu, Swadhin K. Mandal, Nilanjan 
Chakraborty, 2013, “Parametric Performance Evaluation of Different Types of Particle 
Swarm Optimization Techniques Applied in Distributed Generation System,” Proceedings of 
the International Conference on Frontiers of Intelligent Computing: Theory and Applications 
(FICTA) pp 349-356. 

Longstaff, Francis, and Eduardo Schwartz, 2001, “Valuing American-style derivatives by 
Simulation,” Journal of Finance. 

Nunes, João Pedro Vidal, Nunes, J., 2009, “Pricing American-style derivatives under the 
Constant Elasticity of Variance Model and Subject to Bankruptcy,” Journal of Financial and 
Quantitative Analysis 44, 1231-1263. 

Reynolds, Craig, 1987, “Flocks, herds and schools: A distributed behavioral model,” Proceedings 
of the 14th Annual Conference on Computer Graphics and Interactive Techniques, 
Association for Computing Machinery, pp. 25-34. 

Zhang, Yudong, Shuihua Wang, and Genlin Ji, “A Comprehensive Survey on Particle Swarm 
Optimization Algorithm and Its Applications,” Mathematical Problems in Engineering, 
Volume 2015, Article ID 931256, 38 pages.  

 



 23

VII. Figures and Tables 

Table 1: American put   
The option payoff is: max{ },0}K S  
 

stock price 100
strike price 100
volatility 0.3
risk-free rate 0.03
time to maturity 1
time steps 100
Monte-Carlo paths 10,000

 
 

Put Option 

  European American 
Black-Scholes 10.3278   
binomial (CRR) 10.2984 10.5917 
Longstaff-Schwartz 10.3656 10.6217 
PSO-flat 10.3656 10.5591 
PSO-linear 10.3656 10.5621 
PSO-exponential 10.3656 10.6647 
PSO-piece-wise 10.3656 10.7714 
PSO-piece-wise(restricted) 10.3656 10.6908 

 
Note: Monte Carlo results are based upon 10,000 paths, 100 time steps.  The Longstaff-
Schwartz model (1991) uses a quadratic function in the regression.  The PSO uses a 
swarm size of 500.  The two parameters of the PSO are (equation (12)): w = 0.5, c1 = 0.5 
and c2 = 0.5.  The computation stops when the improvement of the value is less than 10-6.  
The binomial model is Cox-Ross-Rubinstein (1979) and is performed with 100 time 
steps.  The performance of PSO is provided in Table 4. 
 



 24

Table 2: Put option on Min/Max   

The option payoff is 1 2max{ max{ , }, 0}K S S  

 asset 1 asset 2 
price 40 40 
volatility 0.2 0.3 
strike 35  
time to maturity 7/12  
risk free rate 0.03  
correlation 0.5  

 

 

Min/Max Option 

  European American 
BS 0.1948   
binomial (CCY) 0.1884 0.2557 
Longstaff-Schwartz 0.1974 0.2386 
PSO-flat 0.1974 0.2318 
PSO-linear 0.1974 0.2349 
PSO-exponential 0.1974 0.2361 
PSO-piece-wise 0.1974 0.2426 
PSO-piece-wise(restricted) 0.1974 0.2352 

 
Note: Monte Carlo results are based upon 10,000 paths, 100 time steps.  The Longstaff-
Schwartz model (1991) uses a quadratic function in the regression.  The PSO uses a 
swarm size of 500.  The two parameters of the PSO are (equation (12)): w = 0.5, c1 = 0.5 
and c2 = 0.5.  The computation stops when the improvement of the value is less than 10-6.  
The binomial model is Chen-Chung-Yang (2002) and is performed with 100 time steps.  
The performance of PSO is provided in Table 4. 
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Table 3: Path-dependent Asian Option 
 
Payoffs 1 2max{ ( , ), 0}K S T T  

where 1
1 n

jjS S
n    

Average Option 

  European American 
Longstaff-Schwartz 9.0109 9.2415 
PSO-flat 9.0109 9.0117 
PSO-linear 9.0109 9.0117 
PSO-exponential 9.0109 9.0117 
PSO-piece-wise 9.0109 9.1925 
PSO-piece-wise(restricted) 9.0109 9.1912 

 
Note: Monte Carlo results are based upon 10,000 paths, 100 time steps.  The Longstaff-
Schwartz model (1991) uses a quadratic function in the regression.  The PSO uses a 
swarm size of 500.  The two parameters of the PSO are (equation (12)): w = 0.5, c1 = 0.5 
and c2 = 0.5.  The computation stops when the improvement of the value is less than 10-6.  
The binomial model is performed with 100 time steps.  The performance of PSO is 
provided in Table 4. 
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Table 4: Performance of PSO 
 
(A) Put Option (1-asset) 
 

Value ($) 
Seed 69905 80302 8249 26795 967 12128 81917 26488 3143 41675 Mean Max Min 

Swarm Size                           

50 10.0368 9.7001 10.2470 10.1109 9.8039 10.1586 10.2712 10.5006 9.3164 9.4168 9.9562 10.5006 9.3164 

100 10.0388 10.4329 9.2902 10.0156 10.5760 10.2345 10.5512 10.2584 9.8404 9.7683 10.1006 10.5760 9.2902 

200 10.0744 9.7776 9.8149 10.5076 10.3039 10.6329 10.0999 10.7066 10.5164 9.8415 10.2276 10.7066 9.7776 

500 10.5811 10.0202 10.5791 10.7459 10.7074 10.5237 10.4950 10.6977 10.7714 10.4127 10.5534 10.7714 10.0202 

              
              
              

Computation Time (seconds) 
Seed 69905 80302 8249 26795 967 12128 81917 26488 3143 41675 Mean Max Min 

Swarm Size                           

50 19.6829 18.8187 18.8304 18.5710 18.3021 18.9599 18.8633 19.2746 18.8743 19.0645 18.9242 19.6829 18.3022 

100 37.3748 36.9218 38.1397 36.7419 37.8845 37.1103 37.9693 37.1976 37.7589 37.7402 37.4839 38.1397 36.7419 

200 75.1492 75.1461 77.2891 75.0346 74.6849 75.8589 76.6391 73.8078 76.6213 73.0110 75.3242 77.2891 73.0110 

500 186.9830 185.8080 178.4430 182.4440 186.9290 185.8810 184.2930 183.5500 185.3380 178.0620 183.7732 186.9831 178.0624 
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(B) Min/Max Option (2-asset) 
 

Value ($) 
Seed 69905 80302 8249 26795 967 12128 81917 26488 3143 41675 Mean Max Min 

Swarm Size                           

50 0.2268 0.2358 0.2350 0.2368 0.2374 0.2347 0.2383 0.2393 0.2257 0.2353 0.2345 0.2393 0.2257 

100 0.2334 0.2344 0.2398 0.2379 0.2364 0.2342 0.2342 0.2381 0.2384 0.2382 0.2365 0.2398 0.2334 
200 0.2383 0.2380 0.2368 0.2315 0.2374 0.2335 0.2338 0.2387 0.2409 0.2320 0.2361 0.2409 0.2315 
500 0.2359 0.2342 0.2366 0.2412 0.2413 0.2426 0.2414 0.2392 0.2416 0.2362 0.2390 0.2426 0.2342 

              
              
              

Computation Time (seconds) 
Seed 69905 80302 8249 26795 967 12128 81917 26488 3143 41675 Mean Max Min 

Swarm Size                           

50 10.7312 20.6707 20.5986 20.5549 20.7069 16.1223 20.6824 20.6649 6.97153 20.7073 17.8411 20.7073 6.9715 
100 41.1003 44.5624 45.634 41.0282 41.201 40.7916 41.1614 40.6881 25.1049 46.8837 40.8156 46.8837 25.1049 
200 87.6694 73.1363 78.1617 83.9155 86.7515 73.6531 81.172 86.2793 81.5649 40.9068 77.3211 87.6694 40.9068 

500 203.568 202.788 219.504 229.666 222.398 202.404 210.968 203.651 207.758 202.525 210.5230 229.6660 202.4040 

 
 
Note: The two parameters of the PSO are (equation (12)): w = 0.5, c1 = 0.5 and c2 = 0.5.  The computation stops when the improvement of the 
value is less than 10-6.  The Longstaff-Schwartz value is (Table 2) 0.2386.  The binomial model value is (Table 2) 0.2557. 
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Figure 1 
Three major parameters in a swarm. 
 
 Separation Alignment Cohesion 

    
Sources: https://en.wikipedia.org/wiki/Boids 
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Figure 2 
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For an animated demonstration, see for example, 
https://en.wikipedia.org/wiki/Particle_swarm_optimization#/media/File:ParticleSwarmAr
rowsAnimation.gif 
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Figure 3 
Various Exercise Boundaries. 
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VIII. Appendix 

1. American Call Option on Min/Max Will Never be Early 
Exercised 

Jansen’s Inequality states that ff ( )f x  is a convex function then ( [ ]) [ ( )]f E x E f x  and vice versa.  

Hence the American call option will never be early exercised.  It is wellknown that the simple call 

option’s continuation value is always greater than the exercise value: 

1

[max{ ,0}] max{ [ ] , 0}

max{ [ ] , 0}

max{ , 0}

r t r t
T T

r t r t
T

T

e E S K e E S K

e E S e K

S K

   

   



  

 

 

 

Also the exchange option will never be exercised. 

1, 2, 1, 2,

1, 2,

1, 1 2, 1

[max{ ,0}] max{ [ ] [ ], 0}

max{ [ ] [ ], 0}

max{ , 0}

r t r t
T T T T

r t r t
T T

T T

e E S S e E S E S

e E S e E S

S S

   

   

 

  

 

 

 

Finally the min/max call option will never be exercised: 

1, 2, 1, 2,

1, 2,

1, 1 2, 1

[max{max{ , } , 0}] max{ [max{ , }] , 0}

max{max{ [ ], [ } , 0}

max{max{ , } , 0}

r t r t
T T T T

r t
T T

T T

e E S S K e E S S K

e E S E S K

S S K

   

 

 

  

 

 

 

 
 

2. Option on Min/Max 

The closedform solution to the put option on min/max can be derived from the call option 

solutions provided by Stulz (1988).  Our objective is to derive the closedform solution to 

1 2max{ max{ , }, 0}P K S S   from the Stulz solution to 1 2max{max{ , } , 0}C S S K  .  The 

following payoff analysis demonstrates that: 

 1 2max{max{ , } , 0}C S S K   1 2max{ max{ , }, 0}P K S S   C P  

1 2S S  1max{ ,0}S K  1max{ ,0}K S  1S K  

1 2S S  2max{ , 0}S K  2max{ , 0}K S  2S K  

 1 2max{max{ , } , 0}S S K  1 2max{ max{ , }, 0}K S S  1 2max{ , }S S K  

As a result, we have: 
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1 2

2 1 2

( ) ( ) max{ ( ), ( )}

( ) max{ ( ) ( ), 0}

C T P T S T S T K

S T S T S T K

  

   
 

Given that this is a European option, we can discount it back to today and have: 

( )
2 1 2( ) ( ) ( ) ( , ) r T tP t C t S t X S S e K      

where 1 2( , )X S S  is the standard exchange option.  Stulz presents the call option on max/max as 

follows: 

1 2 1 2 1 2max{max{ , } , 0} ( ) ( ) ( , )BS BSS S K C S C S M S S     

where 1S  and 2S  are the two underlying assets, ()BSC   is the BlackScholes call option on a given 

underlying asset, and 1 2( , )M S S  is given as: 

1 2 1 2

( )
1 2 1 1 1 2 2 2 2 2 2 1 2 12

( , ) max{min{ , } , 0}

( , ; ) ( , ; ) ( , , )r T t

M S S S S K

S N a b S N a b Ke N g gr r r 

 

  
 

where 

j j ja g T ts    

2
1 2

1

2
2 1

2

ln ln ( )

ln ln ( )

S S T tb
T t

S S T tb
T t

s
s

s
s

  


  





 

2ln ln ( ( ))j j
j

H

S K r T t
g

T t
s

s
   





 

12 1 2
1

12 2 1
2

r s sr s
r s sr s




 

2 2 2
1 2 12 1 22s s s r s s    

and 12r  is the correlation between 1S  and 2S . 

3. Illustration of the Chen-Chung-Yang Model 

Here we illustrate how to implement the Chen-Chung-Yang model to evaluate American-style 

derivatives on multiple assets.  A geometrical demonstration is provided for the two-asset case as 

follows: 
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<x1, y1>

<x3, y3>

<x2, y2>
<x, y>

 

Figure A: A Two-asset Chen-Chung-Yang Model 

In the above demonstration, as we travel along the lattice forward, the number of nodes increases 

in the following geometric series: ( 1)( 2)
2!

i ij    where 1,2, ,i n   as the time steps of the 

lattice.  The general case for m  number of assets is: 1
1! ( )m

kmj i k    as in the following 

table:30 

num of 
assets 

m=1 m=2 m=3 ... m=m 

i j j j  j 
0 1 1 1  1 
1 2 3 4  5 
2 3 6 10  15 
3 4 10 20  35 
...      

n 1n   ( 1)( 2)
2!

n n   ( 1)( 2)( 3)
3!

n n n   ... 1 ( )
!

m
k n k
m

   

To implement the model as described in Figure A, we index the states as follows (where the first 

subscript is time and the second is state): 

 

11 11

12 12

13 13

x y
x y
x y

 
   
   

 

21 21

22 22

23 23

24 24

25 25

26 26

x y
x y
x y
x y
x y
x y

 
   
   
   
   

01 01x y   

 

                                                 
30 Note that even in the simplest independence case, the number of nodes at the time step n  is ( 1)mn  .  

For example, for three periods, a four-asset model has 256 nodes as opposed to 35 nodes in the CCY 
model. 
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In a general case where we move from any time i  to time 1i  , state j  will become 

0 1 2, ,j j j   as follows: 

0

1

2

( 1, )

( , ) ( 1, )

( 1, )

i j

i j i j

i j

   

 

where 

0

1

2 1

( 1)
2
1

j j

i ij k

j j



 

 

 

As 1 ~i n , we have: 

   ( 1) ( 1)1 ~2 2
1 (1 ~ )

i i i ij

k k i

  

 
 


