An Artificial Intelligence Approach to the Valuation of
American-style Derivatives:
A Use of Particle Swarm Optimization

Ren-Raw Chen”
Gabelli School of Business
Fordham University
45 Columbus Avenue
New York, NY 10019
rchen@fordham.edu

Jeffrey Huang
Bank SinoPac
Financial Markets
SF, #306, Bade Road, Section 2
Taipei, Taiwan (R.O.C.)
jeffrey.hcc@gmail.com

William Huang
Gabelli School of Business
Fordham University
45 Columbus Avenue
New York, NY 10019
khuang41@fordham.edu

Robert Yu
Gabelli School of Business
Fordham University
45 Columbus Avenue
New York, NY 10019
jyul 15@fordham.edu

June 4, 2019
revised July 20, 2020

" Contact author. (212) 636-6471; rchen@fordham.edu. We thank the editor Dr. Joe Pimbley for his
encouragement and valuable comments that make this paper substantially better.

An Artificial Intelligence Approach to the Valuation of
American-style Derivatives:
A Use of Particle Swarm Optimization

Abstract

In this paper, we evaluate American-style, path-dependent derivatives with an artificial
intelligence technique. Specifically we use swarm intelligence to find the optimal exercise
boundary for an American-style derivative. Swarm intelligence is particularly efficient
(computation and accuracy) in solving high-dimensional optimization problems and hence
perfectly suitable for valuing complex American-style derivatives (e.g. multiple-asset, path-

dependent) which require a high-dimensional optimal exercise boundary.

Keywords: American Option, Monte Carlo, PSO

JEL code: G12, G13, G4

An Artificial Intelligence Approach to the Valuation of
American-style Derivatives:
A Use of Particle Swarm Optimization

l. Introduction

Evaluating American-style derivatives is a challenging task. In a uni-variate setting (e.g. option
on one stock), lattice models — either the binomial model (e.g. Cox, Ross, and Rubinstein (1979))
or finite difference methods (e.g. see Hull (2015)) are an efficient method." However, once the
derivative contract is written on multiple assets (e.g. exchange options), lattice models would
become infeasible (with regard to both computation time or memory space). Furthermore, path-

dependent derivatives cannot be evaluated with lattice models.

As a result, modifying the Monte Carlo method to evaluate American-style derivatives is a
popular alternative. There are two approaches to achieve this goal. The first approach is
proposed by Longstaff and Schwartz (2001) who approximate the continuation value of the
option by a regression function (functional form can be arbitrary). They recognize that the early
exercise decision is merely a comparison of the exercise value and its continuation value of the
option. If the continuation value can be reasonably accurately estimated, then the early exercise
problem can be easily solved and hence one can readily compute the value of an American-style
derivative. The drawback of this approach is apparent — it is hard to know in advance which

functional form of the regression will provide an accurate estimate for the continuation value.

The other approach is to recognize that derivatives pricing in general is a free-boundary PDE
(partial differential equation) problem. If we can accurately estimate the exercise boundary, then
it is just an easy integration over the boundary (as the first passage time problem). In other
words, if we can accurately estimate the boundary, then the value of an American-style derivative

can be calculated as it would be a barrier option.”

This approach is more computational efficient than the Longstaff-Schwartz model; yet if suffers
the same drawback of the Longstaff-Schwartz model — the accuracy of the American-style
derivative value relies upon an accurate exercise boundary. Moreover, the literature of this

approach lacks the evidence on derivatives on multiple assets.

! By efficient, we refer to the balance between speed and accuracy.
2 For recent work, see Bunch and Johnson (2000) and Carr, Jarrow, and Myneni (2008). Also see Nunes
(2008) for a nice review/comparison of various boundaries.

In this paper, we introduce an artificial intelligence method, i.e. swarm intelligence, to locate the
optimal exercise boundary. In particular, we use an optimization algorithm within the realm of
swarm intelligence named PSO (particle swarm optimization) to locate the optimal exercise
boundary. The intelligence by the swarm can efficiently decide piece-wise values of the
boundary, one for each time step, without an approximated functional form as in the literature.
As in any artificial intelligence model, PSO is efficient in high dimensional optimization
problems. In the case of a truly free boundary (i.e. piece-wise), we find that PSO can ideally
provide the best solution to complex (e.g. American-style, multi-asset, path-dependent)

derivatives problems.
Il. Monte Carlo in American-style derivative Pricing

In this section, we briefly describe the two Monte Carlo methods in American-style derivative
pricing. It is generally understood that Monte Carlo simulations are only suitable for pricing
European-style derivatives. This is because American-style derivatives require a backward
induction. In other words, the optimal exercise decision at any given time depends on all future
optimal exercise decisions. The first method proposed by Longstaff and Schwartz (2001)
recreates such a recursive structure in Monte Carlo and the second method adopts a free-boundary

property in PDE (partial differential equation) solutions.
1. The Longstaff-Schwartz Model

The Longstaff-Schwartz model (2001) is the most popular model in the financial industry. It is
an efficient Monte-Carlo model for American-style derivatives. Longstaff and Schwartz propose
a regression method to estimate the “continuation value” at each time step.” The option value &

at any time ¢ is the larger of the exercise value E, and the continuation value C, as follows:

(1) & = max{FE;,C,}
where
(2) C, = E? [£t+1]

is the continuation value of the option at time ¢ (which is the risk-neutral expected value, E?[],
of the next period’s option price); and F; is the exercise value at time ¢. In the case of a put

option (which is what we use throughout the paper), £, = K — 5.

? As a reminder, a continuation value in option literature refers to the expected value of future maximum
payoff at any given point in time. Since the continuation value is the expected future payoff, it is compared
to the exercise value at the given time to see if (early) exercise is worthwhile.

Longstaff and Schwartz cleverly recognize that the conditional expectation of future maximum

payoff is a function of today’s stock price:
(3) EtQ [€t+1] = f(St)

where f(-) is an arbitrary function. They propose the simplest (and it works amazingly well)

quadratic equation:

EP (&)= f(S)

) 2
= Qy + G'ISt + (IQSt

which can turn into a regression model as follows:

Q) §i1 = g + aiS; + w7 + €4
with the boundary condition & = max{K — Sy,0}.

As mentioned earlier, the major criticism of the model is the choice of the functional form of the
regression. It is ad-hoc and it is not possible to know which form is most suitable for which

payoff.*
2. Explicit Boundary Method

In an alternative (relatively unsuccessful) attempt, researchers have tried to solve American-style
derivatives by using an explicit exercise boundary.” The approach is built upon the nice property
that option prices of any kind are solutions to a class of differential equations which can be solved
as a “free boundary problem”. In other words, as long as the exercise boundary of an option is

known, its price is no more than a simple integration along the exercise boundary.

Unfortunately, not only is the exercise boundary of an American-style derivative unknown, but it
is recursive (i.e. the boundary value at the current time depends on the boundary value at the
immediately later time — resulting a recursively dependent structure of boundary values). In other
words, the boundary function can only be achieved via a lattice model (e.g. binomial model). In
doing so, the option is guaranteed to be exercised optimally and the valuation can hence be at the

maximum.

* In the case of put options, the quadratic function works very well. Yet in other forms of payoff, Longstaff
and Schwartz do not provide any guidance.
> For example, see Carr (1998).

As Carr (1998), among others, points out, if we solve an American-style derivative premium as a
free-boundary problem, then we can use an explicit boundary function and the American-style

derivative premium is simply an integration of payoff function (e.g. put) over the boundary.

(6) &) = E¢ [¢ max{[E(7),0}]

where FE(7) is the exercise value at the stopping time 7. Ifit is a put option without dividends
which is the case in this paper, then F(r) = K — S(7). On the boundary, S(7) = B(r) and hence
E(r) = K — B(r) where B(7) is the boundary function given exogenously. The way the
boundary function works is that it serves as a stopping time. Once the stock price at time ¢ hits
the boundary B(¢), the process stops and the option will be exercised and paid and hence the

American-style derivative can be evaluated as a barrier option.

The easiest way to perform the integration is through Monte Carlo simulations. As the derivative
price £(t) is given as an expected value:

M =X, e max{K - B(r,),0}

= o 1),

We note that the recursively determined boundary function (via a lattice model) maximizes the
option value, any other exogenously specified boundary function will only be “sub-optimal”, that
is, generating a lower value than the lattice model. This sub-optimal argument is convenient in

that now we can simply try a large number of boundary functions and use the one that generates

the highest option value as a good approximation.

Researchers then have tried various approximations on the exercise boundary. These
approximations are explicit functions and hence can be easily integrated (and hence American-
style derivative value solved for). According to a recent survey by Nunes (2008), the literature

has the following functional forms:

e Constant: B(t) = q

e Linear: B(t) = ay + a;t
e Exponential: B(t) = a,e™

e Exponential-constant: a, + e™'

e Polynomial: B(t) = Zj: Lait™!

e Carr-Jarrow-Myneni (2008): B(t) = min(K,; K Ye VT L B [1- e*“m]

Note that the boundary is not a function of the stock price (i.e. free boundary problem). Since

these boundary functions are explicit, they can be easily integrated.

Certainly the accuracy of the American value depends on the accuracy of the approximated
boundary function. The problem of this approach is that there is no consensus of which
functional form of the boundary can consistently be the best. Often it varies with the parameters
of the option (i.e. moneyness, interest rate, time to maturity, and volatility). As a result, no

conclusion can be drawn on a particular functional form.

So far the literature has not reached any consensus and the boundary seems to be payoft-specific.
In other words, different payoffs require different boundaries for accurate American-style
derivative values. As a result, it is quite natural to allow the boundary function to be absolutely
free (i.e. one value per time step). Yet this requires an optimization in high dimensions. As the
number of time steps increases, the cost of computation becomes exponentially prohibitively
high.

In this paper, we propose an artificial intelligence (Al) method which is based upon the theory of
swarm (swarm intelligence, SI). In the SI model, a school of fish (or a group of ants and bees or a

flock of birds) will move (swim) around to look for the maximum value of the option.
lll. Swarm Intelligence

In this section, we briefly “open the black-box” of swarm intelligence which is a branch of

recently popular artificial intelligence.

1. What is Al?

Artificial intelligence (Al), machine learning (ML), and big data (BD) have recently been adopted
into FinTech and been the fastest growing area in finance, both in private industry and academia.
While these three areas are frequently used in combinations in developing valuable applications,

these three areas are fundamentally different and deserve separate research.

Strictly speaking, Al is a combination of computation (artificial) and biology (intelligence) which
is quite different in nature from ML which is based upon statistical methodologies. In the past,
statistics have predominantly been presented in a parametric fashion, mainly due to insufficient
computation power and lack of data. This has been changed recently and non-parametric
statistics with powerful computation capabilities fuel the growth of machine learning. As non-
parametric statistics require a large amount of data, ML and BD (such as NLP, or natural
language processing) have been combined in revolutionizing the financial world. Together, they

facilitate the progress of Al

Al has three major branches:

e swarm intelligence (birds, ants, bees, fish)
e genetic algorithm (genes)

e neural networks (neurons)

These Al theories are behavioral models in that they “artificialize” natural intelligence (specified
in parentheses above) which reflects biological behaviors. As a result, they are different from
ML methodologies. The connection (and hence confusion) of these two is due to the fact that
these Al models can be efficiently used to find optimal solutions (e.g. PSO) which then are
similar to ML models. Indeed, from the perspective of computation, one can hardly differentiate
one tool from the other and in many instances these two distinctly different theories are used in

combination.

As we shall demonstrate in this section, swarm intelligence is a behavioral model and PSO is an

optimization tool.
2. Swarm Intelligence

Wikipedia describes swarm intelligence as “the collective behavior of decentralized, self-

organized systems.”’

The basic idea of swarm intelligence is derived from those animals (such as
birds, ants, bees, and fish) that rely on group effort to achieve their basic survival needs — seek
food and avoid prey. The intelligence behind this collective behavior is how they communicate
among one another. Reynold (1987)" was the first to “artificialize” such natural intelligence and
create a computer algorithm named Boids (for bird-oid object). Reynold’s algorithm is
amazingly simple. For any given bird, Reynold devises a set of linear equations (vectors)

combining which determines how the bird should fly to its next destination.

The factors that determine how various vectors are combined are: separation, alignment, and
cohesion. As their names suggest, “separation” is to avoid collision with other birds, “alignment”
decides how a particular bird should fly in a direction by referencing to its fellow birds, and

“cohesion” decides how fast (speed) a particular bird should fly to its next target position.

% https://en.wikipedia.org/wiki/Swarm_intelligence.
” According to Wikipedia (footnote 6), Reynold created Boid in 1986: “Boids is an artificial life program,
developed by Craig Reynolds in 1986, which simulates the flocking behaviour of birds.”

There are countless versions of Boids.® One can add obstacles. One can add an objective
destination (swim to target). One can do Boids in a maze. The basic Boids as described in Figure

1 can be described by the following algorithm.
[Figure 1 Here]

Formally, let there be m birds flying in an n -dimensional space. Also let:

o £ be the ith bird at time ¢
. vﬁ“ be a vector in the R" space representing the velocity of the : th bird

e p'" beavectorin R" space representing the position (coordinates) of the i th bird

Finally let F = { ft“> | i =1,---,m} be the collection of all birds. Define a mapping function

X; = o(£")) which returns all fY7" e F — f% where aradius d and an angle a are

predetermined such that (|| =,y ||= V2° + »* and Z{z,y} is the angle between two vectors)
i, 05” i< d Ao} = a?

(8) - and _
| " mf? i< d p p} = e

are satisfied. In words, what (8) describes is that for any given bird ¢, where it is heading
depends on a reference group of birds “nearby”, described by a set of birds X; = p(f). These
reference birds must be “nearby” in the following sense —they must be within a distance

(specified by the radius d) and within an angle (specified by «°), as depicted graphically as:’

/
/
/
/
/D
/
/
~ <g
RS
& T @
S~
[} S~<
/ -~
! S~
| =
1
- >
|
1
1
1
\
%‘ \ -
! -
-
\ -
\ -
\é/

¥ For example, see Google Scholar:

https://scholar.google.com/scholar?g=boids+flocking+algorithm&hl=en&as_sdt=0&as_vis=1&oi=scholart
? These reference birds are like “my leaders” for a given bird.

where the circled bird is referencing to three nearby birds by the angle and the radius. The
alignment and cohesion (we ignore separation parameter for the moment) parameters are

calculated as follows:'°

oy = aveg(w37 | £ € X) = oy
)

oty = ave(p/7) |10 € X) - p?
and then an average velocity is calculated as follows:

(10) 7" = weel}, + werl),

where wy + wy = 1 and each is positive. Finally, velocity and position of each bird are updated

as follows:

D = o 45l

of!
(11) _ _ _
Y = 31, + 7
As emphasized earlier, a swarm is a behavioral model which describes how birds (ants, bees, fish)
move and an artificial swarm is a mathematical (linear algebraical) algorithm that imitates this

natural behavior by animals. One can use an artificial swarm to solve a number of complex

problems."!

As we can see, Reynold’s boid model can be easily programmed and implemented. For the sake

of easy exposition, we shall refer birds, ants, bees, or fish as particles for the rest of the paper.

Particle Swarm Optimization (PSO) can be viewed as simplified Al swarm. Its objective is to
find the global optimum. While details can be seen in the next section, the idea of a PSO is to

replace nearby birds/particles by the global optimum found by all birds/particles.

3. Particle Swarm Optimization

In theory, swarm intelligence is effective for optimization problems in a high-dimensional space.
PSO is such an application. The original version of PSO was first proposed by Eberhart and

Kennedy (1995) who modify the behavioral model of swarm into an objective-seeking algorithm.

' We ignore separation in our model because in our applications particles can take the same coordinates
(i.e. collision is allowed).

" While this is out of the scope of this paper, we encourage the readers to view a popular YouTube clip on
how drones use an artificial swarm: “‘Skynet’Drones Work Together for ‘Homeland Security’”
(https://www.youtube.com/watch?v=0DyfGM35ekc).

Similar to Renold’s, their model “artificializes” the group behavior of a flock of birds seeking
food. Via bird-to-bird chirping (peer-to-peer communication), all birds fly to the loudest sound of
chirping. Subsequently, Eberhart and Shi (1998) improve the model by adding an inertia term
(symbolized as w later as we introduce the model) and it has become the standard PSO algorithm
used today. Setting a proper value of the inertia term is to seek the balance between exploitation
and exploration. A larger value of the inertia term gives more weight to exploration (as the bird
is more likely to fly on its own) and a smaller value of the inertia term gives more weight to

exploitation (as the bird intends more to fly toward other birds). "

One can compare PSO to the grid search. A grid search can find the global optimum and yet it
takes an exploding amount of time to reach such a solution, especially in a high-dimensional
space. PSO can be regarded as a “smart grid search” where each particle performs a “stupid
search” and yet by communicating with other particles and by having a large number of such

particles we can reach the global optimum quickly.

Imagine we would like to measure the deepest place of a lake whose bottom has an uneven
surface. A two-dimension grid search can easily find the global minimum. An alternative would
be PSO. Imagine we have a number of “fish” (particles) who swim in the lake. At each time
step, all fish will measure the depth of the lake underneath them. And each fish is
communicating with all the other fish to decide whose depth is the deepest (minimum). All fish
now remember the minimum and then they swim for another time step. At each time step they
update the global minimum so far. If we let these fish swim randomly for enough time, we will

reach the global minimum.

In the case of the lake, we may find the grid search to be more accurate and time-effective. But in
an n -dimensional lake, grid searches are becoming ineffective but the same number of fish may

just do the same job with the same amount of time as in the two-dimensional lake.

Currently there have been some limited number of applications of PSO in finance, mostly in
portfolio selection. In this paper, we use it for the first time in the literature to locate the exercise
boundary of American-style derivatives (specifically, put option, option on min/max, and Asian

option).

2 Similar to PSO, an ACO (ant colony optimization) by Dorigo, Bonabeau, and Theraulaz (2000) and ACS
(ant colony system) by Dorigo and Gambardella (1997) are both based upon swarm intelligence. The first
ant system is first developed by Dorigo, Maniezzo, and Colorni (1991) and then popularized by Dorigo,
Maniezzo, and Colorni (2000).

The PSO algorithm can be formally defined as follows. For ¢ = 1,---,n particles and each

particle is a vector of j = 1,---,m dimensions, we have:

Ui,j(t + 1) = () () 7“101(137](75) - Ez(ﬁ)) + Tzcz(g(t) - fzy(t))

12
2 a4 =a,0+7,0+1)

8l

where v ;(t) is velocity of the i th particle in the jth dimension at time ¢; Z; ;(t) is position of
the i th particle in the jth dimension at time ¢; w(¢) is a “weight” (less than 1) which decides
how the current velocity will be carried over to the next period (and usually it is set as

w(t) = aw(t —1) and « < 1 to introduce diminishing velocity);'"* and finally 7,7 ~ u(0,1) follow

a uniform distribution.

In the swam literature, w(¢)v;(t) is called inertia; ric;(5;(f) — 7;(¢)) is called the cognitive
component and e, (g(t) — 7;(¢)) is called the social component. Coefficients ¢, and ¢, are

known as acceleration coefficients.

At each position there is “cost function” f(-) (sometimes called distance function) at which a
“cost” (or penalty) is computed. This cost function is the objective function to be minimized (or

maximized).

The global best at any given time is either the maximum or minimum value of the objective

function generated by all particles at the time:

(13) §(t) = min{f(5;(1))}

and the personal best at the time is:

(14 5i(t) = min{/(7:(1))}

and f(): R" — R is the “fitness function”. The usual fitness function is
(15 f@@) =17 = XI =327 (55—,

where x =< xi,--+,x; > is a coordinate in a J -dimensional space.

Later, we illustrate via a very simple example how the process is so easily implemented.

" The reason is that as a particle is approaching the global best, the velocity should approach 0 (i.e. the
particle should no longer move at the global optimum.)

10

As we can see, the algorithm (at least the standard one presented here) of PSO is quite different
from that of a generic swarm by Reynolds (1978). Yet they both share the same behavioral
pattern of a natural swarm. In other words, (1) both PSO and the generic swarm are based upon
peer-to-peer communication in order to achieve the objective and (2) the particles in both PSO
and the generic swarm are identical (like birds or ants) and each particle follows its neighbor
particles. The difference is just how each particle weighs its neighbors. In PSO, each particle
only cares of the global best discovered by its neighbors and in the generic swarm each

neighbor’s position is important.
i) Different Types of PSO

The literature on PSO is voluminous. Zhang, Wang, and Ji (2015) provide an excellent survey.

They classify the existing PSO literature into the following strands:'*

e modifications,"

e population topology,'

e hybridization,"

e extensions,'

e theoretical analysis,'® and

e parallel implementation.”

However, Zhang, Wang, and Ji only provide applications in non-financial areas.”"** To date,
there have been very limited number of applications in the area of finance. Within the limited

literature, most noticeably is in the area of portfolio selection.”

" PSO can also vary in terms of parameterization such as center mass (see Jamous, Tharwat, Seidy, and
Bayoumi (2015)).

' This includes quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO.

' This includes von Neumann, ring, star, random, among others.

' This is to combine PSO with genetic algorithm, simulated annealing, Tabu search, artificial immune
system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and
biogeography-based optimization.

'® This includes multi-objective, constrained, discrete, and binary optimization.

' This includes parameter selection and tuning, and convergence analysis.

2% This involves multi-core, multiprocessor, GPU, and cloud computing forms.

*! They are electrical and electronic engineering, automation control systems, communication theory,
operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology.

** Kumar et. al. (2013) examines performance of various PSO algorithms: Canonical PSO, Hierarchical
PSO (HPSO), Time varying acceleration coefficient (TVAC) PSO, Self-organizing hierarchical particle
swarm optimizer with time-varying acceleration coefficients (HPSO-TVAC), Stochastic inertia weight
(Sto-IW) PSO and Time varying inertia weight (TVIW) PSO have been used for comparative study. These
versions of PSO vary in only parameterization.

3 See Huang (2019) for a survey.

11

i) A PSO Demonstration
As a demonstration, we use a conic function as follows:
(16) flz,y) = 2° + ¢

The function is a cone as shown in the top plot in Figure 2. In Figure 2a, we can readily see how

particles move toward the center of the cone which is the global minimum.
[Figure 2 Here]

Another function as follows has multiple local minima.

z? +y2

1
4000 +

a7 flzy) =

— cos[z]cos

L
V2
and the results are shown in Figure 2b.

The major advantage of PSO is that it is particularly good at the problems with many local
optima. As we can see in Figure 2b. However, in this situation, the convergence of the swarm is
slower and each particle needs to “work harder” to identify the global minimum, since there are

many local minima.

Another advantage of PSO is its superior capability to find the global optimum when the
objective function is discrete. In Huang (2019), PSO is applied on the Sortino ratio
maximization. Different from the Sharpe ratio, the Sortino ratio only concerns the “down-side

risk” and as a result, the ratio is not a continuous function of the portfolio weights.

Thirdly, PSO is insensitive to initial value. However, given the heuristic nature of PSO (or any
Al-based optimization), accuracies are not as good as competing parametric methods. As a
result, PSO is best used in high-dimensional problems where parametric methods fail. In this
paper, we demonstrate how PSO can be used in evaluating complex derivatives. These complex
derivatives usually require optimization through a high-dimensional search, which leads to
failures (or highly inaccurate estimates) by the parametric methods. For the sake of easy
exposition, we demonstrate simple American-style options such as put, put on min/max, and

Asian options.

12

IV. American-style derivative Pricing

As mentioned earlier, once the exercise boundary can be correctly specified, one can perform
Monte Carlo simulations to solve for American-style derivative prices. Moreover, with this
capability, one can further solve path-dependent options which are impossible to be solved by
lattice models. Also mentioned earlier is the difficulty admitted in the literature how to identify
such a truly free exercise boundary. In this section, we demonstrate how to take advantage of
PSO to achieve this goal. In PSO, there is no need to specify any functional form for the exercise
boundary. Particles will collectively set the exercise boundary with no constraints, which in

theory gives the best American-style derivative value.

We first demonstrate a simple American put option on one and two assets where there are
accurate estimates via a lattice model. Then we demonstrate a path-dependent option (Asian

option) that cannot be evaluated easily by lattice models.

1. Uni-variate

We first demonstrate how PSO is used in a simple American put option without dividends. In
this simple example, we can have the lattice result (binomial model) as the benchmark. With the
help of the binomial model, we can clearly see the exercise boundary of the option. The input

information to the American put option is as follows:

stock price 100
strike price 100
volatility 0.3
risk-free rate 0.03
time to maturity 1
time steps 100

Monte-Carlo paths 10,000

Given that the binomial model and the PSO use the same number of time steps, we caution that
the binomial model does not provide accurately enough result due to not enough steps (only
100).*

We use PSO to evaluate various boundary specifications. Specifically, for any given boundary
specification (i.e. flat, linear, exponential, piece-wise flat, and restricted piece-wise flat), we

maximize equation (7) over

 Certainly, we can increase the number of periods in the binomial model to achieve more accurate
American values and yet this is not our main focus.

13

(18) max&()

where © represents the set of parameters of the boundary function and £(¢) is the option value
defined in equation (7):

£(t) = lzj,vzl e " max{K — B(t;),0}

For example, in the linear boundary case, © = {ay,q,} . Hence, equation (18) is a two-
dimensional search. Note that B(7;) is the boundary value of the jth path at time 7,. Take a
concrete example. Given a boundary specification (e.g. linear B(¢) = ay + a;t), 75 (the fifth
path) could be time step 26, and 7, (the forty-second path) could be time step 74.> The
boundary values are consequently B(75) = ag + a,T5s and B(14) = ag + a;T7, . In other words, at
the fifth path of Monte Carlo, the option is early exercised at step 26, and the exercise value is
equal to K — B(r5) = K — (ay + 0.26¢,) . Similarly, at the forth-second path of the Monte Carlo,

the option is exercised early at step 74, and the exercise value is K — B(r,,) = K — (ay + 0.74q,) .

Note that in the piece-wise flat boundary case, there is no formula and each time period has its
own boundary value. In this case, © = {B,,---, Bjpg} and equation (18) is a 100-dimensional
search. In PSO, each particle is labeled with 100 coordinates. The particles communicate with
one another to update their coordinates (global best) at each iteration. Iterations stop when all

particles converge to the same set of coordinates and equation (18) is maximized.
We compare different boundary conditions. The results are given in Table 1.
[Table 1 Here]

The European value is 10.3656 by the Monte Carlo method, which is a little higher than the true
value 10.3278 by the Black-Scholes model. The binomial value for the European option is
10.2984 which is lower than the Black-Scholes value. Hence we can infer that the American
value which is 10.5917 by the binomial model should be underestimated. Hence we can view the

binomial value as a lower bound.

The piece-wise PSO value is 10.7714 which is the highest American value as expected as it
imposes no restriction. The restricted (monotonically) piece-wise PSO value is the next highest

as 10.6908. Given that the true exercise boundary is very close to an exponential function

%3 Note that time step 100, or Tio0 » 1S €qual to the maturity time which is 1 (year) in the example. Hence
Tys = 0.26 and T, = 0.74.

14

(provided later in Figure 3), the exponential boundary result of 10.6647 should be very close to

the true value.

The Longstaff-Schwartz value (regression, which uses equation (5)) is 10.6217 which is lower
than the above three results but higher than the linear boundary result of 10.5621 and the flat

boundary result of 10.5591. These results seem reasonable.

We then compare the exercise boundaries from the various specifications and compare them to
the “true exercise boundary” implied by the binomial model. The exercise boundary is plotted in

Figure 3.
[Figure 3 Here]

From Figure 3, it is clear that the exercise boundaries implied by the binomial, exponential, and
piece-wise-monotonic cases are close to one another. The unrestricted piece-wise boundary is
also close if we ignore the low values but only focus on the high values. The unrestricted piece-
wise boundary oscillates but clearly those low values have little impact on the valuation (as we
can see from the result that this boundary yields the highest American-style derivative value in
Table 1). The flat and linear boundaries perform poorly (Table 1) as no surprise as they are far

from the correct boundary.

Clearly, both PSO and binomial algorithms can be improved. First, the zigzag form of the
binomial boundary is disturbing.”® This could be due to insufficient number of periods (which
confirms the slow convergence of the binomial model). Second, there are a substantial number of
low values (at 60) by the unrestricted piece-wise boundary. It is clear that these values are bad
values and yet it does not impact the valuation much, which indicates that the exercise boundary
does not need to be granular. This is a numerical issue worthy of further investigation. Yet it is

future research and beyond the scope of the current paper.
2. Multi-variate

There are a number of multi-variate lattice models. In principle, the challenge in building such a
multi-dimensional lattice is the exploding memory usage and computation time. In the simplest
case where all assets are uncorrelated, the number of nodes necessary for the lattice is

((m — 1t + 1)" where m is the number of economic states for any given asset and n is the

number of assets and ¢ is the number of time steps in the lattice. For example in a tri-nomial

2 As mentioned in footnote 24, we can increase the number of steps in the binomial model to smooth the
exercise boundary further.

15

lattice, 100 time steps to evaluate a three-asset derivative requires over 8 million nodes at

maturity.”’

Another challenge for building a multi-variate lattice is the difficulty in incorporating the number
of pair-correlations of assets. In other words, it is not possible to match the number of equations
(i.e. branches) and the number of unknowns (i.e. correlation pairs).® In the simplest case where
assets are independent, we need 2" branches (where n is the number of assets) in each time step.
In order to incorporate correlation, Boyle (1988) and then modified by Kamrad and Ritchken
(1991) devise a five-branch model. The corner branches have the same stock prices as before and
the middle branch assumes the same stock prices as the current. By matching moments, there are
six equations and five unknowns. Hence, the solution is not so straightforward. Boyle (1988)

shows that the usual binomial setup with two assets X and Y ,” thatis, X, = Xouy = Xoe”*’m

and X, = Xydy = X[)e*”xm and similarly for Y. Due to the mismatch of equations and

unknowns, he must alter the assumption to uy = VAL and uy = VB where) is free
parameter so that he could solve for one stock first and then search for the solution to the second

stock.

The second model by Boyle, Evnine and Gibbs (1989) is a four-branch model. As we can see
that if we use four branches (i.e. four equations), we will not be able to match unknowns and
equations. Hence, Boyle, Evnine and Gibbs turn to characteristic functions. They note that the
above probabilities can all be nonnegative only if the time step becomes sufficiently small.

Hence, this method is not very efficient.

Finally is the model by Chen, Chung, and Yang (2002). Their model is based upon complete
markets. In a complete market, the number of nodes does not grow exponentially but factorially,
which save both computation time and memory usage. Furthermore, the complete market setting
is consistent with the binomial model in a single asset case and as a result risk-free no-arbitrage
can be established. In other words, like the binomial model, the Chen-Chung-Yang model is not
just a numerical algorithm as Boyle (1988), Boyle-Evnine-Gibbs (1989), and Kamrad-Ritchken,

but also an economic model.

In the complete market setting, Chen, Chung, and Yang (2002) discover that the number of

branches in each time step exactly matches the number of equations. Consequently, one can

" For 4 assets, it requires over 1.6 billion nodes.

*® This problem has been solved by Chen, Chung, and Yang (2002). Later we adopt their model as the
benchmark for options on multiple assets.

? We assume the readers are fairly familiar with the standard binomial model of Cox, Ross, and Rubinstein
(1989). The notation used here is quite standard (e.g. see Hull (2015)) and straightforward.

16

easily solve for the probabilities as in the binomial model. While the readers can find all the
details in their original paper, in the Appendix, we excerpt a two-asset example where the two-

dimensional “binomial tree” can be visualized.

We evaluate the following put option (note that the call option will never be early exercised:

(19) V, = max{K — max{S,,,S5,,},0}

with the parameters of the two stocks are given as:

asset 1 asset 2

price 40 40
volatility 0.2 0.3
strike 35
time to maturity 7112
risk free rate 0.03
correlation 0.5

Implementing the PSO algorithm, we recognize that there is a certain relationship between
functions B, . and B, . For example, it could be: B,, = a + bB,, (linear) or
a’B?, +b*°B3, = ¢* (elliptical/concave) where a, b and ¢ are arbitrary constants, along with

B, to be decided by PSO. In the current execution, we assume B, and B, to be independent.

The results are given in Table 2. Also in Table 2, we implement the Longstaff-Schwartz model

with the following quadratic regression (compared to equation (5)):

(20) &1 = ag + anSy + a1pSh + 4915 + 9993 + azS1:Ss;
[Table 2 Here]

Similar to Table 1, we find the PSO results and the Longstaff-Schwartz result to be very close to
each other. The Black-Scholes European value is 0.1948 and the binomial American value (i.e.
Chen-Chung-Yang model) is 0.2557 with a European value as 0.1884. Hence we know that the

American value by the binomial model is underestimated.

The Monte-Carlo European value is 0.1974 which is close to the Black-Scholes value. The
Longstaff-Schwartz value is 0.2386 which is lower than the binomial value. Among all PSO
values, again the unrestricted piece-wise boundary yields the highest value of 0.2426 followed by
the exponential boundary of 0.2361. The flat boundary continues to be the worst case at a value
of 0.2318. It is a little surprising to see that the exponential boundary yields a higher option value

than the piece-wise-monotonic boundary of 0.2352.

17

3. Path-dependent

The lattice approach for the valuation of American-style derivatives does not apply to those
contracts whose payoffs depend on past values (i.e. path-dependent options). On the other hand,
Monte Carlo simulations are good for European path-dependent options. Yet, there has been no

good approach to evaluate American path-dependent options.
Asian (Averaging) Option

We use the simple Asian option as a demonstration. An Asian option is an option whose payoff
depends on a historical average (arithmetic or geometric, weighted or unweighted) of past values
of the underlying asset. As a result, an Asian option cannot be evaluated using the standard
lattice method in that a lattice does not keep track of the historical values of the underlying asset.
As a result, a Monte Carlo algorithm must be employed. However, the Monte Carlo method
cannot evaluate American style options. As a result, evaluating American style Asian options

remains a challenge.

To date, there has been no other alternative to the Longstaff-Schwartz (1996) model which
provides an approximation value to the American-style Asian option. In this paper, a more

superior alternative, using PSO, is proposed.

First, we have to turn the valuation to a free-boundary problem. As discussed earlier, PSO is
suitable to evaluate any free-boundary valuation problem. An American-style Asian option has

the following payoft:

(21) V., = max{A, — K,0}
where 7 is the (early) exercise date and:

1 n—1
A’T = Ezi:() ST*i
is the average of the stock price (in this example the average is arithmetic). An American-style
Asian option is to compare the above exercise value against the continuation value. This nature,
which is same for all American options, now is applicable to Asian options. In other words, there
exists a critical value touching which triggers the early exercise. Hence, we can now use PSO to

locate the exercise boundary.

18

Note that now the exercise boundary is located along the averaging value path A.. In Monte-
Carlo simulations, this can be handled along each path with no difficulty. Valuation can be

performed on A, justasitison S;. The results are in Table 3.
[Table 3 Here]

There is no closed-form solution to the European-style Asian option evaluated here. Neither is
there a benchmark American value by the lattice model. Without knowing a benchmark, we
cannot assess the accuracy of various PSO results and the Longstaff-Schwartz result. Hence,

Table 3 can only provide a comparison between the results by Longstaff-Schwartz and PSO.

First, we can see that flat, linear, and exponential boundaries can hardly be accurate in that they
generate an identical value to the American-style derivative (9.0117) which is very close to the
European value (9.0109). Secondly, piece-wise boundaries, restricted and unrestricted both,
provide substantially higher value than the other three cases, 9.1912 and 9.1925 respectively.
This indicates that we obtain substantially higher value once the boundary function is flexible.
Lastly, Longstaff-Schwartz value is the highest (9.2415) and yet it is unclear if their value
overestimates or underestimates the true value. Hence, it is unable to assess the performance in

this situation.
4. Computational Efficiency

In this section, we examine the issue of computation efficiency. In general, Al-based algorithms
are not fast. As a result, computational efficiencies can be gained only in high dimensions. This
is because the increase of dimensionalities and the increase of particles are both linearly
proportional to computation time. This is sharply different from the traditional methods that
suffer the well-known “dimensionality curse” where the increase of dimensions results in
exploding computational time. As a result, there is no benefit in using an Al-based model in low

dimensions.

Table 4 presents the results of (A) simple American put option and (B) American put option on
two assets in various simulations. For 100 particles, the computation time ranges from 25.10
seconds to 46.88 seconds (with different seeds). Note that there is no clear relationship between
the accuracy of values and speed. The fastest seed (#3143) takes 25.10 seconds but produces the
second highest value; while the slowest seed (#41675) takes 46.88 seconds but produces the third

highest value.

[Table 4 Here]

19

We have the following observations. First, given the heuristic nature of PSO, we provide results
with various Monte Carlo seeds. As we can see the variation in results is non-trivial. Different
Monte Carlo paths affect the results quite substantially. Fortunately, we can observe a pleasant
pattern in mean (average across seeds), max (maximum across seeds) and min (minimum across
seeds). In these results, more particles (higher swarm size) do take longer to compute and do

converge to more accurate results (option values).

Secondly, and more interestingly, we do not find differences in computation times between Panel
A which is option on single asset and Panel B which is option on two assets. This confirms the
conjecture that PSO is not affected significantly by the number of assets. This is drastically
different from previous models where dimensionality matters. For example, for a swarm size of

100, the mean computation times are 37.48 seconds for 1 asset and 40.82 seconds for 2 assets.

Lastly, note that one of the advantages of PSO is that computation time is linearly related to
swarm size (number of particles). Hence, to increase accuracy, we can simply increase the swarm
size and the cost only increases linearly. For example, the average speed for swarm size of 50 is
20.71 seconds and for swarm size of 500 is 229.67 which is roughly 10 times more (and similarly
swarm size of 100 is roughly twice (46.88 seconds) and swarm size of 200 is four times (87.67

seconds).
V. Conclusion

In this paper, we demonstrate how complex (multi-asset or path-dependent) American-style
derivatives can benefit from an artificial intelligent tool — PSO (particle swarm optimization).
These options are otherwise nearly impossible to evaluate accurately and effiently. In other

words, PSO is particularly suitable for evaluating these complex derivatives.

PSO is an optimization tool particularly suitable for high-dimensional problems. Compared to
other optimization tools (e.g. stochastic gradient descend), PSO is intelligence-based. One can
regard PSO (or any intelligence-based tools such as genetic algorithm and neutral networks) as
“non-parametric” while other optimization tools (e.g. stochastic gradient descend) as “parametric.

This analogy point out that PSO has more flexibility and can more likely find the better value.

Another extraordinary advantage of PSO is its capability in parallel computing. In other words,
PSO can be GPU’ized (graphic processing unit). This indicates that the computation time of PSO
can be infinitely minimized (by adding GPUs). The experiments on GPU computation is beyond
the scope of this paper.

20

We also discover, presented in Table 4, PSO is quite sensitive to Monte Carlo paths. Particles
behave quite differently in a different environment. This opens a door for another future

research.

VI. References

Boyle, Phelim P., 1988 (March), “A Lattice Framework for Option Pricing with Two State
Variables,” Journal Of Financial And Quantitative Analysis Vol. 23, No. 1,1-12.

Boyle, Phelim P., Jeremy Evnine, and Stephen Gibbs, 1989 (April), “Numerical Evaluation of
Multivariate Contingent Claims,” The Review of Financial Studies, Volume 2, Issue 2, 241-
250.

Carr, Peter, 1998, “Randomizing and the American Put,” Review of Financial Studies, Vol 11,
No 3, pp 597-626.

Carr, Peter, Jarrow, Robert A., and Myneni, Ravi, 2008 (January), “Alternative Characterizations
of American Put Options,” Financial Derivatives Pricing, pp. 85-103.

Chen, Ren-Raw, San-Lin Chung and Tyler T. Yang, 2002 (December), “Option Pricing in a
Multi-Asset, Complete Market Economy,” The Journal of Financial and Quantitative
Analysis, Vol. 37, No. 4, 649-666.

Cox, J., S. Ross, and M. Rubinstein, 1979, “Option Pricing, A Simplified Approach,” Journal of
Financial Economics.

David S. Bunch and Herb Johnson, 2000 (October), “The American Put Option and Its Critical
Stock Price,” Journal of Finance, Vol. 55, No. 5, pp. 2333-2356.

Dorigo, Marco, Luca Maria Gambardella, 1997, “Ant Colony System: a Cooperative Learning
Approach to The Traveling Salesman Problem,” IEEE Transactions on Evolutionary

Computation, , 1(1), 53- 66.

Dorigo, Marco, Vittorio Maniezzo, and Alberto Colorni, 1991, “Ant System: An Autocatalytic
Optimizing Process,” Technical Report 91-016.

Dorigo, Marco, Vittorio Maniezzo, and Alberto Colorni, 1996, “The Ant System: Optimization
by a Colony of Cooperating Agents,” IEEE Transactions on Systems, Man, and Cybernetics-
Part B, Vol.26, No.1, pp.1-13.

Eberhart, Russell C., and James Kennedy, 1995, “A New Optimizer Using Particle Swarm
Theory,” Sixth International Symposium on Micro Machine and Human Science, IEEE.

Huang, Kaihua, 2019, “Particle Swarm Optimization Central Mass on Portfolio Construction,”
Gabelli School of Business, Fordham University.

Hull, John, 2015, Options, Futures and Other Derivatives, Prentice Hall.

21

Jamous, R.A., Al-Aguizy Tharwat, Essam El Seidy, and B.I. Bayoumi, 2015, “A New Particle
Swarm with Center of Mass Optimization,” International Journal of Engineering Research
and Technology, 4(5), 312 —317.

Kamrad, Bardia and Peter Ritchken, 1991, “Multinomial Approximating Models for Options with
k State Variables,” Management Science, vol. 37, issue 12, 1640-1652.

Kumar, Sajjan, Susmita Sau, Diptendu Pal, Bhimsen Tudu, Swadhin K. Mandal, Nilanjan
Chakraborty, 2013, “Parametric Performance Evaluation of Different Types of Particle
Swarm Optimization Techniques Applied in Distributed Generation System,” Proceedings of
the International Conference on Frontiers of Intelligent Computing: Theory and Applications
(FICTA) pp 349-356.

Longstaff, Francis, and Eduardo Schwartz, 2001, “Valuing American-style derivatives by
Simulation,” Journal of Finance.

Nunes, Jodo Pedro Vidal, Nunes, J., 2009, “Pricing American-style derivatives under the
Constant Elasticity of Variance Model and Subject to Bankruptcy,” Journal of Financial and
Quantitative Analysis 44, 1231-1263.

Reynolds, Craig, 1987, “Flocks, herds and schools: A distributed behavioral model,” Proceedings
of the 14th Annual Conference on Computer Graphics and Interactive Techniques,
Association for Computing Machinery, pp. 25-34.

Zhang, Yudong, Shuihua Wang, and Genlin Ji, “A Comprehensive Survey on Particle Swarm

Optimization Algorithm and Its Applications,” Mathematical Problems in Engineering,
Volume 2015, Article ID 931256, 38 pages.

22

VIl. Figures and Tables

Table 1: American put

The option payoff is: max{K — S},0}

stock price 100

strike price 100

volatility 0.3

risk-free rate 0.03

time to maturity 1

time steps 100

Monte-Carlo paths 10,000

Put Option

European/American

Black-Scholes 10.3278
binomial (CRR) 10.2984| 10.5917
Longstaff-Schwartz 10.3656| 10.6217
PSO-flat 10.3656| 10.5591
PSO-linear 10.3656| 10.5621
PSO-exponential 10.3656| 10.6647
PSO-piece-wise 10.3656| 10.7714
PSO-piece-wise(restricted)| 10.3656 10.6908

Note: Monte Carlo results are based upon 10,000 paths, 100 time steps. The Longstaft-
Schwartz model (1991) uses a quadratic function in the regression. The PSO uses a

swarm size of 500. The two parameters of the PSO are (equation (12)): w=0.5,¢; = 0.5
and ¢, = 0.5. The computation stops when the improvement of the value is less than 10°.

The binomial model is Cox-Ross-Rubinstein (1979) and is performed with 100 time

steps. The performance of PSO is provided in Table 4.

23

Table 2: Put option on Min/Max

The option payoff is max{K — max{S;,S,},0}

asset 1 asset 2

price 40 40
volatility 0.2 0.3
strike 35
time to maturity 712
risk free rate 0.03
correlation 0.5

Min/Max Option

European/American
BS 0.1948
binomial (CCY) 0.1884| 0.2557
Longstaff-Schwartz 0.1974) 0.2386
PSO-flat 0.1974| 0.2318
PSO-linear 0.1974| 0.2349
PSO-exponential 0.1974| 0.2361
PSO-piece-wise 0.1974| 0.2426
PSO-piece-wise(restricted)| 0.1974| 0.2352

Note: Monte Carlo results are based upon 10,000 paths, 100 time steps. The Longstaft-
Schwartz model (1991) uses a quadratic function in the regression. The PSO uses a
swarm size of 500. The two parameters of the PSO are (equation (12)): w=0.5,¢; = 0.5
and ¢, = 0.5. The computation stops when the improvement of the value is less than 10°°.
The binomial model is Chen-Chung-Yang (2002) and is performed with 100 time steps.
The performance of PSO is provided in Table 4.

24

Table 3: Path-dependent Asian Option

Payoffs max{K — S(7},T3),0}
= 1 n
where § = ZZ S,

j=1 J

Average Option

European/American
Longstaff-Schwartz 9.0109| 9.2415
PSO-flat 9.0109| 9.0117
PSO-linear 9.0109| 9.0117
PSO-exponential 9.0109] 9.0117
PSO-piece-wise 9.0109| 9.1925
PSO-piece-wise(restricted)| 9.0109] 9.1912

Note: Monte Carlo results are based upon 10,000 paths, 100 time steps. The Longstaft-
Schwartz model (1991) uses a quadratic function in the regression. The PSO uses a
swarm size of 500. The two parameters of the PSO are (equation (12)): w=0.5,¢;=0.5
and ¢, = 0.5. The computation stops when the improvement of the value is less than 10,
The binomial model is performed with 100 time steps. The performance of PSO is
provided in Table 4.

25

Table 4: Performance of PSO
(A) Put Option (1-asset)

Value ()
Seed 69905 80302 8249 26795 967 12128 81917 26488 3143 41675 Mean Max Min
Swarm Size
50 10.0368 9.7001 10.2470 10.1109 9.8039 10.1586 10.2712 10.5006 9.3164 9.4168 9.9562 10.5006 9.3164
100 10.0388 10.4329 9.2902 10.0156 10.5760 10.2345 10.5512 10.2584 9.8404 9.7683 10.1006 10.5760 9.2902
200 10.0744 9.7776 9.8149 10.5076 10.3039 10.6329 10.0999 10.7066 10.5164 9.8415 10.2276 10.7066 9.7776
500 10.5811 10.0202 10.5791 10.7459 10.7074 10.5237 10.4950 10.6977 10.7714 10.4127 10.5534 10.7714 10.0202

Computation Time (seconds)
Seed 69905 80302 8249 26795 967 12128 81917 26488 3143 41675 Mean Max Min
Swarm Size
50 19.6829 18.8187 18.8304 18.5710 18.3021 18.9599 18.8633 19.2746 18.8743 19.0645 18.9242 19.6829 18.3022
100 37.3748 36.9218 38.1397 36.7419 37.8845 37.1103 37.9693 37.1976 37.7589 37.7402 37.4839 38.1397 36.7419
200 75.1492 75.1461 77.2891 75.0346 74.6849 75.8589 76.6391 73.8078 76.6213 73.0110 75.3242 77.2891 73.0110
500 186.9830 185.8080 178.4430 182.4440 186.9290 185.8810 184.2930 183.5500 185.3380 178.0620 183.7732 186.9831 178.0624

26

(B) Min/Max Option (2-asset)

Value ()
Seed 69905 80302 8249 26795 967 12128 81917 26488 3143 41675 Mean Max Min
Swarm Size
50 0.2268 0.2358 0.2350 0.2368 0.2374 0.2347 0.2383 0.2393 0.2257 0.2353 0.2345 0.2393 0.2257
100 0.2334 0.2344 0.2398 0.2379 0.2364 0.2342 0.2342 0.2381 0.2384 0.2382 0.2365 0.2398 0.2334
200 0.2383 0.2380 0.2368 0.2315 0.2374 0.2335 0.2338 0.2387 0.2409 0.2320 0.2361 0.2409 0.2315
500 0.2359 0.2342 0.2366 0.2412 0.2413 0.2426 0.2414 0.2392 0.2416 0.2362 0.2390 0.2426 0.2342

Computation Time (seconds)
Seed 69905 80302 8249 26795 967 12128 81917 26488 3143 41675 Mean Max Min

Swarm Size
50 107312 20.6707 20.5986 20.5549 20.7069 16.1223 20.6824 20.6649 6.97153 20.7073 17.8411 20.7073 6.9715
100 41.1003 44.5624 45.634 41.0282 41.201 40.7916 41.1614 40.6881 251049 46.8837 40.8156 46.8837 25.1049
200 g7.6694 73.1363 78.1617 83.9155 86.7515 73.6531 81.172 86.2793 81.5649 40.9068 77.3211 87.6694 40.9068
500 203568 202.788 219.504 229.666 222.398 202.404 210.968 203.651 207.758 202.525 210.5230 229.6660 202.4040

Note: The two parameters of the PSO are (equation (12)): w=0.5, ¢; = 0.5 and ¢, = 0.5. The computation stops when the improvement of the
value is less than 10°. The Longstaff-Schwartz value is (Table 2) 0.2386. The binomial model value is (Table 2) 0.2557.

27

Figure 1

Three major parameters in a swarm.

Separation Alignment

Cohesion

4 X

el

Sources: https://en.wikipedia.org/wiki/Boids

28

Figure 2

-2

-4

-2

-2

-4

-2

-2

-2

29

.
afe . .
. e .
& . .
2l® e ®e e =
. ®e Dl .
* e
[' o o
. = . o%
9 L - s
-2 .
.o i)
s . o0
-4
.
& 2 0 2
.
4 . ., *
.
s .
2 s . -
'." .'... -
o, 2 ¢ &%
o] * L)
. o,
. et ¢ * (]
. ° HE)
-2 . * 0%
.
” .
& 2 [2
& .
. .
.
2 R A o
.
L) i |
.
[e
g
. .
5 Zie v .
[T
” .« *
%) o 2
3 .
.. .
2 "3 '....o
£ e
Q
[
=
. ® .
2 -~ 7 v o,
. . A
. .
& 2 [2

For an animated demonstration, see for example,
https://en.wikipedia.org/wiki/Particle swarm optimization#/media/File:ParticleSwarmAr

rowsAnimation.gif

. . %
‘e ..0...°. = .
. . oy N B o.
- %
LTy C N
.0
T
® . .« ®
‘ . ..0 883 L
=5 .o . 0" "
4 -2 2 1
.
oo . e
ooo: %
o
pory | KY
. . .
e ° o 'a"‘:.:.. .
3 L
. .
) -2 2 1
.
as ¢,
. = &
io 5 .
* .
.
:'.: PN 4
f .
-) 2 3
.
o 8 .
0..: o’%..
- .
e el
- .
) -2 2 1

175

150

125

100

075

050

025

30

Figure 3

Various Exercise Boundaries.

100 -
95
90 -
s A flat
80 | linear

o exponential
75 4 &

DITENER N V A A A T A N e piece-w ise
70 A . .

piece-w ise(mono)
65 1 binomial
60 -
55 |
50 T T I T T T I T T I T T T I T T I T T T T i T T I T T T T T T T I T AT T T T T I T i r T i T i r i i rrrrrrrrl
~— ©

81
86
91
96
101

31

VIIl. Appendix

1. American Call Option on Min/Max Will Never be Early
Exercised

Jansen’s Inequality states that ff f(z) is a convex function then f(E[z]) < E[f(z)] and vice versa.
Hence the American call option will never be early exercised. It is wellknown that the simple call
option’s continuation value is always greater than the exercise value:
e "M Elmax{S; — K,0}] > ¢ " max{E[S;] — K,0}

= max{e "M E[S;] — e "MK, 0}

> max{Sy_; — K,0}

Also the exchange option will never be exercised.
¢ " Elmax{Syy — Sy7,0}] > ¢ max{E[S, 7] — E[Sr],0}
= max{e "M B[Sy 7] — e "Y' E[Sy1],0}

= max{S; 71 — Syr_1,0}

Finally the min/max call option will never be exercised:

e Blmax{max{S 1, Sy 7} — K,0}] > ¢ max{E[max{S, , 9, 7}] — K, 0}
¢~ max{max{E[S, 7], E[Syr} — K,0}
> max{max{S;r_1,%r_1} — K,0}

v

2. Option on Min/Max

The closedform solution to the put option on min/max can be derived from the call option
solutions provided by Stulz (1988). Our objective is to derive the closedform solution to
P = max{K — max{S},5,},0} from the Stulz solution to C' = max{max{S;,5,} — K,0}. The

following payoff analysis demonstrates that:

C = max{max{5;,5} — K,0} | P = max{K — max{9,,5,},0} | C — P

S1 > 5 max{S; — K,0} max{K — 5,0} S — K

S1 < Sy max{S, — K,0} max{K — S,,0} Sy — K
max{max{S5|, 5} — K,0} max{K — max{5;,95,},0} max{S5;,59} — K

As a result, we have:

32

C(T) = P(T) = max{5y(T),5(T)} - K
= S,(T) + max{$,(T) — S,(T),0} — K

Given that this is a European option, we can discount it back to today and have:
P(1) = C(t) = S(t) — X(S1,8) + ¢ "7 VK
where X(S;,5,) is the standard exchange option. Stulz presents the call option on max/max as
follows:
max{max{S, 5} — K,0} = Cps(S)) + Cps(S2) — M(51,5,)
where S; and S, are the two underlying assets, Cpq(-) is the BlackScholes call option on a given
underlying asset, and M(S;,S,) is given as:
M(Sl752) = max{min{Sh SQ} — K, 0}

= S\ Ny(ay,bi;py) + SoNo(ag,by; pp) — Ke "INy (g1, 9o, p1a)

where

_ 11151 - lnSQ - 1/20'2(T _t)

b oNT —t
b2 _ 11152 — 11151 — 1/20'2(T — t)
N oNT —t

~ InS; —InK + (r — %o3(T — t))
g]_ (024 T —1t

_ P1201 — 09
) ==

o
_ P10y — 0y
P2 =
o
0® = of + 03 — 2p10109

and p,, is the correlation between S, and S, .
3. lllustration of the Chen-Chung-Yang Model

Here we illustrate how to implement the Chen-Chung-Yang model to evaluate American-style
derivatives on multiple assets. A geometrical demonstration is provided for the two-asset case as

follows:

33

A

Figure A: A Two-asset Chen-Chung-Yang Model

In the above demonstration, as we travel along the lattice forward, the number of nodes increases

(‘H)QM where ¢ = 1,2,---,n as the time steps of the

in the following geometric series: j =
lattice. The general case for m number of assets is: j = -LIIJ" (i + k) as in the following

table:*

num of m=1 m=2 m=3 m=m
assets

i i i j i

0 1 1 1 1

1 2 3 4 5

2 3 6 10 15

3 4 10 20 35

n n+1 (n+1)2(!n+2) (n+1)(71,;r!2)(n+3) H;:l:;n(!7l+k>

To implement the model as described in Figure A, we index the states as follows (where the first

subscript is time and the second is state):

To1 Y21
Tog Y22
To- .

T Y 23 Ya3
X

T 24 Y24

[5301 ym] 12 Y12

T

Ti3 Y13 2% Y25
Lo Y26

3% Note that even in the simplest independence case, the number of nodes at the time step 7 is (n+1)™.

For example, for three periods, a four-asset model has 256 nodes as opposed to 35 nodes in the CCY
model.

34

In a general case where we move from any time ¢ to time i + 1, state j; will become

< Josj1s 52 > as follows:

(Z+17]0)
(i) — (i +1,5)
(Z+17]2)
where
Jo=17J
. i(i 4+ 1)
= k
Wil 5 +
b=5+1

As ¢ =1~ n, we have:

]-_{(z'Ql)iJrl} ~{z'(i;rl)}

k=k+1 (1~14)

