
Global Risk Management

Ren-Raw Chen, Ph.D.
© Draft date February 7, 2023



i

Library of Congress Control Number 1234567890
Chen, Ren-Raw Global Financial Risk Management – A Quantitative Guide /
Ren-Raw Chen
ISBN 1234567890123

All rights reserved. This book, or parts thereof, may not be reproduced in any form
or by any means, electronic or mechanical, including photocopying, recording or
any information storage and retrieval system now known or to be invented, without
written permission from the Publisher.



ii



Contents

Contents i

Preface xv

Acknowledgments xvii

I Introduction 1

1 Math Primer 3

1.1 Continuous and Discrete Returns . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Average Return . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Annualization and Deannualization . . . . . . . . . . . . . . . 5

1.2 Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Addition/subtraction . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Multiplication/Division . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.4 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.2 Stochastic Process . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.3 dS and ∆S . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

iii



iv CONTENTS

1.4.4 Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . 9

2 Overview 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Business risks versus financial risks . . . . . . . . . . . . . . . 13

2.1.2 Financial risks . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Ways to measure and manage these risks . . . . . . . . . . . . 17

2.2 Review of Simple Hedging . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Market Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Value at Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Stress Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Credit Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Sources of credit risk . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Credit risk metrics . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Liquidity Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Operational Risk (Wiki) . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 Risk Management Modeling Building Blocks . . . . . . . . . . . . . . 27

2.7.1 Basic Models by Asset Class . . . . . . . . . . . . . . . . . . . 27

2.7.2 Risk Management Tools available . . . . . . . . . . . . . . . . 28

2.8 Basel Accords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8.1 Basel I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8.2 Basel II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8.3 Basel III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.9 Types of Capital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.9.1 Regulatory capital . . . . . . . . . . . . . . . . . . . . . . . . 34

2.9.2 Economic capital . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.9.3 Risk-adjusted return on capital (RAROC) . . . . . . . . . . . 35

2.10 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.10.1 Report on Excite@Home’s bankruptcy . . . . . . . . . . . . . 36



CONTENTS v

3 Hedging 37

3.1 What Is Hedging? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Static versus Dynamic Hedging . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Static Hedging . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Dynamic Hedging . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.3 Other Hedging Examples . . . . . . . . . . . . . . . . . . . . . 41

II Market Risk 43

4 Value At Risk 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.2 Limitations of VaR . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.3 Stress Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.4 Risk Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.5 External Disclosure . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.6 The Basel Accord II . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.7 Capital Regulation . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Major Types of VaR . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Historical VaR . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Parametric VaR . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.3 Factor Model Based VaR . . . . . . . . . . . . . . . . . . . . . 65

4.3 Marginal and Component VaR . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Forward Looking VaR . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Fixed Income Risk Management 81

5.1 Interest Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.1 US Treasuries . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



vi CONTENTS

5.1.2 LIBOR (London Interbank Offer Rate) . . . . . . . . . . . . . 83

5.1.3 SOFR (Secured Overnight Financing Rate) . . . . . . . . . . . 84

5.1.4 SONIA (Sterling Overnight Interbank Average) . . . . . . . . 84

5.1.5 EONIA (Euro Overnight Index Average) and ¿STR (Euro
Short-Term Rate) . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.6 OIS (Overnight Index Swap) . . . . . . . . . . . . . . . . . . . 85

5.1.7 Agencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Interest Rate Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Forward Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1 Curve Construction . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.2 Forward Expectation . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.3 A Simple Concept . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.4 More Formal Mathematics . . . . . . . . . . . . . . . . . . . . 96

5.4 IR Risk Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.1 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.2 Duration (delta) and Convexity (gamma) . . . . . . . . . . . . 100

5.4.3 IR Swaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 FX Risk Management . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5.1 FX Forward and Interest Rate Parity . . . . . . . . . . . . . . 107

5.5.2 FX Swaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5.3 Quanto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5.4 FX Option Formula . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5.5 FX Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5.6 FX models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.6 Total Return Swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.7 Residential Mortgage . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.7.1 Refinance Modeling . . . . . . . . . . . . . . . . . . . . . . . . 117

5.7.2 Prepayment Modeling . . . . . . . . . . . . . . . . . . . . . . 118

5.7.3 Default Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.7.4 OAS – Option Adjusted Spread . . . . . . . . . . . . . . . . . 120



CONTENTS vii

5.8 Combined with Other Assets . . . . . . . . . . . . . . . . . . . . . . . 121

5.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.9.1 FX Swap Curve and Fixed-Fixed FX Swaps . . . . . . . . . . 122

5.9.2 Commodities and Real Assets . . . . . . . . . . . . . . . . . . 122

6 Beyond VaR 129

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Sortino Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2.1 Various Performance Indices . . . . . . . . . . . . . . . . . . . 130

6.2.2 Sortino Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2.3 Omega Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3 Maximum Drawdown . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.4 P&L Attribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.4.1 Taylor’s Series Expansion and Explanatory Risk Factors . . . 135

6.4.2 Pictorial P&L Attribution . . . . . . . . . . . . . . . . . . . . 137

6.4.3 How Does It Work Empirically . . . . . . . . . . . . . . . . . 138

7 Value Adjustment 139

7.1 VA – Value Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2 Various VAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2.1 CVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2.2 FVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2.3 KVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2.4 XVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8 Parameter Estimation 141

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.2 Regression estimation for the Vasicek model . . . . . . . . . . . . . . 141

8.3 The Cox-Ingersoll-Ross Model . . . . . . . . . . . . . . . . . . . . . . 145

8.4 The Ho-Lee Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.5 More sophisticated econometric methods . . . . . . . . . . . . . . . . 148



viii CONTENTS

9 Simulation 149

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.2 Random Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.2.1 Normal/log Normal . . . . . . . . . . . . . . . . . . . . . . . . 149

9.2.2 Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.2.3 Non-central Chi-square . . . . . . . . . . . . . . . . . . . . . . 150

9.2.4 Multi-variate Gaussian . . . . . . . . . . . . . . . . . . . . . . 152

9.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.3.1 Black-Scholes . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.3.2 Two stocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

9.3.3 Stock with random interest rates . . . . . . . . . . . . . . . . 157

9.4 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

10 Volatility and Extreme Value Theorem 161

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

10.2 Implied Volatility and Risk-Neutral Density . . . . . . . . . . . . . . 162

10.3 GARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

10.4 EWMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

10.5 Extreme Value Theory (EVT) . . . . . . . . . . . . . . . . . . . . . . 164

10.5.1 Estimating Tails of Distributions . . . . . . . . . . . . . . . . 166

10.5.2 Estimating VaR . . . . . . . . . . . . . . . . . . . . . . . . . . 166

10.5.3 Estimating ES . . . . . . . . . . . . . . . . . . . . . . . . . . 167

11 Model Risk 169

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

III Credit Risk 171

12 Introduction 173



CONTENTS ix

12.1 Sources of Credit Risk . . . . . . . . . . . . . . . . . . . . . . . . . . 173

12.2 Types of Credit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

12.2.1 Corporates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

12.2.2 Sovereigns ($ denominated) . . . . . . . . . . . . . . . . . . . 176

12.2.3 Munis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

12.2.4 Commercial Mortgages . . . . . . . . . . . . . . . . . . . . . . 178

12.2.5 Retail Credit . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

12.3 Economic Default and Liquidity Default . . . . . . . . . . . . . . . . 180

12.4 Liquidation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

12.5 Recovery (or Severity) and Loss Given Default (LGD) . . . . . . . . . 180

12.6 Probability of Default (PD) . . . . . . . . . . . . . . . . . . . . . . . 180

13 Reduced-Form Models 183

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

13.2 Survival Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

13.3 Zero Recovery Risky Bond . . . . . . . . . . . . . . . . . . . . . . . . 185

13.3.1 Risky Discount Factor . . . . . . . . . . . . . . . . . . . . . . 185

13.3.2 Zero Recovery Risky Bond . . . . . . . . . . . . . . . . . . . . 185

13.4 Positive Recovery Risky Bond . . . . . . . . . . . . . . . . . . . . . . 185

13.4.1 Recovery of Face Value – The Jarrow-Turnbull Model . . . . . 186

13.4.2 Recovery of Market Value – The Duffie-Singleton Model . . . 187

13.5 Credit Default Swap . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

13.6 Restructuring Definitions by ISDA . . . . . . . . . . . . . . . . . . . 192

13.7 Why Has the CDS Market Developed So Rapidly? . . . . . . . . . . . 193

13.8 Relationship between Default Probabilities and CDS Spreads – Use
of the Jarrow-Turnbull Model . . . . . . . . . . . . . . . . . . . . . . 194

13.9 Back-of-the-envelope Formula . . . . . . . . . . . . . . . . . . . . . . 195

13.10Bootstrapping (Curve Cooking) . . . . . . . . . . . . . . . . . . . . . 196

13.11Poisson Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

13.12Simple Demonstration (annual frequency) . . . . . . . . . . . . . . . 196



x CONTENTS

13.13In Reality (quarterly frequency) . . . . . . . . . . . . . . . . . . . . . 201

14 Corporate Finance Approach of Modeling Default 203

14.1 Merton Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

14.2 KMV Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

14.3 The Geske Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

14.4 The Leland-Toft Model . . . . . . . . . . . . . . . . . . . . . . . . . . 213

14.5 Hybrid Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

15 Credit Portfolio and Credit Correlation 219

15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

15.2 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

15.3 Default Baskets (First to default) . . . . . . . . . . . . . . . . . . . . 223

15.4 Copula and CDO Pricing . . . . . . . . . . . . . . . . . . . . . . . . . 225

15.4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

15.4.2 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

15.4.3 Factor Copula . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

15.4.4 The Vasicek Model . . . . . . . . . . . . . . . . . . . . . . . . 230

15.4.5 Fourier Inversion and Recursive Algorithm . . . . . . . . . . . 231

15.4.6 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

15.5 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 233

15.5.1 Default Basket . . . . . . . . . . . . . . . . . . . . . . . . . . 233

15.5.2 CDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

16 Risk Management for Credit Risk 235

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

16.2 Unexpected Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

16.3 Term Structure of Credit VaR . . . . . . . . . . . . . . . . . . . . . . 236

16.4 CVA – Credit Value Adjustment . . . . . . . . . . . . . . . . . . . . . 237

16.4.1 Exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

16.4.2 CCDS (contingent credit default swap) . . . . . . . . . . . . . 243



CONTENTS xi

16.4.3 CVA Hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

16.4.4 CSA (credit support annex) . . . . . . . . . . . . . . . . . . . 244

16.4.5 Counterparty Credit Risk (CCR) as Market Risk . . . . . . . 246

16.4.6 Counterparty Credit Risk (CCR) as Credit Risk . . . . . . . . 247

16.4.7 Counterparty Credit Risk (CCR) Capital under Basel II & III 247

16.4.8 CVA Capital Charge and Basel III . . . . . . . . . . . . . . . 247

16.4.9 Advanced CVA Capital Charge . . . . . . . . . . . . . . . . . 248

16.5 Risky Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

16.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

16.6.1 Poisson Process of Defaults . . . . . . . . . . . . . . . . . . . 250

16.6.2 Equation 13.23 . . . . . . . . . . . . . . . . . . . . . . . . . . 253

IV Liquidity Risk 255

17 Introduction 257

17.1 What is Liquidity? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

17.2 Accounting Liquidity . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

17.3 Basel III Liquidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

17.4 Liquidity Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

17.5 Understanding Liquidity and Liquidity Risk . . . . . . . . . . . . . . 259

17.6 How to Measure Liquidity (taken from old chapter 17) . . . . . . . . 259

17.7 Liquidity and Liquidity Risk . . . . . . . . . . . . . . . . . . . . . . . 260

17.8 Liquidity and Credit Risks are Highly Connected . . . . . . . . . . . 260

18 Liquidity Quantification 263

18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

18.1.1 Some Liquidity Squeeze Examples . . . . . . . . . . . . . . . . 264

18.2 How to Measure Liquidity Risk . . . . . . . . . . . . . . . . . . . . . 265

18.2.1 Liquidity Discount as a Put Option . . . . . . . . . . . . . . . 265

18.2.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268



xii CONTENTS

18.3 Some Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

18.4 Liquidity Premium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

19 Funding Value Adjustment (and XVA) 287

19.1 FVA in a Netshell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

19.1.1 What is FVA? . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

19.1.2 FVA for Collateralized Trades . . . . . . . . . . . . . . . . . . 288

19.1.3 FVA for Collateralized Trades . . . . . . . . . . . . . . . . . . 289

19.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

19.2 Modeling Risky Funding . . . . . . . . . . . . . . . . . . . . . . . . . 290

19.3 Notation and basic layout . . . . . . . . . . . . . . . . . . . . . . . . 291

19.4 Valuation of bullet loans . . . . . . . . . . . . . . . . . . . . . . . . . 293

19.4.1 The deal leg of a bullet loan . . . . . . . . . . . . . . . . . . . 293

19.4.2 The funding leg of a bullet loan . . . . . . . . . . . . . . . . . 294

19.4.3 An example when default times are independent . . . . . . . . 297

19.4.4 An example when default times are correlated . . . . . . . . . 299

19.5 Valuation of a general derivative contract . . . . . . . . . . . . . . . . 300

19.5.1 Valuation of the deal leg . . . . . . . . . . . . . . . . . . . . . 300

19.5.2 Valuation of the funding leg . . . . . . . . . . . . . . . . . . . 301

19.6 Liquidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

19.7 Summary and Future Research . . . . . . . . . . . . . . . . . . . . . 304

19.8 Collateral Management . . . . . . . . . . . . . . . . . . . . . . . . . . 304

19.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

19.9.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . 306

19.9.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . 307

19.10XVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

20 A Story about the Financial Crisis – A Case Study of Lehman
Brothers 311

20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

20.2 Richard (Dick) Fuld . . . . . . . . . . . . . . . . . . . . . . . . . . . 312



CONTENTS xiii

20.3 Lehman Time Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

20.4 Lehman Default Probability . . . . . . . . . . . . . . . . . . . . . . . 315

20.5 Lehman Liquidity Problems . . . . . . . . . . . . . . . . . . . . . . . 318

20.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

20.6.1 Lehman Timeline . . . . . . . . . . . . . . . . . . . . . . . . . 318

V Others 323

21 Operational Risk Management 325

21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

21.2 Basel II event type categories . . . . . . . . . . . . . . . . . . . . . . 325

21.3 Methods of Operational Risk Management . . . . . . . . . . . . . . . 326

21.3.1 Basic Indicator Approach . . . . . . . . . . . . . . . . . . . . 327

21.3.2 Standardized Approach . . . . . . . . . . . . . . . . . . . . . . 327

21.3.3 Internal Measurement Approach . . . . . . . . . . . . . . . . . 329

22 Fair Value Accounting 335

22.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

22.2 FASB No. 133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

22.2.1 FASB No. 157 . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

22.2.2 FASB No. 159 . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

22.2.3 FASB No. 161 . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

22.3 CECL versus ALLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

22.4 Black-Scholes as a cost method . . . . . . . . . . . . . . . . . . . . . 338

23 Types of Capital 339

23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

23.2 Regulatory Capital (wiki) . . . . . . . . . . . . . . . . . . . . . . . . 339

23.2.1 Tier 1 capital . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

23.2.2 Tier 2 (supplementary) capital . . . . . . . . . . . . . . . . . . 340



xiv CONTENTS

23.2.3 Common capital ratios . . . . . . . . . . . . . . . . . . . . . . 341

23.2.4 Capital adequacy ratio . . . . . . . . . . . . . . . . . . . . . . 341

23.3 Economic Capital (Wiki) . . . . . . . . . . . . . . . . . . . . . . . . . 344

23.3.1 E&Y Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

23.4 Risk Adjusted Return On Capital (RAROC) . . . . . . . . . . . . . . 349

23.4.1 Basic formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

23.5 David Chow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

23.5.1 Gap Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

24 Stress Testing, DFAST, CCAR, and CVaR 351

24.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

24.2 Stress Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

24.2.1 Historical Stress Testing . . . . . . . . . . . . . . . . . . . . . 351

24.2.2 Parametric Stress Testing . . . . . . . . . . . . . . . . . . . . 352

24.2.3 Conditional Stress Testing . . . . . . . . . . . . . . . . . . . . 352

24.2.4 Reverse Stress Testing . . . . . . . . . . . . . . . . . . . . . . 352

24.2.5 A Simple Demonstration . . . . . . . . . . . . . . . . . . . . . 353

24.3 Comprehensive Capital Analysis and Review (CCAR) . . . . . . . . . 354

24.4 Dodd-Frank Act Stress Testing (DFAST) . . . . . . . . . . . . . . . . 355

24.5 Credit VaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

Index 357



Preface

I have done risk management research for more than two decades. In fact, my first
industry work was at JP Morgan (15 Broad Street – the legendary building) in
February of 1992 when Mr. Paul Morrison hired me to validate models used by JP
Morgan at the time. Since then I had been mostly in the front office (including
1997 ∼ 1999 at Lehman as the desk quant in the Structured Credit Desk where Mr.
Ken Ulmazaki was the head). In January of 2005, I joined Morgan Stanley Model
Review Group and have been back on risk management till now.

In the summer of 2012, I was asked to teach this course for a group of talented
EMBA students from the Peking University (our first MSGF program) and I have
been gradually collecting my past notes. That is how this book came to existence.
I am extremely grateful to all the past students who took this course from me
and hence discovered the numerous mistakes in the original drafts. I particularly
would like to thank the 2014 MSGF and 2015 MSQF classes who had made valuable
suggestions and corrections to this book.

Ren-Raw Chen

New York, New York, April, 2016

xv



xvi CONTENTS



Acknowledgments

I first need to thank my wife, Hsing-Yao, for her support for all these years. Without
her taking care of all the work at home, I would not have achieved not only this
book, but any of my research. Her unconditional love and support is the main reason
I could accomplish anything at all.

I must thank Dr. Phelim Boyle and Dr. Louis Scott for their caring and sup-
port for all these years. Without their patience, encouragement, and kind guidance,
this book would never be possible.

As mentioned in Preface, former students from MSQF and MSGF have helped
in many tremendous ways in improving coverage, substances, and accuracy in this
book. In particular, I would like to thank Yingqi Tian and Zhifang Sun (2015
MSQF) who have discovered important mistakes in earlier manuscripts.

xvii



Part I

Introduction





Chapter 1

Math Primer

1.1 Continuous and Discrete Returns

It is quite conventional (almost universal) to use returns to measure the performance
(and risks) of a financial investment. Yet, no consensus has been reached on how
they are calculated.

1.1.1 Definition

A discrete return is defined as:

rt =
Pt+1 − Pt

Pt

(1.1)

where P is price of an asset and t is time. Pt+1 and Pt are two consecutive prices
(could be daily, weekly, monthly, etc.)

A continuous return is defined as:

rt = ln
Pt+1

Pt

= lnPt+1 − lnPt (1.2)

The two returns are very close to each other when the prices are observed
frequently (e.g. daily) and start to deviate from each other over low frequencies
(e.g. annually). Note that if the two consecutive dates are close to each other, like
daily, then equation (1.1) can be approximated as dP/P which is identical to d lnP ,
which is the definition of the continuous return by equation (1.2).

For example, we take the FaceBook stock:
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FB Returns
Date Price Disc. Cont.

12/23/2008 26.93
12/25/2008 26.51 -0.0156 -0.0157
12/26/2008 26.05 -0.0174 -0.0175
12/27/2008 25.91 -0.0054 -0.0054
12/30/2008 26.62 0.0274 0.0270

1.1.2 Average Return

It is common that we take average returns. We often compute returns of a certain
frequency (e.g. daily) and store them in a database. Then we compute an average
return over a particular time horizon (e.g. one year). In such a case, we need to
know how an average is taken. There are two ways of “taking an average”:

� geometrically and

� arithmetically

Theoretically, a geometric average is matched with discrete returns and an
arithmetic average is matched with continuous returns, as demonstrated in the fol-
lowing equations:

r̄ = n

√(
Pt+1

Pt

)(
Pt+2

Pt+1

)
· · ·
(

Pt+n

Pt+(n−1)

)
− 1

= n

√(
Pt+n

Pt

)
− 1

and

r̄ =
ln
(

Pt+1

Pt

)
+ ln

(
Pt+2

Pt+1

)
· · ·+ ln

(
Pt+n

Pt+(n−1)

)
n

=
1

n
ln

(
Pt+n

Pt

)
In terms of FB, the average discrete return is 4

√
26.62/26.51 − 1 = −0.00289

and the average continuous return is ln[26.62/26.51]/4 = 0.002289. We see that the
two averages are so close to each other (indistinguishable at the 6th decimal place).
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1.1.3 Annualization and Deannualization

Usually returns are reported in a per annum term, known as annualization. For
example, The daily return of FB between 12/26/2008 and 12/27/2008 is −0.0054.
This one-day return needs to be “annualized” into a per annum return. Given that
there are approximately 252 trading days in a year, this number is multiplied by
252 to be −1.36 or −136%.

Reverse (deannualization) is used sometimes when we need raw returns. For
example a 3-month return of 12% really is 3% for three months. Since someone else
did the annualization, you must reverse it to get the raw return for the 3 months.

Standard deviations are annualized and deannualized as well. Instead of mul-
tiplying (and dividing) by the same adjustment factor (e.g. 252 for daily), it is
multiplied by the square root of the factor (e.g.

√
252). In other words, 1% daily

standard deviation is translated into 15.87% per annum standard deviation.

1.2 Linear Algebra

Matrix operations are important in performing calculations for risk management, as
we are dealing with portfolios of large numbers of assets. Furthermore, Microsoft
Excel now is equipped with matrix operation functions (via Ctrl-Shft-Enter as op-
posed to Enter) that can be easily matched with mathematical expressions. As a
result, using matrices is extremely convenient and efficient.

Throughout this book, a matrix is symbolized as a bold non-italic letter. Usu-
ally a subscript is given as the dimension (row by column) of the matrix. Formally,
we define Am×n as an m-row, n-column rectangular matrix. For example,

[ ]
2×3

is a matrix with 2 rows and 3 columns.

1.2.1 Addition/subtraction

Two matrices can be summed or subtracted only if they have identical dimensions.
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1.2.2 Multiplication/Division

Two matrices can be multiplied only if the second subscript (i.e. column) of the
first matrix matches with the first subscript (i.e. row) of the second matrix.

 
3×2

[ ]
2×4

=

 
3×4

and the resulting matrix has the dimension of the first subscript of the first
matrix (row) and the second subscript of the second matrix, as the example above
shows.

The rule of multiplication is the ith row of the first matrix “sumproduct” by
the jth column of the second matrix, as demonstrated below:

1 2 1 3 5 7 5 11 17 23

3 4 2 4 6 8 11 25 39 53

6 5 16 38 60 82

=××××

Figure 1.1: Matrix Multiplication

5 = 1× 1 + 2× 2.

Divisions are performed via matrix inversion. In other words, Am×n ÷ B =
Am×n ×B−1. Given that only square matrices can be inversed, matrix Bn×n must
be n rows and n columns.

1.2.3 Scaling

Any matrix can be scaled up or down by multiplying by a real number. When a
matrix is multiplied by a real number, it is identical to each element of the matrix
being multiplied by the real number.

1.2.4 Power

Matrices can be taken to a power, just like any real number. However, unlike
scaling, it is NOT equal to each element raising to the power. Since, we do not use
this function often, we choose to ignore it.
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1.3 Calculus

Sensitivities of prices relative to risk factors are defined as partial derivatives. P&L
analyses are leveraged upon total derivatives. As a result, some basic knowledge of
calculus is helpful in understanding risk.

Under a single variable, partial derivatives are the same as total derivatives,
as shown below:

y = f(x) = 3x2 + 2x+ 5

y′ =
dy

dx
= 6x+ 2

With two variables such as:

z = f(x, y) = 3x3 + 6y2 + 4x+ 2y + 5

partial derivatives and total derivatives are not the same. The partials (∂) are:

∂z

∂x
= 9x+ 4

∂z

∂y
= 12y + 2

The total derivative of z is (via Taylor’s series expansion):

dz =
∂z

∂x
dx+

∂z

∂y
dy

In order to see the impact from x and y changes, we can divide dz by dx or
dy, as follows:

dz

dx
=

∂z

∂x
+

∂z

∂y

dy

dx
= 9x+ 4 + (12y + 2)

dy

dx
dz

dy
=

∂z

∂x

dx

dy
+

∂z

∂y
= (9x+ 4)

dx

dy
+ (12y + 2)

where we can see the interaction between x and y. If x and y are unrelated (dx/dy =
0 and vice versa), then totals equal partials.

Partial derivatives measure sensitivities of the price a financial asset (z) with
respective to risk factors (x and y). That is, how much is the price movement if one
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risk factor moves by a little while all else factors are held constant (usually 1 basis
point, known as DV01 or PV01).

Total derivatives measure price movements when all risk factors are consid-
ered. As shown above, it needs the result of partial derivatives (i.e. Taylor’s series
expansion). Both risk factors (x and y) move by a little (1 basis point) and together
is the total impact of price movement. Now we can regard dz and price change. In
risk management, we try to explain why and how a price is moved up or down (i.e.
price change).

Either total derivatives or partial derivatives measure sensitivities of the in-
terested variable (i.e. P&L) with respect to risk factors. In other words, either d
or ∂ represents a small change. In reality, as analytical derivatives (as those shown
above) do not exist, numerical derivatives are a must. For the sake of convenience,
d or ∂ is often replaced by ∆. For example ∆P represents the price change.

1.4 Statistics

Statistics are a crucial tool in modeling risk. As we shall see, the most common
way to view risk is an asset’s price fluctuation. And the easiest way to model
price fluctuation is the standard deviation of the price (or more precisely return)
distribution. A very common choice of the distribution is the normal (i.e. Gaussian)
distribution which is bell-shaped, symmetrical, and no upper or lower limits.

1.4.1 Random Variable

A distribution is applied to a “random variable” because a random variable is a
variable that we do not know its value. Hence, a set of (possible) values are assigned,
which form a distribution. In other words, a distribution is a collection of all possible
values of a random variable.

Usually we represent the price of a financial asset as a random variable as we
do not know its value in the future. For example, we do not know the price of the
IBM a week from now. Hence, we collect all possible values of the price and form
a distribution. Usually we say that the possible prices follow a normal (Gaussian)
distribution.
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1.4.2 Stochastic Process

A stochastic process is a collection of the same random variables over time. For
example, weekly future IBM stock prices form a stochastic process.

dS

S
= µdt+ σdW

where dW ∼ N(0, dt). If dt is a week, then it is equal to 1/52 ∼ 0.019230769. This
means that the weekly return of a stock is normally distributed with mean µ × dt
and variance σ2 × dt.

We shall see that this particular model (known as the Black-Scholes model)
has no knowledge of time (known as stationarity). That is, all weekly returns of the
stock no matter when have the same expected value and variance. While we can
regard dW just as a normal random variable, we shall note that W is named after
Norbert Wiener.1

1.4.3 dS and ∆S

Sometimes, we use ∆S for price change, as opposed to dS.

Sometimes, we just use ∆ for price change.

1.4.4 Normal Distribution

Normal (Gaussian) distribution is used dominantly. Hence it is essential that one
can obtain normal probabilities quickly. One method is to use the lookup table
which is embedded in many investments texts.

The table only runs to the second digit for the critical value. To obtain
a probability of, say, 1.2524, one usually uses a linear interpolation to approxi-
mate. Since 1.2524 is in between 1.25 and 1.26, we just take a weighted aver-
age of the two. N(1.25) = 0.8944 and N(1.26) = 0.8962. Hence, N(1.2524) =
(76%) × 0.8944 + (24%) × 0.8962 = 0.8948. The other is to use the Excel function
NormSDist(x) where x is the critical value in the Normal distribution. For example
NormSDist(1.2524) = 0.89478786.

The table usually presents results for only positive x. This is because Normal
is symmetrical and any negative x value can be flipped to acquire the positive value.

1Norbert Wiener (November 26, 1894 – March 18, 1964) was an American mathematician and
philosopher. He was Professor of Mathematics at MIT.
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Normal Probability Table

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

Example: N(1.25)=0.8944 and N(-1.25)=1-N(1.25)=0.1056

Figure 1.2: Normal Probability Table
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In other words, N(−x) = 1−N(x). For example, NormSDist(1.64485) is 0.95 and
NormSDist(-1.64485) is 1 − 0.95 = 0.05. Excel also provides an inverse function
to obtain the critical value once given the probability – NormSInv(p). For example
NormSInv(0.05) is −1.64485.

While NormSDist(x) gives the probability of a standard normal (mean 0 and
variance 1), NormDist(µ, σ2, x), on the other hand, gives a normal probability with
mean and variance.

Excel also provides various other statistical functions which are very helpful.
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Chapter 2

Overview

2.1 Introduction

Risk management is a crucial function in any corporation or business. And its
success relies on both scientific tools and human judgments. The former can be
standardized globally yet the latter depends on local cultures which vary from region
to region, religion to religion, and regulation to regulation.

Hence, the focus of this book is on the scientific side of risk management, the
part that can be globalized. Furthermore, while some of the tools introduced in
this book can be applied to all types of companies and businesses, they are mostly
used by financial companies. Examples given in this book are also mostly from the
financial sector.

2.1.1 Business risks versus financial risks

In general, there are two broad types of risk any company or business faces – the
business risk (the left-hand-side of the balance sheet) and the financial risk (the
right-hand-side of the balance sheet). The business risk refers to the uncertainty
in the investments of the company, i.e. the assets. The financial risk refers to
the uncertainty the debt capacity (in other words, the instability of its financing
capability). For a financial institution, its assets consist of pre-dominantly financial
securities and hence its business risk is also financial and the tools for managing the
financial risk apply to managing its assets.

For an industrial company (i.e. non-financial), the business risk and the fi-
nancial risk can be quite unrelated. Take Apple Inc. as an example, its assets are
all the manufacturing facilities and its top-notch scientists, engineers, and workers.
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Its business risk comes mainly from it can maintain its superiority in the cell phone
and tablet businesses. The way to manage this risk is to keep innovating and being
the dominant leader in these businesses. Hence the tools of managing the financial
risk have absolutely no connection to how it manages its business risk. In fact, in
the case of Apple Inc., the business risk is so important that it makes the financial
risk entirely trivial.

But history has taught us that financial risk could be crucial for industrial
companies. In 2001, a company named Excite@Home filed bankruptcy due to its
failure to fulfill a convertible bond obligation of near $30 million. During the internet
bubble (late 1990’s to early 2000’s), many internet companies issued convertible
bonds as a new financial innovative tool to finance their large capital investments.
Convertible bonds were popular then because mutual funds and especially pension
funds can purchase (these companies cannot purchase stocks not listed in S&P 500
list of constituents) and benefit from their fast growth. Excite@Home was majority
owned by AT&T (over 30%) and was the sole provider of internet services (combined
with Comcast) in the tri-state area. It was perceived that Excite@Home to be one of
the major internet services providers (especially because it was backed by AT&T).
Hence, Excite@Home’s bankruptcy was strictly a liquidity default (lack of cash) and
not an economic default. In other words, Excite@Home was one typical example of
how a successful industry company can bankruptcy due to bad management of its
financial risk.

While the two sides of a company’s risk must both be managed well to guar-
antee the company’s survival, it has not been possible to integrate these two sides
well until now. The new concept of enterprise risk has emerged recently that both
business and financial risks are connected and need to be managed in an integrated
manner. ERP (Enterprise Resource Planning) as a result becomes a standard for
companies to follow. However, the focus of this book is the tools for financial risk
management. Yet, as mentioned above, these tools can also be applied to many
aspects of the business risk of the company. In fact, the overlap of the tools is why
the reason ERP can be successfully applied in companies.

2.1.2 Financial risks

Financial risks are caused by fluctuations in prices of goods and financial securities
– generally called asset classes. The following are common asset classes:

� commodities: which are further categorized into:

� agriculture products such as corn, soy bean, oranges, sugar, cotton, etc.

– metallurgical products such as gold, silver, copper, etc.
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– livestock products such as cattle, lean hogs, pork belly, etc.

– energy products such as oil (various kinds), gas, etc.

� foreign currencies (euro, yen, yuan, etc.)

� equities

� interest rates (Treasuries, LIBOR , OIS , etc.)

� credit

� mortgage-backed securities

While each asset class (and its subclass) has its own risk, these risks are gen-
erally group into four major categories, defined by Basel Accords that are the most
sophisticated bank regulation documentation available today. We shall describe the
three Basel Accords later. According to the Accords, financial risk can be catego-
rized as:

� Market risk

� Credit risk

� Liquidity risk

� Operational risk

Market risk

Market risk refers to risk that should be monitored and managed on a very frequent
basis (at least daily) because as market conditions change, market prices move and
hence profits and losses are generated. As a result, market risk is usually measured
by the degree of fluctuations in prices – know as volatility, or in technical terms
the standard deviation of the price change (or return). In other words, the higher
is the volatility (standard deviation), the higher is the risk. Market risk exists in
every asset class, but some are easier to monitor than others. For example, equities
are transacted very frequently (many times a day) so their market risk is easier to
compute and measured. Fixed income securities, such as swaps, are not transacted
frequently and hence the market risk is not easy to compute. As a result, some
scientific methods are necessary to estimate the market risk.
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Credit risk

Credit risk refers to losses due to credit events the most severe of which is bankruptcy.
Credit default swaps (CDS) are the contract that provide the perfect hedge of the
bankruptcy risk. CDS will be fully explored later in this book. In addition to the
bankruptcy risk, market participants also transact bonds whose prices are based
upon the probability of bankruptcy (known as credit spreads). As the probabili-
ties move up or down, bond prices (or spreads) move up or down as well. Finally,
pension funds and selected mutual funds are regulated to only purchase bonds with
investment grades. Hence, if a bond is downgraded out of the investment group, it
will be “dumped” in the marketplace immediately and huge losses can occur. This
is known as the migration risk that must be also managed.

Liquidity risk

Liquidity risk refers to losses of asset values due to lack of trading in the market
place. Usually, lack of trading introduces higher bid/offer spreads. In a severe
situation, the market becomes one-sided and offer (or bid) disappears. Then the
bid price can skyfall and large liquidity discounts should occur. During the 2008
crisis, we witnessed the exact same phenomenon. Banks were dumping subprime
portfolios to the market after they realized that they were too slow in reacting to
the defaults in subprime loans. Lack of buying (one-sided market) caused the prices
of subprime portfolio to skyfall and resulted in the liquidity crisis.

Operational risk

Operational risk refers to losses due to human mistakes or frauds. In early September
2011, UBS announced that it had lost 2.3 billion dollars, as a result of unauthorized
trading performed by Kweku Adoboli, a director of the bank’s Global Synthetic
Equities Trading team in London. On 16 April 2008, The Wall Street Journal
released a controversial article suggesting that some banks might have understated
borrowing costs they reported for the LIBOR during the 2008 credit crunch that
may have misled others about the financial position of these banks. On 27 July
2012, the Financial Times published an article by a former trader which stated
that LIBOR manipulation had been common since at least 1991. LIBOR underpins
approximately $350 trillion in derivatives. On 27 June 2012, Barclays Bank was
fined $200 million by the Commodity Futures Trading Commission, $160 million by
the United States Department of Justice and £59.5 million by the Financial Services
Authority for attempted manipulation of the LIBOR and Euribor rates.
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Collateral risk

Collateral risk is not a Basel defined risk but it has been under the spotlight after
the 2008 crisis. Prior to the crisis, most transactions were done “naked”, which is
that no collaterals were provided. During the crisis, such naked positions suffered
huge loss of value. Hence, after the crisis, more and more transactions were done
“covered”, which is that equivalent value of assets were provided as collaterals. As
a result, banks now hold a large pool of assets from collaterals which go up and
down in value constantly. Furthermore, banks now try to efficiently manage these
collaterals by loaning them out (known as rehypothecation). As a result, managing
the collateral risk is also part of the scope of risk management

2.1.3 Ways to measure and manage these risks

To manage risk effectively, we must quantify risk first. Profit or loss is a 0-1 event –
either you lose money or you make money. Risk represents the likelihood of losing
money. As the likelihood rises, preventions must be taken (i.e. adjustments to the
portfolio) in order to lose the minimum. Likewise, if the likelihood falls, more stakes
can be taken to enhance the win. How to measure the likelihood of losing, i.e. risk,
as a result, is a crucially important task. However, “likelihood” is just a concept. To
have a concrete measure to represent it is highly difficult. Also, for different types
of risk, the representations can also differ. In the following, we see some standard
risk representations:

� market risk – VaR, stress test

� credit risk – JTD (jump to default), PD (probability of default), LGD (loss
given default), EAD (exposure at default), EL (expected loss). UL (unex-
pected loss), ES (expected shortfall), EC (economic capital), CVA (credit
value adjustment), and CVaR (credit value at risk)

� liquidity risk – liquidity weights, liquidity Value at Risk (LaR)

� operational risk – data mining (indicative)

� collateral management – rehypothecation

2.2 Review of Simple Hedging

The extreme risk management is to eliminate risk completely. However, in the con-
cept of efficient market, no risk implies no return (or the minimal risk-free return).
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As a result, the objective of risk management is not the removal of risk, but to
control risk under a desired level while the objective of returns is maintained.

In standard derivatives text books, the introduction of hedging is via risk elim-
ination – known as the risk-free arbitrage. The famous Black-Scholes model is built
on such a concept. There are two types of hedging – static and dynamic. A static
hedge is a buy-and-hold hedge, which is to engage a hedging trade and do nothing
till the end of the hedging or investment horizon. A typical example is hedging
with forwards or futures. Buying an asset and hedging with its futures completely
eliminates the risk as the futures moves dollar-for-dollar with the underlying asset.
As a result, there is no risk and in exchange there is no return. One could modify
the hedge with an option where some the downside risk is eliminated but the upside
potential is retained. Given that there is no free lunch, such a hedge is costly. In
other words, an option hedge (usually puts) can be viewed as two separate hedges –
one is to eliminate risk which is free, like futures, and the other is to pay for upside
returns.

A dynamic hedge is the same idea except that frequent rebalancing is required.
That is, the hedge is meant for just a very short period of time (e.g. day) and at
the end of the hedging period, re-hedging is necessary. Re-hedging implies buying
and selling of hedging securities. The math of the hedging quantity (known and the
hedge ratio) is much more complex than that of the static hedging. Furthermore,
the computation of the hedge ratios require various financial models.

The pros of using the dynamic hedging are that it costs less and in many cases
static hedges are not available. The con is that it relies on financial models that can
be problematic and inaccurate.

The usual derivatives used for hedging (static or dynamic) are:

� options (puts)

� fowards and futures (dynamic)

� swaps

2.3 Market Risk

While there are many risk management tools, over the years a consensus has been
reached that the concept of “value at risk” is most desirable. After the recent crisis,
various enhancements have been proposed and the most important of which is stress
testing.
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2.3.1 Value at Risk

Value at Risk, abbreviated as VaR, was first developed by JP Morgan back in the
early 90’s. The basic idea is that fund managers need to know at a certain percentage
(say 5%) how much money will he or she lose over the next day (or any investment
horizon). In plain language, how much “value” is “at risk” over the next day?

To answer this question, one must have a distribution. Not surprisingly the
most common choice is the normal distribution. The following diagram demonstrates
where the 5% probability loss is in a normal distribution.

Normal Distribution

Profits and Losses

x%

 

Figure 2.1: Normal Distribution
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The normal distribution is often criticized as having too thin tails, which are
contradictions to what researchers observe empirically. The following diagram com-
pares a t distribution with the degrees of freedom of 2 and a normal distribution. As
it is easily seen, the t distribution has much “fatter” tails than those of the normal.
However, normal distributions are the only distribution that can be scaled by (the
square root of) time. The details will be explored in the next chapter.

 
Figure 2.2: Fat-tailed (t with df=2) Distribution

Normal versus t (degrees of freedom = 2) Distributions There are three types
of VaR now used by the industry:

� historical

� parametric

� factor-based

The historical VaR does not use the normal distribution but just form his-
tograms from the past data. Historical VaR is model-free and completely dependent
upon data. The 5% VaR is simply the best of the worst 5% of the data. For example,
for 120 past observations, the 6-th observation from the worst is the 5% VaR.

The parametric VaR is based upon the normal distribution. Historical data are
used to estimate mean and variance of the portfolio and then the normal distribution
is used.
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The factor-based VaR is the most comprehensive VaR of all. A linear factor
model is used to estimate how various assets are related. “Factor loadings” are
estimated and then a distribution is formulated.

2.3.2 Stress Test

According to wikipedia, regulators devise hypothetical future adverse economic sce-
narios to test banks. These established scenarios are then given to the banks in
their jurisdiction and tests are run, under the close supervision of the regulator.
They evaluate if the bank could endure the given adverse economic scenario, sur-
vive in business, and most importantly, continue to actively lend to households and
business. If it is calculated that the bank can absorb the loss, and still meet the
minimum bank capital requirements to remain in active business, they are deemed
to have passed.

According to 2012 Stress Test Release by the Federal Reserve Bank on 23
February 2013, in the U.S. in 2012, an adverse scenario used in stress testing was
all of the following:

� Unemployment at 13 percent

� 50 percent drop in equity prices

� 21 percent decline in housing prices.

A historical stress test if often performed to examine realistic (as opposed to
hypothetically defined) stress scenarios. A historical stress test takes a very long
history of data (minimally 10 years) and examine the worst losses. If the data history
is not long enough, methods like benchmarking, extrapolations, indexing, etc. are
used to estimate the worst losses. These worst losses are used as a guideline of how
future potential losses can be. We shall discuss the details in the next chapter.

2.4 Credit Risk

Credit risk refers to losses occurred due to defaults. However, other “derived” credit
risks such as spread risk and rating change risk must also be managed. These are
discussed in details in a later chapter. Here, we first focus on two major sources of
risk and various credit risk metrics.
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2.4.1 Sources of credit risk

There are two major sources of credit risk banks need to manage well – asset credit
risk and counterparty credit risk. The first source refers to losses caused by defaults
of the assets bank hold. Banks invest in various securities originated by various
companies (e.g. corporate bonds), banks (swaps), and individuals (mortgage loans)
which are all subject defaults. If these originators default, their securities will not
have full values and hence banks suffer losses. Hence, each asset must be analyzed
by the following two important credit metrics:

� loss given default (LGD)

� probability of default (PD)

An LGD is the amount of loss should a default occur and a PD is the likelihood
of such loss occurring. The product of the two yields an expected loss (EL). Banks
need to monitor its EL closely in order to keep its credit risk under control.

In the Appendix, PD term structures of various European nations over the
crisis period are estimated and plotted to demonstrate how PDs skyrocketed during
the crisis period. Not only were PDs shot higher, but the term structures also
changed shapes during the crisis period.

The following diagram demonstrates empirically how in the past PD and LGD
are correlated. This diagram is particularly important in that the highly positive
correlation between PD and LGD reveals an understated risk when defaults happen.
The Diagram indicates that as PD rises (firms are more likely to default) LGD rises
as well (recoveries from defaults are little). As a result, EL is either very high when
defaults are likely or very low when defaults are unlikely. We cannot estimate PD
and LGD independently.

The second source of credit risk focuses on the loss due to counterparty default.
Hence, securities that are subject to counterparty risks must be those that are
transacted in the OTC (over the counter) market. When the counterparty defaults,
“naked” (i.e. uncollateralized), “in-the-money” (i.e. receiving cash flows from the
counterpary) positions will lose money and hence suffer losses. Most of such positions
are swap positions. Swaps are the most popular contractual form in the OTC
market. Popular swap contracts are:

� interest rate swap (IRS)

� foreign currency swap

� total return swap (TRS)
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Figure 2.3: Positive Relation between PD and LGD (WWR)
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� credit default swap (CDS)

Before the 2008 crisis, counterparty credit risk was not quantified. Banks
computed counterparty “exposures” but no effective management was in place. After
the crisis, such risk has been quantified and incorporated into the cost of transacting,
known as CVA (credit value adjustment). If a counterparty is credit riskier than
the other counterparty, its CVA is higher and the cost of dealing this counterparty
is higher. Traders who deal with this counterparty must be able to generate extra
returns to offset the higher credit risk.

2.4.2 Credit risk metrics

The following diagrams depict the major credit risk metrics, which are:

� expected loss (EL)

� unexpected loss (UL)

� credit VaR

� expected shortfall (ES)

� economic capital (EC)

� jump to default or exposure at default (JTD/EAD)

� counterparty risk metrics

– counterparty exposure

– CVA (credit value adjustment)

Figure 16.2 depicts a typical loss distribution, usually highly positively skewed,
and its related credit risk metrics. The expected loss (EL) is the mean value of this
distribution, labeled by the left-most vertical bar in the Diagram. To find the mean
value of a distribution one must carry out the convolution of loss function and
probability density function. However, it is often approximated by PD times LGD
as the Diagram demonstrates. The distribution also provides a credit VaR which
is, similar to the market VaR, a tail critical value given a probability, labeled by
the middle bar in the Diagram. Finally the unexpected loss (UL) is defined as the
difference between the credit VaR (CVaR) and EL. Finally, expected shortfall (ES)
is defined as the absolutely necessary capital to keep the company from default.
Often, this is viewed as the worst-case loss (WCL), i.e. the worst tolerable loss
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which represents the case where all assets and counterparties default. Some risk
management practices define ES and WCL differently, as there is no consensus over
credit risk metrics. In other words, WCL can be viewed as JTD or EAD.

Expected Loss = 

PD * LGD
CVaR Expected Shortfall

Unexpected Loss

Economic Capital

Stress Loss

 

Figure 2.4: Credit Value at Risk

As far as counterparty risk goes, either a credit exposure is calculated and
monitored, or a CVA charge is implemented and collected from each trading desk
that is exposed to possible losses of counterparty default. These calculations will be
discussed in details in the Credit Risk Chapters.

2.5 Liquidity Risk

The 2008 financial crisis is known as liquidity crisis and the call for liquidity quantifi-
cation has been paramount. So far the models for measuring liquidity (not liquidity
risk) are empirical and linear. The lack of theory (hence non-linearity) prevents
the liquidity risk from being measured. In a later chapter, a model for liquidity
quantification is presented. Liquidity is an old topic. It has been studied in ac-
counting and market microstructure areas for a long time. Bank liquidity is closer
to the accounting than to market microstructure which focuses on trading volume
and bid-ask spreads. CPAs (certified public accountants) issue going concern audits
to reveal their opinions if a firm can survive in a short run of not more than a year
by looking at the firm’s short term liquidity. For a firm to survive in a short run,
the only concern is the firm’s ability to meet its immediate cash flow obligations.
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Such a liquidity-driven audit process ignores the economic nuance of the firm and
can come to a different conclusion from an economically-driven default. In a crisis
situation as the one we have been experiencing, such a point of view is more conser-
vative as if a firm cannot survive the liquidity squeeze, the firm should default even
though it is profitable. However, in a more normal situation where the liquidity
squeeze is less eminent, such an audit is less conservative, which is against account-
ing’s Conservatism Principle. In a later chapter, we show that such a viewpoint has
potentially a significant economic impact on the value of the firm. An in-depth case
analysis shows that a firm that is subject to “economic default” and yet passes the
myopic going concern audit will ultimately default and then results in a greater loss
of economic value.

2.6 Operational Risk (Wiki)

Operational risk is the broad discipline focusing on the risks arising from the people,
systems and processes through which a company operates. It can also include other
classes of risk, such as fraud, legal risks, physical or environmental risks. A widely
used definition of operational risk is the one contained in the Basel II regulations.
This definition states that operational risk is the risk of loss resulting from inade-
quate or failed internal processes, people and systems, or from external events.[1]
Operational risk management differs from other types of risk, because it is not used
to generate profit (e.g. credit risk is exploited by lending institutions to create
profit, market risk is exploited by traders and fund managers, and insurance risk
is exploited by insurers). They all however manage operational risk to keep losses
within their risk appetite - the amount of risk they are prepared to accept in pursuit
of their objectives. What this means in practical terms is that organizations accept
that their people, processes and systems are imperfect, and that losses will arise from
errors and ineffective operations. The size of the loss they are prepared to accept,
because the cost of correcting the errors or improving the systems is disproportion-
ate to the benefit they will receive, determines their appetite for operational risk.
The Basel II Committee defines operational risk as: “The risk of loss resulting from
inadequate or failed internal processes, people and systems or from external events.”
However, the Basel Committee recognizes that operational risk is a term that has
a variety of meanings and therefore, for internal purposes, banks are permitted to
adopt their own definitions of operational risk, provided that the minimum elements
in the Committee’s definition are included. Basel II and various Supervisory bodies
of the countries have prescribed various soundness standards for Operational Risk
Management for Banks and similar Financial Institutions. To complement these
standards, Basel II has given guidance to 3 broad methods of Capital calculation
for Operational Risk:
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� Basic Indicator Approach - based on annual revenue of the Financial Institu-
tion

� Standardized Approach - based on annual revenue of each of the broad business
lines of the Financial Institution

� Advanced Measurement Approaches - based on the internally developed risk
measurement framework of the bank adhering to the standards prescribed
(methods include IMA, LDA, Scenario-based, Scorecard etc.)

The Operational Risk Management framework should include identification,
measurement, monitoring, reporting, control and mitigation frameworks for Opera-
tional Risk.

2.7 Risk Management Modeling Building Blocks

To build a VaR model for a portfolio of various assets that carry very different risks
is a big challenge. The first VaR model by JP Morgan (known as Riskmetrics)
proposed cash flow mapping. That is, different assets are aggregated via their cash
flows. Then the total VaR can be calculated using the aggregated cash flows. More
recently, a “delta” method is used. A delta is the partial derivative of an asset with
respective to a target risk factor. To use deltas, various assets must be priced using
a consistent set of pricing models. Hence, the delta method is not possible unless
all assets can be priced consistently. The advances in numerical methods (lattice
and Monte Carlo) and computing powers now make the delta method successful.
Using the delta method, positions can be aggregated and the total VaR can be
computed. Moreover, using deltas can provide the important VaR decomposition
– an important concept of “incremental” VaR. Given that VaR is just a standard
deviation, VaRs cannot be added. However, incremental VaRs can. In the next
chapter, the details will be discussed.

2.7.1 Basic Models by Asset Class

To gain an integrated measure of all financial risks, properly evaluating various
financial products is essential. In other words, valuation models must be employed
for various asset classes:

� Equity – Black-Scholes/binomial, CAPM, local vol (implied binomial model)

� IR – Heath-Jarrow-Morton, Hull-White
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� FX – Garman-Kolhegen (i.e. Black-Scholes)

� Commodities – Black, seasonality

� Mortgages (prepayment) – Andrew-Davidson

� ABS – loss timing function

� Credit – Jarrow-Turnbull, Duffie-Singleton, transition matrix, ad-hoc approaches

2.7.2 Risk Management Tools available

The production of risk numbers is a highly technical task. Hence, these risk numbers
are usually produced by highly trained professionals. Large financial institutions
can train internal personnel to perform the task. Smaller institutions can only buy
standardized products “off the shelf”. In the following, we can see some popular
products to choose.

� Oldest – Riskmetrics and Creditmetrics

� Enterprise – IBM, Oracle, SAP, etc.

� Valuation – Barra, Algo, etc.

� Consulting – Big 3, McKinsey, etc.

� Proprietary – large banks

2.8 Basel Accords

The Basel Committee on Banking Supervision is an international committee estab-
lished by the Bank for International Settlements to formulate policy on prudential
standards and best practices among financial regulators. The Basel Committee
implemented the first Basel Capital Accord in 1988. Originally developed for inter-
nationally active banks in G10 countries, the Accord has now been implemented in
over 100 countries for both large and small financial institutions, including credit
unions. In 2000, the Basel Committee began consulting the financial services in-
dustry on a revision to the Basel Capital Accord. The purpose of the revision was
to provide a more risk sensitive approach to capital adequacy. On June 26, 2004,
the Basel Committee on Banking Supervision issued its revised framework, Inter-
national Convergence of Capital Measurement and Capital Standards, a Revised
Framework. This framework reflects the committee’s modifications, albeit limited
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in number, made in the Consultative Paper (CP3) issued in April 2003. In Septem-
ber 2011, the Basel Committee revised its capital standards in what is referred to
as Basel III.

2.8.1 Basel I

The bank must maintain capital (Tier 1 and Tier 2) equal to at least 8% of its
risk-weighted assets.

� 0% - cash, central bank and government debt and any OECD government debt

� 0%, 10%, 20% or 50% - public sector debt

� 20% - development bank debt, OECD bank debt, OECD securities firm debt,
non-OECD bank debt (under one year maturity) and non-OECD public sector
debt, cash in collection

� 50% - residential mortgages

� 100% - private sector debt, non-OECD bank debt (maturity over a year), real
estate, plant and equipment, capital instruments issued at other banks OECD:
Organisation for Economic Co-operation and Development

Tier 1 capital

Tier 1 capital is the core measure of a bank’s financial strength from a regulator’s
point of view. It is composed of core capital, which consists primarily of

� common stock and

� disclosed reserves (or retained earnings), but may also include

� non-redeemable non-cumulative preferred stock.

The Basel Committee also observed that banks have used innovative instru-
ments over the years to generate Tier 1 capital; these are subject to stringent con-
ditions and are limited to a maximum of 15% of total Tier 1 capital.
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Tier 2 capital (supplementary capital)

Tier 2 capital includes a number of important and legitimate constituents of a bank’s
capital base. These forms of banking capital were largely standardized in the Basel
I accord, issued by the Basel Committee on Banking Supervision and left untouched
by the Basel II accord. National regulators of most countries around the world have
implemented these standards in local legislation. In the calculation of regulatory
capital, Tier 2 is limited to 100% of Tier 1 capital.

� Undisclosed reserves

� Revaluation reserves

� General provisions/general loan-loss reserves

� Hybrid debt capital instruments

� Subordinated term debt

Tier 3 capital

Tertiary capital held by banks to meet part of their market risks, that includes a
greater variety of debt than tier 1 and tier 2 capitals. Tier 3 capital debts may
include a greater number of subordinated issues, undisclosed reserves and general
loss reserves compared to tier 2 capital. Tier 3 capital is used to support market
risk, commodities risk and foreign currency risk.

� Banks will be entitled to use Tier 3 capital solely to support market risks.

� Tier 3 capital will be limited to 250% of a bank’s Tier 1 capital and have a
minimum maturity of two years.

� This means that a minimum of about 28.5% of market risks needs to be sup-
ported by Tier 1 capital that is not required to support risks in the remainder
of the book;

http://www.bis.org/publ/bcbs128b.pdf

Capital Ratios

Capital ratios are various percentage measures that measure the financial health of
banks. The use of ratios makes regulation a lot easier and ratios can be applied to
different sizes of banks. The important capital ratios are given below.
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� Tier 1 capital ratio = Tier 1 capital / Risk-adjusted assets ≥ 6%

� Capital adequacy ratios (or total capital ratio) are a measure of the amount
of a bank’s core capital expressed as a percentage of its risk-weighted asset.
Capital adequacy ratio is defined as: Total capital (Tier 1 and Tier 2) / Risk-
adjusted assets ≥ 10%

� Leverage ratio = Tier 1 capital / Average total consolidated assets ≥ 5%

� Common stockholders’ equity ratio = Common stockholders’ equity / Balance
sheet assets

The following is the balance sheet of Lehman Brothers Inc. as of 2002 .

Lehman Brothers Inc.    

as of 2002      

     

Assets   Liabilities   

Cash 2,265 Short-term Debt 123

Securities 70,881 Other Securities 50,352

Coll Ag’mt 101,149 Coll ST Financing 121,844

Receivables  21,191 Payables 12,758

Real Estate 138 Long-Term Debt 7,990

   Equity 3,152

Total 196,219 Total 196,219

     

million $      

 
Figure 2.5: Balance Sheet of Lehman Brothers

The following presents the balance sheet of Goldman from 2009 2011 (taken
from Yahoo Finance). The equity ratio is 7.58%.

2.8.2 Basel II

Basel II is the second of the Basel Accords, (now extended and effectively superseded
by Basel III), which are recommendations on banking laws and regulations issued
by the Basel Committee on Banking Supervision. Politically, it was difficult to
implement Basel II in the regulatory environment prior to 2008, and progress was
generally slow until that year’s major banking crisis caused mostly by credit default
swaps, mortgage-backed security markets and similar derivatives. As Basel III was
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Figure 2.6: Balance Sheet of Goldman Sachs
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negotiated, this was top of mind, and accordingly much more stringent standards
were contemplated, and quickly adopted in some key countries including the USA.
The main message of Basel II is the following three pillars:

Pillar 1: Capital Adequacy

Min. of 8% (but now credit, market & operational)

Pillar 2: Supervisory Review

Supervisors responsible for ensuring banks have sound internal processes to
assess capital adequacy

Pillar 3: Market Discipline

Enhanced disclosure by banks

Sets out disclosure requirements

2.8.3 Basel III

Basel III is a comprehensive set of reform measures, developed by the Basel Com-
mittee on Banking Supervision, to strengthen the regulation, supervision and risk
management of the banking sector. These measures aim to:

� improve the banking sector’s ability to absorb shocks arising from financial
and economic stress, whatever the source

� improve risk management and governance

� strengthen banks’ transparency and disclosures.

The main message of Basel III is:

� Increased overall capital requirement: Between 2013 and 2019, the common
equity component of capital (core Tier 1) will increase from 2% of a bank’s
risk-weighted assets before certain regulatory deductions to 4.5% after such
deductions. A new 2.5% capital conservation buffer will be introduced, as well
as a zero to 2.5% countercyclical capital buffer. The overall capital requirement
(Tier 1 and Tier 2) will increase from 8% to 10.5% over the same period.

� Narrower definition of regulatory capital: Common equity will continue to
qualify as core Tier 1 capital, but other hybrid capital instruments (upper
Tier 1 and Tier 2) will be replaced by instruments that are more loss-absorbing
and do not have incentives to redeem. Distinctions between upper and lower
Tier 2 instruments, and all of Tier 3 instruments, will be abolished. All
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non-qualifying instruments issued on or after 12 September 2010, and non-
qualifying core Tier 1 instruments issued prior to that date, will both be dere-
cognised in full from 1 January 2013; other non-qualifying instruments issued
prior to 12 September 2010 will generally be phased out 10% per year from
2013 to 2023.

� Increased capital charges: Commencing 31 December 2010, re-securitisation
exposures and certain liquidity commitments held in the banking book will
require more capital. In the trading book, commencing 31 December 2010,
banks will be subject to new “stressed” value-at-risk models, increased coun-
terparty risk charges, more restricted netting of offsetting positions, increased
charges for exposures to other financial institutions and increased charges for
securitisation exposures.

� New leverage ratio: A minimum 3% Tier 1 leverage ratio, measured against a
bank’s gross (and not risk-weighted) balance sheet, will be trialled until 2018
and adopted in 2019.

� Two new liquidity ratios: A “liquidity coverage ratio” requiring high-quality
liquid assets to equal or exceed highly-stressed one-month cash outflows will be
adopted from 2015. A “net stable funding ratio” requiring “available” stable
funding to equal or exceed “required” stable funding over a one-year period
will be adopted from 2018.

2.9 Types of Capital

2.9.1 Regulatory capital

The Basel Committee on Banking Supervision (BCBS), on which the United States
serves as a participating member, developed international regulatory capital stan-
dards through a number of capital accords and related publications, which have col-
lectively been in effect since 1988. In July 2013, the Federal Reserve Board finalized
a rule to implement Basel III in the United States, a package of regulatory reforms
developed by the BCBS. The comprehensive reform package is designed to help en-
sure that banks maintain strong capital positions that will enable them to continue
lending to creditworthy households and businesses even after unforeseen losses and
during severe economic downturns. This final rule increases both the quantity and
quality of capital held by U.S. banking organizations. The Board also published the
Community Banking Organization Reference Guide, which is intended to help small,
non-complex banking organizations navigate the final rule and identify the changes
most relevant to them. The capital ratio is the percentage of a bank’s capital to its
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risk-weighted assets. Weights are defined by risk-sensitivity ratios whose calculation
is dictated under the relevant Accord. Basel II requires that the total capital ratio
must be no lower than 8%. Under the Basel II guidelines, banks are allowed to
use their own estimated risk parameters for the purpose of calculating regulatory
capital. This is known as the Internal Ratings-Based (IRB) Approach to capital
requirements for credit risk. Only banks meeting certain minimum conditions, dis-
closure requirements and approval from their national supervisor are allowed to use
this approach in estimating capital for various exposures.

2.9.2 Economic capital

As opposed to regulatory capital that is required by the governments or any regula-
tory body, economic capital the firm needs to ensure that its realistic balance sheet
stays solvent over a certain time period with a pre-specified probability. Therefore,
economic capital is often calculated as value at risk. The balance sheet, in this case,
would be prepared showing market value (rather than book value) of assets and
liabilities. Economic capital is the amount of risk capital which a firm requires to
cover the risks that it is running or collecting as a going concern, such as market
risk, credit risk, and operational risk. Firms and financial services regulators should
then aim to hold risk capital of an amount equal at least to economic capital. It is
the amount of money which is needed to secure survival in a worst case scenario.
Firms and financial services regulators should then aim to hold risk capital of an
amount equal at least to economic capital.

2.9.3 Risk-adjusted return on capital (RAROC)

An adjustment to the return on an investment that accounts for the element of
risk. Risk-adjusted return on capital (RAROC) gives decision makers the ability to
compare the returns on several different projects with varying risk levels. RAROC
was popularized by Bankers Trust in the 1980s as an adjustment to simple return
on capital (ROC). While there are many definitions of how RAROC should be cal-
culated, one example provided by investopedia is: RAROC = (Revenue – Expenses
– Expected Loss + Income from Capital) / Capital where Income from Capital =
(Capital Charges) * (risk-free rate) and Expected loss = average anticipated loss
over the measurement period.
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2.10 Appendix

2.10.1 Report on Excite@Home’s bankruptcy

http://everything2.com/title/excite Excite (by then, Excite@Home) filed for bankruptcy
on September 28, 2001. But let’s not start there, let’s start with 1999, when Excite
was second only to Yahoo as a pure web portal. Management calculated that they
could distinguish themselves by owning their own broadband pipes, and thereby
surpass Yahoo and maybe even AOL in a few years. In a $6.7 billion deal, Excite
merged with @home, the leading provider of cable internet services. They estab-
lished contracts with large cable companies making Excite the ’broadband portal’
for most Americans with cable modems in 2000 and 2001. However, things were
turning ugly, as cash coming in from advertising contracts did not equal cash flow-
ing out to employees and vendors. The company spent much of 2001 attempting to
raise cash, selling divisions, selling convertible bonds (they raised $100 million from
Promethean Capital this way), and closing unprofitable units. Unfortunately, they
could not cut costs quickly enough to match the dropoff in advertising dollars. Even
after firing half the staff, they were stuck with leases on the buildings those people
had worked from. From 2000q2 to 2001q2, ad revenue dropped more than 60%. Lots
of people were signing up for broadband, but the @home side of the business was too
small to cover for the hemorrhaging Excite portal. The company needed to get cash
from the outside, and they paid for it. Promethean Capital demanded immediate
repayment on the convertible bonds only a few months after buying them, claim-
ing that Excite@Home had substantially misrepresented the state of their business.
During the firesale, they sold Blue Mountain Arts, their online gift card unit, for
$35 million to Gibson Greetings. Keep in mind that they had paid $780 million for
BMA in late 1999. The fortunes of the company were closely tied to AT&T, and
they acted as AT&T’s broadband internet provider. This allowed them to negotiate
an $85 million investment from AT&T in June 2001, but that was peanuts com-
pared to the company’s burn rate, even after thousands of people had been fired. In
August 2001, they fired their auditors, got a $50 million demand from Promethean,
and had both Cox Cable and Comcast drop their service. Bankruptcy came the
next month. If you visit Excite.com today, you will see a website that looks like the
old Excite portal, but it is an unrelated service that purchased the URL and logo
from Excite@Home after the bankruptcy filing. Business 2.0, August 28, 2001, USA
Today, October 1, 2001, Various company press releases
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Hedging

3.1 What Is Hedging?

Hedging is the ultimate form of risk management. Hedging can be regarded as risk
elimination. In other words, a perfect hedging should completely eliminate risk and
results in a risk-free portfolio. While hedging sounds pleasant, it is neither practical,
nor necessary. In reality, even if perfect hedging did exist, nobody would want it,
as no risk usually implies no return. If portfolio theory has taught us anything, it
would mean that we should maximize return at minimal risk.

Since hedging is risk elimination, it has become a perfect tool to develop pricing
models. In an efficient market, the theory of hedging has been translated into pricing
models. In other words, the cost of perfect hedging must be the price of the target
security; otherwise arbitrage can take place and the efficient market is violated.
Hence, by contradiction (which cannot exist), the cost of hedging must equal price of
the target security. The most famous example is the Black-Scholes model developed
in 1973.

Derivatives, namely options, futures (forwards), and swaps, are effective in-
struments to eliminate risk. More interestingly, if used effectively, they can be used
to remove only the unwanted risk. This is known as the “static hedging”. Since
derivatives have maturity dates, once they expire, they need to be rolled over. Hence
they cannot be used for long term hedging purposes. For long term hedging needs,
one can pursue “dynamic hedging” strategies. A dynamic hedging strategy requires
constant trading and re-balancing the portfolio. The hedging is perfect only for
a very short period of time (a day, an hour, or a few minutes) and then it must
be redone in order to remain perfectly hedged. As a result, dynamic hedging can
be implemented only for securities that are very liquid. Over-the-counter (OTC)
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securities are generally not liquid and consequently are not good hedging securities.
Since dynamic hedging requires very frequent trading, often it is automated and
executed by computer programs, known as program trading.

In the following, we use simple examples to demonstrate static and dynamic
hedging. Most of these materials can be found in options and futures text books.

3.2 Static versus Dynamic Hedging

3.2.1 Static Hedging

A static hedging strategy is a buy-and-hold strategy. A strategy is chosen, hedging
security bought, and no action is necessary until the contract expires. The perfect
example of such kind is the ‘protective put”. A protective put protects its underlying
stock. Because a put and its underlying stock move in perfectly opposite directions,
it provides a perfect hedge for the stock. By choosing the strike price of the put,
one can set the protection level (i.e. minimum value) of the portfolio. Figure 3.1
describes graphically how a protective put portfolio pays out at the expiration date
of the put. The positively sloped 45-degree dotted line is the underlying stock and
the negative 45-degree dotted line is the protecting put. Together, they form a solid
hockey stick function whose value will never fall below the strike price of the put.

 

 

Protect put payoff 

 

Figure 3.1: Protective Put

Another famous static hedging example is known as the “covered call”. It
is quite common that investors write (sell) naked call options trying to harvest the
premiums. If the stock falls in value, then the call options will expire worthlessly and
those who sell the calls can keep the premiums. However, such a strategy is highly
risky. Should the stock price rise, the loss is theoretically unlimited. To hedge this
risk, investors often buy the underlying stock. As the stock can be used for delivery
for the call option when its price rises, it is a perfect hedge. Now the option is the



Static versus Dynamic Hedging 39

target security and the stock is the hedging security. Figure 3.2 describes the payoff
at the expiration date of the call option.

 

 
Covered call payoff 

 

Figure 3.2: Covered Call

Buying the stock is expensive. An alternative is to buy another call option
with a lower strike price. Since call prices are lower than stock prices, doing so can
save cost of hedging. It goes without saying that this cheaper hedging is not as ideal
as the hedging with stock. Figure 3.3 describes the result. As we can easily see that
the payoff of this strategy (bull spread) is lower than the payoff of the covered call.

 

 
Bull spread w/ calls 

 

Figure 3.3: Bull Spread

3.2.2 Dynamic Hedging

A dynamic strategy, as mentioned, requires constant trading and re-balancing the
portfolio. A perfect example would be the covered call given earlier. In a static
strategy, buying the stock can provide an effective hedge but it is very costly. The
reason why it is costly is that it keeps a very high payoff in the future (at the
expiration of the option). If we do not need such a high payoff, then the covered
call strategy is not desirable. One can certainly go with an alternative which is a
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bull spread to save cost (and give up high payoff). A really effective way is to do
dynamic hedging using stock. This was first discovered by Fischer Black and Myron
Scholes in 1973.

Assume the stock price follows a stochastic process (see Chapter 1) as follows:

dS

S
= µdt+ σdW

or

dS = µSdt+ σSdW

(3.1)

This is a very simple process for the stock. What it says is that the stock has
an expected return µ and volatility σ. dW is a Wiener process which is normally
distributed with mean 0 and variance dt. Since the option is a derivative contract
written on the stock, it must be a function of the stock price. Hence, we can measure
the sensitivity of the option price change with respect to the stock price change:

∂C

∂S

For example, if ∂C/∂S is 0.25, which means any increase (or decrease) of the
stock by $1 will result in a 25 cents increase (or decrease) in the option (or vice
versa that every $1 change in option will result in $4 change in the stock), then we
can provide a very effective hedge by just doing a 1:4 hedge ratio. In other words,
to protect a call option, we need to buy a quarter share of the stock. Of course the
problem is that the hedge ratio keeps changing as the stock price keeps changing.
Consequently stock shares must be bought and sold constantly to match the hedge
ratio. As a result, such hedging requires constant trading.1

As we can easily see, there is nothing that prevents us from using the same
methodology on other instruments. Indeed, such a method is proven to be universal.
As long as there is an easy way to calculate ∂X/∂Y , one can effectively hedge X
with Y or vice versa. In the above case, Black-Scholes has derived a closed-form
formula for ∂C/∂S, which is “N(d1)” (details to be shown later) which is a standard
normal probability function.

1Note that the theory behind the strategy is actually quite profound. Black and Scholes first
showed that such strategy is “self-financing”. That is, such a strategy does not incur any cost.
Later, this is proven to follow the Martingale Representation Theorem.



Static versus Dynamic Hedging 41

Remarks

There are three remarks. First, such hedging is prefect, which it eliminates risk
completely. If it eliminates all risk, then the portfolio is risk-free and should earn
the risk-free rate. If the portfolio requires no initial investment, then the portfolio
should not produce any return. This “no free lunch” or “arbitrage free” argument
is how pricing models are derived. In the case of the covered call, we can then
derive the pricing model for the call option. We can equally apply the same hedging
method for protective put and it will result in a put option model.

Second, if the risk is completely eliminated, then there is no purpose of doing
any investment. One could easily just invest in the risk-free asset such as Treasury
bills. As a result, the use of dynamic hedging is mostly for deriving pricing models,
as opposed to finding the optimal hedging. Optimal hedging requires risk-return
tradeoff which is not the purpose of dynamic hedging and hence is a different topic.

Third, when the market isn’t perfect, that is, the dynamic hedging cannot
fully eliminate risk. In this situation, the dynamic hedging becomes a useful way
to eliminate the so-called “delta” risk. In other words, the dynamic hedging gives
a “delta-neutral” portfolio. When the market isn’t perfect, frictions in the market
produce what is known as the “gamma risk”. Without removing the delta risk,
investors cannot see clearly how much the gamma risk is. By removing the delta
risk (via being delta-neutral), investors can now see clearly and then manage the
gamma risk. Gamma risk cannot be hedged and often it produces attractive returns.
Hence, Wall Street traders make money by taking gamma risk and managing it well.

3.2.3 Other Hedging Examples

Swaps/Forwards

Swaps are a very effective tool to hedge risk. The most commonly used hedging
strategy is in the area of interest rate risk. A standard vanilla swap is a contract
that exchanges a set of fixed cash flows with a set of floating cash flows. These
two legs of cash flows mimic fixed rate bond and floating rate bond. Given that
floating rate bonds have almost no interest rate risk (i.e. duration), one can swap
out interest rate risk by engaging in a fixed-floating interest rate swap.

Forwards are perfect hedges of the underlying assets. A forward contract can
be regarded as a long call and a short put. Previously we see how each can perform
a partial hedge. But together they become a forward contract which can guarantee
a fixed cash flow (strike price) to the investor. In reality, there are very few liquid
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forward markets but one can create one with calls and puts.2

Futures

Futures contracts can be effective in providing effective hedging. One application is
known as the “minimum variance hedging”. The idea is to use futures to hedge the
underlying. Often it is done with buying the underlying and shorting the futures.3

Let the hedge ratio be h and hence the portfolio value is:

V = S − hF

Then the change of the portfolio value is:

dV = dS − hdF

Given that such a hedge is not perfect, there is variance of the portfolio, which
can be easily calculated as:

V[dV ] = σ2
S + h2σ2

F − 2hρσSσF

The goal here is to minimize this portfolio variance with the best choice of the
hedge ratio h. To achieve that, we simply take the derivative of the equation with
respect to the hedge ratio and set it to 0:

2hσ2
F − 2ρσSσF = 0

which implies that:

ĥ = ρ
σS

σF

It turns out that this result is identical to the regression coefficient of dS
running against dF .

2Foreign exchange and short term interest rate forward markets are liquid.
3For commodity futures, it is difficult to short the underlying.
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Value At Risk

4.1 Introduction

Market risk is defined as the potential loss resulting from declining prices in the
financial market. There are two dimensions to have a good overall grasp of the
market risk – risk factors and drivers risk exposures.

Market risk consists of the following broad stochastic market risk factors (also
can be regarded as asset classes):

� interest rates

� prepayment speeds (mortgage rates)

� credit spreads

� FX rates

� commodities

� equities

The two drivers of the market risk exposures are:

� investment position and

� volatility (including variances and co-variances)

It of great importance that we understand how to manage the size of invest-
ment in each asset class (and hence the exposure to each risk factor) and the volatility
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of each risk factor. It is of equal importance that we understand how the risk factors
move over time and learn how to predict their movements. It is an on-going battle
that investors try to beat the markets while keep the risk under control.

Figure 4.11 is a simple organization chart that demonstrates how market risk
is estimated.
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Figure 4.1: Risk Management Flow Chart

As we can see from the diagram, the output of this system is a set of market risk
measures, known as VaR (value at risk) lying at the bottom of the diagram. There
are three types of VaR. The portfolio VaR (far right) is the final aggregated risk
number to be presented to the CEO of the company. Then, there is Absolute sub-
portfolio VaR which is a number of VaR numbers of divisions of the company. As we
shall demonstrate in details later, VaRs which are volatility based are not additive.
Hence, the summation of all Absolute sub-portfolio VaRs is not the portfolio VaR.
In order to force additivity, a series of Marginal sub-portfolio VaRs are created.
These VaRs demonstrate how much each division of the company contributes to the
total portfolio VaR.

Market Risk Management Toolbox:
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� Market Risk Factors Identification

� Sensitivity Analysis

� VaR for Market Risk: Riskmetrics (JP Morgan) 94

� Stress Testing and Scenario Analysis

� Economic Capital Adequacy Level

Relative VaR

� Report reveals important differences between VaR and Relative VaR

� Global Equities has the stand-alone VaR (11%), but relative to its benchmark,
the smallest relative VaR (1%)

� Global FI Portfolio has smallest stand-alone VaR (5%) but highest relative
VaR (4%)

Marginal VaR measures how much risk a position adds to a portfolio or how
much Portfolio VaR would change if a position is removed. Often the largest stand-
alone risk positions are not the greatest contributors of risk – hedges have a negative
marginal VaR. Identifies which position to eliminate entirely in order is most effective
to reduce risk.

Component VaR is closely related to Marginal VaR. The sum of all component
VaRs add up to total Portfolio VaR. We should note that component VaR is like to
increase position weight by $1 and measure the change in overall portfolio VaR –
multiply this change by position weighting.

4.1.1 An Example

Table 4.1 is a sample risk report. Note that Marginal VaRs add up to $946,078, not
equal to the portfolio VaR. Although Asia ex Japan has the largest stand-alone VaR,
it is the fourth largest contributor to risk, as measured by incremental VaR. The
best 3 opportunities for reducing risk through hedges lie in US, Latam & Europe.

Diversification benefit = Overall Portfolio VaR – Sum of individual VaRs
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Region Market Individual Marginal Component % 

 Value VaR VaR VaR Contribution 

      

US 71.77 574,194 222,075 378,341 25.17%

S. Amer 10.26 512,944 220,114 369,626 24.59%

Europe 64.60 581,404 204,358 343,237 22.84%

Asia ex. Japan 12.69 589,734 196,046 317,346 21.11%

E. Europe 1.95 116,932 31,050 40,322 2.68%

Japan 19.57 195,694 48,012 30,068 2.00%

Africa 4.67 93,387 24,423 24,163 1.61%

Diversification  (1,161,186)   

Total 185.51 1,503,103 946,078 1,503,103 100.00%

 

Table 4.1: A Sample VaR Report

4.1.2 Limitations of VaR

Although VaR is the most widely used measure for market risk, it is far from perfect
and presents many problems. First of all, VaRs are not additive. VaRs are trans-
formations of standard deviations that are not additive. A fundamental assumption
that future risk can be predicted from historical distribution is not realistic. Fur-
thermore, it is vulnerable to regime shifts & sudden changes in market behavior.
Finally, VaRs calculated by different methods have different limitations.

“VaR gets me to 95% confidence. I pay my Risk Managers good salaries to
look after the remaining 5%” – Dennis Weatherstone, former CEO, JP Morgan.

4.1.3 Stress Testing

Stress testing is designed to estimate potential economic losses in abnormal markets.
It measures extreme market movements occur far more frequently than a normal
distribution suggest. It provides a more comprehensive picture of risk. Table 4.2
presents a sample of what stress scenarios are.

4.1.4 Risk Reporting

An efficient risk reporting process is the final and the most important step of risk
management. An efficient risk reporting process is the foundation for clear and
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Standard Stress Test Scenario 

Implied Volatility 20%

Equity Index 10%

Yield Curve Twist 25 bps

Parallel Yield Curve Shift 100bps

 

Table 4.2: Stress Test Scenarios

timely communication of risk across enterprise (Corporate, Business Unit, Trading
Desk). What makes a good risk report?

� Timely

� Reasonably accurate

� Highlight portfolio risk concentrations

� Include a written commentary

� Be concise

4.1.5 External Disclosure

From Chase Manhattan’s Annual Report: “ Chase conducts daily VaR backtesting
for both regulatory compliance with the Basle Committee on Banking Supervision
market risk capital rules and for internal evaluation of VaR against trading revenue.

During the year, a daily trading loss exceeded that year’s trading VaR on 2
days. This compares to an expected number of approximately 3 days. Considering
the unsettled markets during the year, Chase believes its VaR model performed at
a very high level of accuracy during the year.”

4.1.6 The Basel Accord II

While the Basel Accord II is mainly concering credit risk, it contains important
information about market risk. The three pillars list below highlight how market
risk needs to be managed:

� Pillar 1: Capital Adequacy
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– Min. of 8% (but now credit, market & operational)

� Pillar 2: Supervisory Review

– Supervisors responsible for ensuring banks have sound internal processes
to assess capital adequacy

� Pillar 3: Market Discipline

– Enhanced disclosure by banks

– Sets out disclosure requirements

4.1.7 Capital Regulation

Figure 4.2 depicts the highlight of the capital adequacy ratio.
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Figure 4.2: Capital Adequacy

Risk Weighted Assets are computed by:

� RWA = Banking Book RWA + Trading Book RWA

� Banking Book RWA = Position × Risk Weighting

� Trading Book RWA = Market Risk Capital / 8%
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4.2 Major Types of VaR

The concept of Value at Risk (or VaR) began with a thought that had been developed
in JP Morgan in early 1990s about how their money managers can sleep well at night
and not be surprised the next morning. In other words, how could their managers
know how much money was AT RISK over night. In 1998, Bank for International
Settlements (BIS) used it for standard banking risk management (known as Basel
Accord I).

VaR is to provide a notion (in dollar terms) of how much money can be “possi-
bly” lost over a period of time (say over the next day (1-day VaR) or the next week
(1-week VaR)) in the future. Managers choose a particular “possibility”, say 1%,
and then VaR is a dollar amount associated with the possibility. To fulfill the dif-
ferent requests of such a wide variety of possibilities (from 0.1% VaR to 10% VaR),
we need to estimate a tail distribution of the returns. There are three general ways
to do so, known as:

� Historical VaR

� Parametric VaR

� Factor-based VaR

each of which will be discussed in details in this Lesson. Briefly speaking, a historical
VaR is a histogram-based distribution. Past returns are collected and then a his-
togram is constructed and hence the tail distribution is obtained. The assumption
of the historical VaR is that history will repeat itself and hence past distribution
will be the distribution of the future.

A parametric VaR is to think that possible losses over a particular horizon in
the future can be drawn form a Gaussian (normal) distribution. Hence, we need
to estimate the two parameters of such a Gaussian distribution from the past data.
As opposed to using the entire histogram, in parametric VaR, we only need two
parameters from the past returns – mean and variance. Then, we can construct a
Gaussian distribution from which we can obtain a VaR by giving a desired left tail
probability.

Finally, a factor-based VaR is to apply a model to estimate what the future
dynamics of returns should look like. As opposed to the parametric VaR, a factor-
based VaR adopts a full model that consists of a number of risk factors, each of which
follows a dynamic random process. It is then not hard to imagine that the number
of parameters in a factor-based VaR model is large and hence the work of estimating
these parameters requires heavy econometric knowledge. As a demonstration, we
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graphically present the idea of VaR. An x% loss (left tail probability) corresponds
to the level of r∗ in the following diagram. Then r∗ is multiplied by the total dollar
position to compute VaR.

Normal Distribution

Profits and Losses

x%

 
Figure 4.3: Value at Risk

In addition to the calculation of the standard deviation calculation, VaR also
includes stress tests, scenario analyses, and worst case analyses.

4.2.1 Historical VaR

A historical VaR is one that is based upon only past return history and nothing else.
A return history is called a histogram.

Histogram

A histogram is not necessarily Gaussian shape (usually not, known as the fat tails).
To compute historical VaR is very simple. One simply sorts the possible losses in the
past (say 1 year which is roughly 250 observations) and choose from the worst till
the pre-set percentage (say 4% VaR) is met (say the 10th observation). An example
is given in Figure 4.4.

Historical VaR is very simple. When the asset mix of a firm is simple (e.g. only
stocks), historical VaR provides a somewhat reliable VaR number (if the process is
stantionary – that is past reflects future). When the asset mix is not so simple (e.g.
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Figure 4.4: A Histogram Sample

stocks and bonds), then a histogram is easy to estimate (but may not be reliable to
reflect the future).

However, historical VaR also suffers from a serious criticism. That is, historical
VaR is not forward looking. Past distributions may not be accurate representations
of the future. Other criticisms of historical VaR include:

� difficult to integrate VaRs of different securities (e.g. bond and stock)

� derivative assets have certain arbitrage-free relationship with its underlying
asset

� empirically very unstable

Examples

An example of FaceBook (FB) is provided as a demonstration. A historical price
series is collected from 2008/5/17 ∼ 2009/1/2 (which has 157 stock prices). On
2008/5/17, the price of the FB stock is $27.77. Assume we invest $ 1 million in FB.
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In other words, we bought 36,010 shares of FB on 2008/5/17. Now (2009/1/2) we
are examing the risk of FB.

First, from 157 stock prices, we compute 156 returns (i.e. percent). A his-
togram is summarized in Figure 4.5. The basic distribution statistics are shown in
Table 4.3.
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Figure 4.5: Facebook Example

Mean -0.002049130 

Std.dev 0.040425118 

Skew 0.204800858 

Extra kurt 2.686877978 

 

Table 4.3: Facebook Distribution Statistics

Historical VaR is to capture the 5% probability of the left tail of the histogram.
In other words, we only need to count the the worst observations till 5%. Given that
there are 156 observations and 5% of that is 7.8 or 8 observations. In other words,
5% historical VaR is the 8th worst observation which is –6.5620%. This is one day
VaR. Since we invest $1 million, the historical VaR is $65,620.

Some arguments are made against the above VaR number. Industry argues
that return VaR’s are not convenient to use and furthermore cannot be combined
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(known as the additive property). Hence, it is more conventional for the industry to
use price changes as opposed to returns. The resulting VaR is known as the dollar
VaR.

For the same example, the FB price change (∆S) histogram is plotted in
Figure 4.6 (as opposed to returns that is ∆S/S). The basic distribution statistics
as in Table 4.4.
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Figure 4.6: Facebook Example

Mean -0.06705130 

Std.dev 1.02337596 

Skew -0.50810290 

Extra kurt 3.04349237 

 

Table 4.4: Facebook Distribution Statistics

The 8th worst observation is –$1.88. This is per share VaR. With 36,010
shares, the historical price change VaR is $67,699. This is slightly different from
(but close to) the return VaR.

Historical VaR can work for any portfolio as long as there is data. Assume we
invest 30% (i.e. $300,000) in FB and 70% (i.e. $700,000) in WMT. As mentioned
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earlier FB is traded at $27.77 on 2008/5/17. The price of WMT is $64.80 on the
same day. The shares purchased, therefore, are 10,803 for both stocks.

For the same 157 days, the return histogram for the portfolio is given in Figure
4.7 with the basic distribution statistics in Table 4.5.
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Figure 4.7: Facebook and Walmart

Mean 9.5066E-05 

Std.dev 0.01273587 

Skew -0.08926460 

Extra kurt 0.27394334 

 

Table 4.5: Combined Distribution Statistics

The eighth worst observation is –2.2857%. This is the portfolio one-day VaR.
Assuming $1 million investment, the historical VaR is $22,857.

Similarly, we can do the price change VaR for the portfolio. Given that the
number of shares of FB and of WMT are the same, we can add the two prices to
conduct the histogram. The histogram is in Figure 4.8 and th the basic distribution
statistics in Table 4.6. This is per combined-share (i.e. one share of each stock).
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Figure 4.8: Facebook and Walmart (Dollar Change)

Mean 0.00923077 

Std.dev 1.21440841 

Skew -0.08985380 

Extra kurt 0.23078100 

 

Table 4.6: Combined Distribution Statistics (Dollar Change)

The eighth worst observation is −2.14. This is for a combination of one share
each. Given that the shares purchased are 10,327 shares for FB and WMT, the
historical VaR is $22,100. 1

The benefit of the historical VaR is that we do not need to compute the large
variance-covariance matrix as the parametric VaR does (to be discussed in the next
section). Historical VaR, we have seen, looks at only the 8th (i.e. the 5th percentile)
observation of the history of the portfolio. However, to use the historical VaR, there
must be data for all the constituents in the portfolio.

Also to be noted is that historical VaR does not suffer from the criticism of

1Note that if the number of shares is not equal, then we cannot do the per share historgram
but do the portfolio value histogram.
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the fat tails. Given that it takes a chosen percentile from the left tail, both skewness
and kurtosis are automatically incorporated and fat tails are supported.

The same principle can be applied to a stock (or any “primary” asset, or known
as a “basic asset class”) and its derivatives (or any derivative assets), such as an
option like call or put. But often the derivatives are traded in an illiquid market
(over the counter) and its prices are not always available. In this case, we can use a
model to “fill in” any missing prices there are in the history. The reason that we can
do so is because there is a strong functional relationship between derivatives and
their underlying assets. In the past several decades, numerous pricing models have
been developed to accurately estimate the derivative prices from their underlying
asset values. Later, we shall demonstrate several classical such pricing models. Here,
we use the most famous Black-Scholes model for call option as a demonstration.

The Black-Scholes model for a call option on stock can be written as

Ct = StN(d1)− e−r(T−t)KN(d2) (4.1)

where St is the current stock price (assuming that t is the current time), K is the
strike price, r is the constant risk-free rate (which can be relaxed to be random
in order to match reality), σ is the volatility (which is standard deviation of stock
returns), T−t is the time till maturity of the option (assuming that T is the maturity
time), N(·) is the standard normal probability, and

d1 =
lnSt − lnK + (r + σ2/2)(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t =

lnSt − lnK + (r − σ2/2)(T − t)

σ
√
T − t

The standard normal probability N(·) can be found in Excel as NORMS-
DIST(x) where x is either d1 or d2.

Table 4.7 demonstrates how option prices are computed using the Black-
Scholes model (column 3) and how portfolio (50-50) returns are computed using
the simulated option prices. The option strike price is $20; interest rate and div-
idend yield are both 0; volatility is 40% (or 0.4); and the time to maturity is 6
months (or 0.5).

With model-generated option prices, we can do the historical VaR as follows.
Figure 4.9 is a histogram where the stock prices are collected historically and yet the
call option prices are computed by the Black-Scholes model. The blue bars represent
the distribution of the FB stock. The red bars represent the call option. The hollow
bars represent the portfolio that consists of one stock and one option. Note that the
histogram of the stock is the same as the one shown earlier.
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Table 4.7: Facebook and Call

We can see that the distribution of option price changes is highly skewed.
Certainly this is no surprise as options are leveraged derivative contracts. By com-
bining the stock with its call option, we increase the risk from holding only stock
but decrease the risk from holding only option. Hence, the risk of the portfolio is
somewhere in between.

The 8th worst price change (5% of the histogram) of the portfolio is −3.46. If
the call option data are available, one could do a true historical VaR using actual
option data.

4.2.2 Parametric VaR

Once not all securities have historical data, historical VaR cannot apply. As a
result, we can use parametric VaR. That is, we employ a model and no longer rely
on history to compute VaR. The simplest parametric VaR model is the adoption of
the Gaussian distribution.

Parametric VaR also has other advantages such as:

� all securities are modeled under a consistent framework (note that historical
VaR combines securities values brute-forced, which could combine “apples with
oranges”)

� parametric VaRs are scalable (square root of time)

An early concept of parametric VaR was one standard deviation value. In other
words, if the market swings by one standard deviation, how much money would be
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Figure 4.9: Facebook and Call

lost. In a normal distribution, one standard deviation is the 16th percentile. In
other words, one standard deviation drop in value can happen with 16% probability.
Similarly, a two-standard deviation loss is 2.3% probability. If the manager wants
to know what is 1% (or 5%) likely loss, under normal distribution, it is 2.326 (1.645)
standard deviations. If one standard deviation is $100,000, then with 1% probability
the portfolio will lose more than $233,000.

Example (continued)

Continue with the FB example, we know from the distribution statistics that the
mean return is −0.205% and the standard deviation is 0.0404. Hence the 95% VaR
is:

−6.86% = −0.205%− 1.645× 0.0404

If position is $1 million, then VaR is $68,543 for parametric (compared with
$65,620 for historical VaR). For the VaR of 1 week, we must do historical VaR
separately, but parametric VaR is simply 68, 543 ×

√
7 = 181, 348. Under dollar

VaR, we have
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−$1.75 = −0.067− 1.645× 1.0234

using the mean and standard deviation given in the previous section. For $1 million
position (i.e. 36,010 shares), this is $63,030 (compared with $67,699 for historical
VaR). Certainly, this VaR can be scaled by the square root of the number of days.

Two-stock example

For two stocks (FB and WMT), the return parametric VaR is $20,854 (compared
with the historical VaR of $22,857) and the dollar parametric VaR is $20,326 (com-
pared with the historical VaR of $21,877).

A portfolio of two stocks, say 40%-60%. Historical VaR is fine as long as the
history of two stocks exists. But if not (say one has a few missing values) then we
cannot do historical VaR (of course we can back-fill these values but that is up to
the assumptions of back-filling.

We could do parametric VaR using the portfolio means and standard deviation,
defined as follows: µP = w1µ1 + w2µ2

σP =
√

w2
1σ

2
1 + 2w1w2ρσ1σ2 + w2

2σ
2
2

(4.2)

where µ represents mean and σ represents standard deviation of stock returns. ρ
is the correlation coefficient between the two stocks. Note that ρσ1σ2 is the covari-
ance between the two stocks (usually a notation σ12 is used). We can conveniently
compute the covariance from data using an Excel function COVAR(array1, array2)

without calculating the correlation coefficient.

Continue the same example in the previous section. The correlation between
two series of returns is -0.13972. Hence, we can compute the variance-co-variance
matrix to be:

0.0000983 -0.0000560

-0.0000560 0.0016342

 
Table 4.8: Variance-Covariance Matrix for Returns

The portfolio consists of 10,803 shares of each stock (at $28.76 for FB and
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$64.80 for WMT) and hence $1 million in total. This represents 70% WMT and
30% FB.

As a result, the portfolio mean and standard deviation (using equation (4.2))
are: −0.0001561 and 0.0.0131 respectively. Hence the 95% VaR is:

−$0.02171 = −0.0001561− 1.645× 0.0.0131

or $21,710 (compared to $22,857 historical VaR).

For the price change VaR it is best to use number of shares as weights. To see
that:

∆V = n1∆S1 + n2∆S2

Compute the variance of the price change:

var[∆V ] = n2
1σ̂

2
1 + 2n1n2σ̂12 + n2

2σ̂
2
2

= [n1 n2]

[
σ̂2
1 σ̂12

σ̂12 σ̂2
2

][
n1

n2

]

where σ̂ presents dollar variances and covariances. The variance-covariance matrix
for the price change becomes Table 4.9. The correlation between the price changes
of the two stocks is -0.14166 (slightly higher than the return correlation of -0.13972).

0.4911838 -0.1016057

-0.1016057 1.0472983

 
Table 4.9: Variance-Covariance Matrix for Price Changes

As a result, the portfolio standard deviation is $12,483 and the 95% VaR is
$20,535 (compared to $21,877), ignoring the mean.

n stock example

The portfolio is characterized by a set of portfolio weights: w1, · · · , wN . The ex-
pected return of the portfolio is:

∑N

i=1
wiµi = w′

1×NMN×1 (4.3)
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and the variance of the portfolio is:

(
w′

1×NΩN×NwN×1

)
1×1

(4.4)

where Ω is the var-cov matrix of stocks. Hence the portfolio VaR is 1.645 (95%) or
2.326 (99%) multiplied the square root of the following variance. Note that for the
price change VaR weights are shares.

An example of combining stock and option

It is quite common for a portfolio to contain derivative assets. This could be yield
enhancements (i.e. using derivatives to increase leverage) or hedging (i.e. using
derivatives to cancel exposures). As a result, we must know how a derivative asset
relates to its underlying asset.

In derivatives pricing, Black and Scholes, in their seminal work which won
them the Nobel prize in 1997, show that delta hedging is a perfect way to reduce
the risk of a derivative asset completely. In other words, one can build a portfolio
with a derivative asset and its underlying asset and reach 0 risk. However, in a
situation of imperfect hedging or yield enhancement, there is still risk and VaR can
still be computed.

The parametric VaR can be computed easily. Assume a portfolio of 1 FB stock
and 1 at-the-money call option (on the same stock). The information of the stock
is: S = 27.77, K = 20, r = 0, σ = 0.4, T − t = 0.5. The option value is computed
as:

C = SN(d1)− e−r(T−t)KN(d2)

= 27.77× 0.9035− 1× 20× 0.8459

= 8.17

(4.5)

Now, you need to calculate (dollar) VaR of your portfolio. The change of value
of your portfolio can be computed as:

dV = dS + dC

= dS +∆dS

= dS(1 + ∆)

(4.6)

where ∆ = N(d1) is the delta of your call.2 As a result, the volatility of dV is:

2Note that this can be the delta of any derivative, which then will not be N(d1).
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Std.Dev.(dV ) = Std.Dev.(dS)× (1 + ∆)

= S × σ ×
√
dt× (1 + ∆)

(4.7)

Now note that we need to specify dt. Since the parametric VaR is proportional
to square root of time, we can specify any period for dt. For simplicity, we can set
dt to be 1 year:

Std.Dev.(dV ) = 27.77× 0.4× (1 + 0.9035)× 1 year

= 21.14
(4.8)

and hence the 1-year VaR is 21.14 × 1.645 = 34.78. Usually when one chooses a
six-momth option, one must have a six-month horizon in mind, so it is not unusal to
set dt to be same as T−t. As a result, the six-month portfolio VaR is 21.14×

√
0.5×

1.645 = 24.59. One could scale this parametric VaR to one-day to be 34.78/
√
252 =

2.19 (252 trading days a year). Note that the historical VaR computed previously
is $3.46 so this parametric VaR is smaller.

Note that if we short the call option, then the option contract would serve as a
hedge. In this way, we drastically reduce the risk. The standard deviation becomes:

Std.Dev.(dV ) = Std.Dev.(dS)× (1−∆)

= S × σ ×
√
dt× (1−∆)

= 27.77× 0.4× (1− 0.9035)

= 1.07 (per annum)

(4.9)

and the 5% six-month portfolio VaR 1.07× 1.645 = 1.76. Scaling it to one-day (126
days), we obtain 0.16. Now we know that using derivatives can completely remove
risk by selecting proper shares of the option to buy (known as the hedge ratio).
Assume that we buy 1,000 shares of the stock (which is worth $27,770 today) and
would like to find out how many shares of 20-strike call option to short. Then the
price change equation becomes:

Std.Dev.(dV ) = S × σ × (1, 000− nC∆)

= 0 (per annum)
(4.10)

We would like the risk to be 0 and hence we can easily solve for the number
of shares nC to short which is equal to nC = 1000

∆
= 1106.78, or roughly 1,107

shares. In other words, by shorting 1,107 shares of call option, the risk is completely
eliminated.
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4.2.3 Factor Model Based VaR

Historical VaR is not very useful. When the asset mix of a firm is simple (e.g.
only stocks), it is easier to estimate a historical probability distribution. But if the
asset mix is not so simple (e.g. stocks and bonds), then a historical probability
distribution is not so easy to estimate. Especially if some assets are not liquidly
traded, then there is no history of these assets. Then the historical VaR method
will fail.

Historical VaR also suffers from a serious criticism. That is, historical VaR is
not forward looking. Past distributions may not be accurate representations of the
future. Hence, it is important that we forecast what future distribution should look
like. Other criticisms of historical VaR include:

� security returns are usually not normal

� assuming a correlation (again, this is normal-based) is inaccurate

� difficult to integrate VaRs of different securities (e.g. bond and stock)

� derivative assets have certain arbitrage-free relationship with its underlying
asset

� empirically very unstable

Given the above obvious reasons, VaR models have become parametric. That
is, we employ a model and no longer rely on history to compute VaR. The stan-
dard VaR model used by the financial industry is a linear factor model. Although
the details vary, a VaR model is typically a linear model in widely observed eco-
nomic variables. As a result, the VaR models used today are connected with P&L
attributions.

From P&L attributions, we know that there are a number of explanatory
factors, such as FX rates, interest rates, equity indicies, various volatilities, · · · , etc.
To put all assets under one VaR umbrella, we need a flexible and yet manageable
model. First of all the risks must be additive. Standard deviations are NOT additive.
So we must use something else. We use delta, or more generally, the first order
sensitivity with respect to the underlying risk factor.

Principal Component Analysis

A PCA (Principal Component Analysis) is implemented to decide how many signif-
icant factors that affect the equity market. Given N stocks, a PCA could extract
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only a handful (say 3∼5) of factors (decided by the eigenvalues of the PCA). These
are known as common factors. One can think of these common factors as macroeco-
nomic variables such as inflation, GDP, exchange rates, etc. However, these factors
extracted using PCA do not have those interpretations (in fact, this the main draw-
back of the PCA methodology, which is the factors are unintepretable.) Despite of
this drawback, PCA is a “honest” methodology. In other words, PCA looks at the
data of equity returns and recognizes (from how highly or lowly these equity returns
are correlated) how many factors (K) are really needed to explain N stocks.3

Figure 4.10 depicts how a 2-stock PCA and a 3-stock PCA provide dimension
reduction. In both cases, each circle represents a pair (or triplet) of stock prices given
any day. In the two-stock case, there are 10 days of data (pair of two stock prices).
X-axis represents the price of stock 1 and y-axis represents the price of stock 2. It
is apparent that the two sets of prices are highly correlated over time. The (dotted)
line drawn is the line-of-best-fit. This line is clearly a linear combination of the two
axes. This line is the first principal component. The second principal component is
orthogonal to the first principal component and this case, it is unimportant.

In the three-stock case, the prices of the stocks are line up on a hyper-plane.
In this case, there are two principal components that are significant and the third
one (which is orthogonal to the plane) is insignificant. If all the triplets would line
up on a line, then only one principal component is significant and two others (which
form a hyper-plane that is orthogonal to the line) would be insignificant.

To use PCA, one must assume a linear factor-based return generating model
of the following:

Ri,t = bi,1F1,t + bi,2F2,t + · · ·+ bi,NFN,t (4.11)

Note that in equation (4.11), an implicit assumption to be aware of is that
the market is complete. In other words, the stocks are enough to “span” the whole
equity market. If the market is complete, then the stocks can span the equity market
and the factors can be only linear combinations 4 of the stocks. This is similar to
the Arraw-Debru securities in the state price theory where primiary assets and their
contingent claims are mutually linear combinations of each other. The state price
theory and Arraw-Debru securities can be found in major finance theory texts (such
as Ingersoll (1989) and Chen (2022)) and are beyond the scope of this book.

The matrix form of equation (4.11) (which is important when we use Excel to
carry out calculations) can be written as:

3That is, PCA can decide how many dimensions (K) are needed to expand the equity space
which is N dimensions.

4This is because the model is linear.
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Figure 4.10: Example: 2-stock and 3-stock
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
R11 R12 · · · R1T

R21
. . .

...
. . .

RN1 RN2 · · · RNT

 =

 b11 · · · b1N
...

...
bN1 · · · bNN




F11 F12 · · · F1T

F21
...

FN1 FN2 · · · FNT


RN×T = BN×N × FN×T

(4.12)

PCA takes the return matrix (i.e. R and returns a set of coefficients (eigen-
vectors) which are the known as factor loadings or “factor betas”. In other words,
a PCA outputs an N × N matrix B. Depending upon the matrix arrangement,
sometimes it is convenient to arrange the return matrix as an T ×N matrix:


R11 R21 · · · RN1

R12
. . .

...
. . .

R1T R2T · · · RNT

 =


F11 F21 · · · FN1

F12
...

F1T F2T · · · FNT


 b11 · · · bN1

...
...

b1N · · · bNN


R′

T×N = F′
T×N ×B′

N×N

(4.13)

Hence, depending on what return matrix (either N×T or T×N) is fed to PCA,
the corresponding factor loading matrix (either B or B′) will be generated. As a
result, we can obtain the factor time series by inverting the beta matrix as follows:

B−1
N×N ×RN×T = FN×T

or

R′
T×N × (B′)−1

N×N = F′
T×N

(4.14)

Note that factor loading matrix is an orthogonal matrix (i.e. inverse equals
transpose or B′ = B−1)). Hence, we can write R′ ×B = F′.

Let us have a simple 2×2 example where only two stocks are used. The returns
of the two stocks are given as follows:
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2 Stock PCA
Date Stock 1 Stock 2

2/9/2006 4.32 4.52
2/10/2006 4.36 4.53
2/13/2006 4.38 4.55
2/14/2006 4.42 4.55
2/15/2006 4.39 4.55

· · · · · · · · ·

After running PCA, we obtain the factor loading matrix (B):

0.970203 -0.242295
0.242295 0.970203

To solve for the factor values, we can solve for the following equations:

0.97× F11 − 0.24× F21 = 4.32

0.24× F11 + 0.97× F21 = 4.52

and hence F11 = 5.29 and F21 = 3.34.

So when we pre-multiply the return matrix (R′) by the factor loading matrix,
we should get the factor value matrix (R′ ×B = F′):

2 Stock PCA
Date Factor 1 Factor 2

2/9/2006 5.286448 3.338602
2/10/2006 5.327679 3.338612
2/13/2006 5.351929 3.353171
2/14/2006 5.390737 3.343479
2/15/2006 5.361631 3.350748

· · · · · · · · ·

This matrix operation is quite easy in Excel. MMULT(· · · , · · · ) can perform
the above matrix multiplication easily. Note that the right area in Excel must be
blocked and then use Ctrl-Shft-Entr.

If all N stocks are independent, then PCA will find identical eigenvalues and
there is no benefit of dimension reduction (i.e. K = N). However, if stocks are
highly correlated, then PCA will find fast-decaying eigenvalues, indicating that the
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first few factors can explain most of the returns (i.e. K < N). In this case, we find
benefits of using PCA.

Theoretically, this can be explained by the following equation:

Ri,t = bi,1F1,t + bi,2F2,t + · · ·+ bi,NFN,t

= µi + (bi,1f1,t + · · ·+ bi,KfK,t) + ei,t

or, dPi,t = ai +
∑K

k=1
bi,kfk,t + ei,t

(4.15)

with µi =
∑K

k=1 bi,kE[Fk]. Note that fj = Fj − E[Fj] and hence E[f1] = 0, E[f2] = 0
and E[ei] = 0.

As we can see, only K factors (out of potentially N factors) are chosen and the
rest are thrown into the “error term”. By making the assumptions that the error
term (which consists of unimportant factors) is negligible, we only need part of the
factor loading matrix: B̂N×K and hence we have the variance-covariance matrix of
the stocks being replaced with the variance-covariance of the factors as follows:

ΩP (N×N) = B̂N×KΩF (K×K)B̂
′
K×N (4.16)

where ΩP is the variance-covariance matrix of stocks. These factor values are also
used for simulations. Note that only the significant factors will be used for predicting
stock returns. So out of N factors, only K actors are significant and used. The rest
are treated as errors (idiosyncratic).

Portfolio returns over time are computed as:

∑N

i=1
wiRi,t (4.17)

so the entire time series of the portfolio returns can be computed as:

w′
1×NRN×T (4.18)

Using PCA, the portfolio is:

w′
1×NRN×T = w′

1×NBN×KFK×T + w′
1×NeN×T (4.19)

and hence the portfolio variance:

σ2
P =

(
w′

1×NΩP (N×N)wN×1

)
1×1

(4.20)
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can be re-expressed in terms of factors as follows:(
w′

1×NB̂N×KΩF (K×K)B̂
′
K×NwN×1

)
1×1

(4.21)

As a result, the VaR number (at α, say 5%) of the portfolio is the following
calculation:

VaR = N−1(α)×
√
w′ΩPw

= N−1(α)×
√
w′B̂ΩF B̂′w

(4.22)

This method reduces the computation complexity of an N × N variance-
covariance matrix to a K ×K variance-covariance matrix. Furthermore, the factor
model can be estimated easily.

In simulations, factors are assumed normal with the means and variances esti-
mated by the PCA. Error terms are also normal with mean 0 and variances estimated
by the PCA. This way, we can construct the simulated return series of the stocks
and estimate the VaR that is forward-looking.

Regression Model

PCA has a severe disadvantage that the factors carry no intuitive meaning. Often
modelers need to run analyses to investigate what these factors mean. The usual
method is correlate factor values with known economic indicators (believing that
these factors reflect fundamental economy).

An alternative is to directly use known economic indicators as factors. Then
we simply run regressions with these observable economic indicators as independent
variables.

Ri,t = ai + bi,1x1,t + bi,2x2,t + · · ·+ ei,t (4.23)

where the explanatory variables x in the regression can be any chosen economic
variables. Or one could use the popular Fama-French factors where the common
factors are posted on the French website. The Fama-French factors have gained
tremendous popularity over the years and have become the standard of empirical
asset pricing.

A major (econometric) problem of the regression model is that the explanatory
variables are not necessarily uncorrelated (actually, they are usually highly corre-
lated). This raises a serious issue of non-collinearity which can bias the estimates and
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the significance of the estiamtes. Furthermore, it is very easy to neglect important
variables (known as the under-identification or mis-identification problem).

A More Complex Fixed Income Example

In this example, we limit ourselves to only interest rate risk. Let the instantaneous
rate follow a three-factor model (where factors are independent of one another):

r = y1 + y2 + y3 (4.24)

where factors are independent and each factor yi is assumed to follow either the
Vasicek or the CIR model as follows:{

dyk = αk(µk − yk)dt+ σkdWk Vasicek
dyk = αk(µk − yk)dt+ σk

√
ykdWk CIR

(4.25)

where k = 1, 2, 3. Under either model, we have a closed form solution to the discount
factor (for each k):

Yk(t, T ) = Êt

[
exp

{
−
∫ T

t

yk(u)du

}]
= Ak(t, T ) exp{−Bk(t, T )yk(t)}

(4.26)

Under the Vasicek model we have the following closed-form solutions to Ak

and BK :

− lnAk(t, T ) =

(
µk −

σkλk

αk

− σ2
k

2α2
k

)
(T − t−Bk(t, T )) +

σ2
kBk(t, T )

2

4αk

Bk(t, T ) =
1− e−αk(T−t)

αk

(4.27)

and under the CIR model we have:

Ak(t, T ) =

[
2γke

(αk+λk+γk)(T−t)/2

(αk + λk + γk) (eγk(T−t) − 1) + 2γk

]2αkµk/σ
2
k

Bk(t, T ) =
2
(
eγk(T−t) − 1

)
(αk + λk + γk) (eγk(T−t) − 1) + 2γk

γk =
√

(αk + λk)2 + 2σ2
k

(4.28)
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where λ is the market price of risk. The fundamental factors, yk’s, span the entire
risk free fixed income universe. Hence, the job now is to estimate these factors,
namely we need to estimate αk, µk, σk, and λk for k = 1, · · · , K. To estimate this,
we need to implement the MLE (maximum likelihood estimation). In an exercise
at the end of this Chapter, readers can practice these calculations with parameters
given (estimated by Chen and Yeh and Chen and Scott).

Now because the factors are assumed independent, the risk-free discount factor
can be written as:

P (t, T ) = Êt

[
exp

{
−
∫ T

t

r(u)du

}]
= Y1(t, T )Y2(t, T )Y3(t, T )

= A1(t, T )A2(t, T )A3(t, T ) exp{−B1(t, T )y1 −B2(t, T )y2 −B3(t, T )y3}
(4.29)

Then the price change can be easily derived as:

dP (t, T ) = P (t, T )
[∑3

k=1
−Bk(t, T )dyk(t)

]
+

1

2
P 2(t, T )

[∑3

k=1
B2

k(t, T )(dyk(t))
2
]

= P (t, T )
[∑3

k=1
−Bk(t, T )dyk(t)

]
+

1

2
P 2(t, T )

[∑3

k=1
B2

k(t, T )σ
2
kyk(t)

]
=
∑3

k=1
fk + gkdyk(t)

(4.30)

where

fk =
1

2
P 2(t, T )B2

k(t, T )σ
2
kyk(t)

gk = −P (t, T )Bk(t, T )

Define an arbitrary coupon bond as:

Π = Π(c, Tn) = c
∑n

i=1
P (t, Ti) + P (t, Tn) (4.31)

where nj is the number of coupons paid by bond j and cj is same coupon at each
time Ti.

Then, we can derive the price change of a coupon bond as:
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dΠ = c
∑n

i=1
dP (t, Ti) + dP (t, Tn)

= c
∑n

i=1

∑3

k=1
fi,k + gi,kdyk(t) +

∑3

k=1
fn,k + gn,kdyk(t)

= a0 + a1dy1 + a2dy2 + a3dy3

(4.32)

where

fi,k =
1

2
P 2(t, Ti)B

2
k(t, Ti)σ

2
kyk(t)

gi,k = −P (t, Ti)Bk(t, Ti)

and for k = 1, 2, 3:

ak = c
∑n

i=1
gi,k + gn,k

Hence, we can easily compute variances and covariances as:

var[dP ] = P 2(B2
1v

2
1 +B2

2v
2
2 +B2

3v
2
3)

cov[dP, dΠ] = b1v
2
1 + b2v

2
2 + b3v

2
3

var[dΠ] = a21v
2
1 + a22v

2
2 + a33v

2
3

(4.33)

where (for k = 1, 2, 3)

bk = ak(−Bk)P

v2k = var[dyk]
(4.34)

If we invest n1 units in P and n2 units in Π,5 then the 5% VaR is:

VaR5% = 1.645×

√√√√[n1, n2]

[
var[dP ] cov[dP, dΠ]

cov[dP, dΠ] var[dΠ]

] [
n1

n2

]
(4.35)

To write it in a matrix form for the var-cov matrix:

5Note that the total investment amount is V = n1P + n2Π and weights are w1 = n1P/V and
w2 = n2Π/V .
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[
var[dP ] cov[dP, dΠ]

cov[dP, dΠ] var[dΠ]

]
=

[
−PB1 −PB2 −PB3

a1 a2 a3

] v21 0 0
0 v22 0
0 0 v23

 −PB1 a1
−PB2 a2
−PB3 a3

 (4.36)

Hence, similar to the PCA, we can write:

B̂ =

 −PB1 a1
−PB2 a2
−PB3 a3

 (4.37)

which plays the role of the factor loading matrix (which is N ×K) as in equation
(4.22).

We can easily compute any other covariance and fill the variance-covariance
matrix. As we can see, once all the parameters are estimated, we complete the
variance-covariance matrix.

If we do not want to use a full model (CIR or Vasicek), we can let the funda-
mental factors to be 11 key Treasury rates, ξt,T . Instead of using the CIR or Vasicek
model, we adopt the following yield to maturity formula:

P (t, T ) = e−ξt,T (T−t) (4.38)

and the coupon bond formula remains the same. The market only observes 11 key
rates but we need all the rates for T . So we need some interpolation method. For the
time being, lets assume piece-wise flat. That is y(t, T ) = y(t, Tj) for Tj < T < Tj+1.

Commonly (according to a Goldman Sachs white paper), there are three factors
to span the yield curve:

� short rate

� slope

� curvature (convexity)

and henceK = 3 seems to be appropriate (even though the factors are unobservable).
If we have a stock-fixed income portfolio, then we may need factors for the stocks,
and commonly:
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� market index (e.g., S&P 500)

� industry indices (e.g., SIC code 9 industries)

PCA can easily incorporate the factors in a augmented matrix. For parametric
models, we may consider the Merton-Rabinovitch model (1973-1989) where both
stocks and interest rates can be random.

4.3 Marginal and Component VaR

Given that VaR is such a powerful and intuitive risk measure, it is then quite im-
portant to break down this number into various divisions of the company in order
to see which division of the company is responsible for the most risk born by the
company. This is understood as the component VaR.

A three-stock example in the following demonstrates how each component VaR
is calculated.

σ2
P =

[
x1 x2 x3

]  σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33


x1

x2

x3


=


x2
1σ11 + x1x2σ12 + x1x3σ13 → X1

x1x2σ12 + x2
2σ22 + x2x3σ23 → X2

x1x3σ13 + x2x3σ23 + x2
3σ33 → X3

(4.39)

Taking April 1, 2003 till October 6, 2009 weekly prices of JNJ (Johnson &
Johnson), JPM (JP Morgan), and KO (Coke Cola), we obtain the following variance-
co-variance matrix in Table 4.10.

 JNJ JPM KO 

JNJ 0.000514 0.000575 0.000372 

JPM 0.000575 0.004493 0.000631 

KO 0.000372 0.000631 0.000714 

 
Table 4.10: JNJ, JPM, KO

We further assume that the investment amounts on these stocks are $10,000
(35.71%), $6,000 (21.42%), and $12,000 (42.86%). The portfolio standard deviation
in percent terms is 0.02685 and in dollar terms $751.852. As a result, the 5% VaR
is $1,236.69.
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To calculate the three component VaRs for JNJ, JPM, and KO, we first note
that x1 = 10, 000, x2 = 6, 000, and x3 = 12, 000. Hence, X1 = 130, 635, X2 =
241, 674, and X3 = 192, 972, which sum to a total of 565,281.399. As a result,
each X1 ∼ X3 accounts for 23.11%, 42.75%, and 34.14% respectively. Using these
percentages to allocate the portfolio VaR of $1,236.69, we get the three component
VaRs as in Table 4.11 which by construction add up to the portfolio VaR of $1,236.69.

JNJ 285.795

JPM 528.720

KO 422.171

 
Table 4.11: Component VaRs

Note that from Table 4.10, we can directly obtain individual VaRs to be
$372.987, $661.505, and $527.564 for JNJ, JPM, and KO respectively (as in Ta-
ble 4.12), which totals to $1,562.06 – greater than the portfolio VaR of $1,236.69.
The difference is of course known as the diversification effect. Given that individual
VaRs do not add up to the portfolio VaR, we cannot see how much each stock is
contributed to the portfolio VaR. As a result we need component VaRs.

JNJ 372.987

JPM 661.505

KO 527.564

 
Table 4.12: Individual VaRs

Another useful concept is marginal VaR. Marginal VaRs measure the risk re-
duction if one division of the company is eliminated. In our example, it is merely
VaRs with an elimination of one stock at a time.

Y1 =

√√√√√√[ x1 x2 x3

]  σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33


x1

x2

x3

−

√√√√[ x2 x3

] [ σ22 σ23

σ23 σ33

][
x2

x3

]

Y2 =

√√√√√√[ x1 x2 x3

]  σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33


x1

x2

x3

−

√√√√[ x1 x3

] [ σ11 σ13

σ13 σ33

][
x1

x3

]

Y3 =

√√√√√√[ x1 x2 x3

]  σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33


x1

x2

x3

−

√√√√[ x1 x2

] [ σ11 σ12

σ12 σ22

][
x1

x2

]
(4.40)
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and each marginal VaR is Yi × 1.645 (for 5% VaR). This way, we can see how by
eliminating the first stock, how much VaR can be reduced. The marginal VaR for
JNJ is $256.057 (note that the two-stock portfolio of KO and JPM has a VaR of
$980.629). The marginal VaRs for JPM and KO are left for an exercise.

4.4 Decay

It is difficult to choose a proper window for VaR calculations. If the window is too
short, then the results will miss important economic cycles. If the window is too
long, then the results lose the relevancy as recent history which is more relevant is
weighted the same as distant history which is no so relevant.

To overcome this problem, it is quite common for a bank to adopt a set of
decaying weights where more recent history is weighted more heavily than more
distant history. Also, in this regard, one can take as long historical data as possible.

To do this, we first remind the readers that an unweighted standard deviation
formula is:

σ =

√
1

n

∑n

i=1
(rt−i − r̄t)2 (4.41)

where r̄t =
1
n
Σn

i=1rt−i is the average. In other words, each observation is weighted
by 1/n. We could weigh each observation differently. One popular method is an
exponential decay where more recent data are weighted more heavily than more
distant data. Let θ < 1. Adjust each term in the above formula as follows:

θi−1(rt−i − r̄t)
2 (4.42)

where the most recent term rt−1 is weighted 1. Note that,

1 + θ + · · ·+ θn−1 =
1− θn

1− θ
(4.43)

and hence we have:

σt =

√√√√ 1− θ

1− θn

n∑
i=1

θi−1(rt−i − r̄t)2 (4.44)
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Note that as n → ∞, θn → 0 and the adjustment simplifies to 1
1−θ

. Equation
(4.44), however, becomes an infinite sum. Luckily, we can work out a recursive
equation as follows. We can write equation (4.44) as follows:

σt =

√√√√(1− θ)
∞∑
i=1

θi−1(rt−i − r̄t)2

σt−1 =

√√√√(1− θ)
∞∑
i=1

θi−1(rt−1−i − r̄t−1)2

(4.45)

and hence we can then write:

σ2
t = θσ2

t−1 + (1− θ)(rt−1 − r̄t)
2 (4.46)

assuming that r̄t−1 ∼ r̄t. This recursive equation is convenient and avoids the
infinite sum. Note that this result is similar to EWMA (exponentially weight moving
average) described in Chapter 10.

4.5 Forward Looking VaR

All the VaRs computed so far are history. They at best tell us what has happened.
They provide no value in the jobs of risk management at hand. Risk management
is all about managing probabilities. To do that, one must have forward-looking
VaRs. As a result, we must forecast future VaRs. If we use VaRs from the history
for the future, we are implicitly assuming that the world is static, i.e. the future
should look exactly like the past. If not, then we must simulate the future (and
use the past as guidance). To do that, historical VaRs are pretty much out of the
question since nothing there we can use for simulations. Parametric VaRs are good
because volatility can be forecasted using either a volatility model such as GARCH
or implied volatility from the option market. Factor-based VaRs are the best as
we can estimate the entire factor model and perform forecasting. Simulations are
introduced in Chapter 9.

4.6 Exercises

Given the parameter values as follows (estimated by Chen and Yeh (2009) and Chen
and Scott (1993)), compute the VaR number in equation (4.35). We use prices of
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the two bonds to solve for y1(t) and y2(t). Then, with the following parameter values
we can proceed with the calculations.

 Chen-Scott Estimation  New Estimation   

         

 factor 1 std.err. factor 2 std.err. factor 1 std.err. factor 2 std.err. 

α 1.834100 0.222800 0.005212 0.115600 0.879967 0.001014 0.004423 0.000014 

µ 0.051480 0.005321 0.030830 0.683300 0.043822 0.000009 0.029555 0.000097 

σ 0.154300 0.005529 0.066890 0.002110 0.097855 0.001429 0.095974 0.000018 

λ -0.125300 0.180600 -0.066500 0.115400 -0.146140 0.000151 -0.178846 0.000361 

         

 likelihood function = 7750.82  likelihood function = 11722.81  

 # of obs. 470   # of obs. 416   

 

Figure 4.11: CIR parameters: 2-factor model



Chapter 5

Fixed Income Risk Management

5.1 Interest Rates

First of all, we must note that there are a large number of interest rates that all
need to be modeled. Usually we start with the least risky rate, which is a collection
of the U.S. Treasury rates. The U.S. economy is the world’s largest (its GDP is
nearly three times as much as that of the second largest which is China) and hence
its government bonds (Treasuries) are regarded as the least risky investments.

5.1.1 US Treasuries

There are plenty of popular interest rate models used by various financial institu-
tions. The most popular one is perhaps the Heath-Jarrow-Morton model published
in 1992 in Econometrica.

There are a variety of Treasuries outstanding:

� T bills – zero coupon, up to 1 year

� T notes – semi-annual coupon, 1 10 years

� T bonds – semi-annual coupon, 10 30 years

� CMT (Constant Maturity Treasury)

� TIPS (Treasury Inflation Protected Security)

� STRIPS (Separate Trading of Registered Interest and Principal Securities)
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Treasury bills (T bills) are less than one year zero coupon Treasury securities.
Three T bills are auctioned once a week on Thursdays – 4 week (Monday auction),
13 week, and 26 week T bills. Hence, these are “on-the-run” T bills.

Treasury notes (T notes) usually auctioned every month. The “on-the-run”
T notes are currently 2, 5, and 10 year T notes. Only 30-year Treasury bonds (T
bonds) are auctioned right now, four times a year, in February, May, August, and
November.

TIPS are inflation protected Treasuries and are auctioned for 5 and 10 years
only on an irregular basis. TIPS pay coupons that are inflation adjusted where the
adjustment is tied to CPI (Consumer Price Index) that is published by the monthly
by the Bureau of Labor Statistics of the United States Department of Labor.

CMTs are interpolated (weighted average of Treasury yields) Treasury inter-
est rates published on the fly by the Treasury department. Given that the actual
Treasury issues have fixed maturities, and hence cannot provide good benchmarking
for other interest rates (e.g. swap rates), the Treasury department compiles interest
rates for “constant maturities”. Note that CMT rates are “semi-annual par rates”,
which means, it is the coupon rate of a Treasury issue of the given tenor sold at
the face value. Currently, there are 1, 3, 6 month, and 1, 2, 3, 5, 7, 10, 20, 30 year
CMTs available.

STRIPS are T-Notes, T-Bonds and TIPS whose interest and principal portions
of the security have been separated, or “stripped; these may then be sold separately
in the secondary market. The name derives from the notional practice of literally
tearing the interest coupons off (paper) securities. The government does not directly
issue STRIPS; they are formed by investment banks or brokerage firms, but the
government does register STRIPS in its book-entry system. They cannot be bought
through TreasuryDirect, but only through a broker.

There are two interest rates controlled by the Federal Reserve Bank.

� FED fund rate

� Discount rate

The Fed funds rate is the interest rate at which banks lend their federal funds
at the Federal Reserve to banks, usually overnight. Hence, it is an interbank lending
rate. This rate is usually higher than the short term Treasury rates.

The discount rate is the interest rate at which member banks may borrow
short term funds directly from a Federal Reserve Bank. The discount rate is one of
the two interest rates set by the Fed, the other being the Federal funds rate. The
Fed actually controls this rate directly, but this fact does not really help in policy
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implementation, since banks can also find such funds elsewhere. This rate is lower
than the short term Treasury rates.

5.1.2 LIBOR (London Interbank Offer Rate)

LIBOR stands for London InterBank Offer Rate and is an interbank rate between
major commercial banks, led by the Bank of England, in London. LIBORs have
become the benchmark interest rates in the financial industry (in place of Treasury
rates), mainly because these are the funding costs of most banks in the financial
industry. There are three popular LIBOR rates set by the major commercial banks:
1 month, 3 month, and 6 month rates. However, there are long term LIBOR deriva-
tives such as Eurodollar futures contracts and interest rate swaps.

� LIBOR (London Interbank Offer Rate)

� Eurodollar futures

� IRS (Interest Rate Swaps)

Given that U.K. has no central bank, unlike the U.S., the Bank of England
serves the role of the central bank for the U.K. As a result, LIBOR symbolizes the
government rate. However, technically the Bank of England is not the central after
all, LIBOR as a result remains a private interest rate.

LIBOR is published by the British Bankers Association (BBA) after 11:00 am
(and generally around 11:45 am) each day, London time, and is a filtered average
of inter-bank deposit rates offered by designated contributor banks, for maturities
ranging from overnight to one year. There are 16 such contributor banks and the
reported interest is the mean of the 8 middle values. The shorter rates, i.e. up to
6 months, are usually quite reliable and tend to precisely reflect market conditions.
The actual rate at which banks will lend to one another will, however, continue to
vary throughout the day.

Floating rate products use LIBORs as benchmarks, mainly because companies
that issue floating rate bonds cannot borrow at the Treasury rates. Although the
actual situations may change, by and large, LIBORs are in between AAA and AA
corporate yields.

The LIBOR Scandal was a highly-publicized scheme in which bankers at sev-
eral major financial institutions colluded with each other to manipulate the London
Interbank Offered Rate (LIBOR). The scandal sowed distrust in the financial in-
dustry and led to a wave of fines, lawsuits, and regulatory actions. Although the
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scandal came to light in 2012, there is evidence suggesting that the collusion in
question had been ongoing since as early as 2003.

Many leading financial institutions were implicated in the scandal, including
Deutsche Bank (DB), Barclays (BCS), Citigroup (C), JPMorgan Chase (JPM), and
the Royal Bank of Scotland (RBS).

As a result of the rate fixing scandal, questions around LIBOR’s validity as a
credible benchmark rate have arisen and it is now being phased out. According to
the Federal Reserve and regulators in the U.K., LIBOR will be phased out by June
30, 2023, and will be replaced by the Secured Overnight Financing Rate (SOFR).
As part of this phase-out, LIBOR one-week and two-month USD LIBOR rates will
no longer be published after December 31, 2021.1

5.1.3 SOFR (Secured Overnight Financing Rate)

[Investopedia]

The secured overnight financing rate (SOFR) is a benchmark interest rate for
dollar-denominated derivatives and loans that is replacing the London interbank
offered rate (LIBOR). Interest rate swaps on more than $80 trillion in notional debt
switched to the SOFR in October 2020. This transition is expected to increase
long-term liquidity but also result in substantial short-term trading volatility in
derivatives.

5.1.4 SONIA (Sterling Overnight Interbank Average)

The Sterling Overnight Index Average, abbreviated SONIA, is the effective overnight
interest rate paid by banks for unsecured transactions in the British sterling market.
It is used for overnight funding for trades that occur in off-hours and represents the
depth of overnight business in the marketplace.

The Sterling Overnight Interbank Average Rate provides traders and financial
institutions with an alternative to the London Interbank Offered Rate, or LIBOR,
as a benchmark interest rate for short-term financial transactions.

5.1.5 EONIA (Euro Overnight Index Average) and ¿STR
(Euro Short-Term Rate)

discontinued.
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The Euro Overnight Index Average (EONIA) rate is the average overnight
reference rate for which European banks lend to one another in euros. The EONIA
rate is the interest rate for one-day loans between European banks and is considered
an interbank rate. However, European regulatory reforms have resulted in a push
to replace EONIA by January 2022.1 by ¿STR.

The euro short-term rate (¿STR) is published on each TARGET2 business day
based on transactions conducted and settled on the previous TARGET2 business
day.

The ECB published the ¿STR for the first time on 2 October 2019, reflecting
trading activity on 1 October 2019.

The ECB does not charge for the ¿STR or license its use.

5.1.6 OIS (Overnight Index Swap)

[Wikipedia]

An overnight indexed swap (OIS) is an interest rate swap (IRS) where the
floating leg is tied to a daily compounded overnight rate over the floating coupon
period. The exact compounding formula depends on the type of such overnight rate.
The index rate is typically the rate for overnight lending between banks, either non-
secured or secured, for example the Federal funds rate or SOFR for US dollar, ¿STR
(formerly EONIA) for Euro or SONIA for sterling. The fixed rate of OIS is typically
an interest rate considered less risky than the corresponding interbank rate (LIBOR)
because there is limited counterparty risk.

The LIBOR–OIS spread is the difference between IRS rates, based on the
LIBOR, and OIS rates, based on overnight rates, for the same term. The spread
between the two rates is considered to be a measure of health of the banking system.
It is an important measure of risk and liquidity in the money market, considered
by many, including former US Federal Reserve chairman Alan Greenspan, to be a
strong indicator for the relative stress in the money markets. A higher spread (high
Libor) is typically interpreted as indication of a decreased willingness to lend by
major banks, while a lower spread indicates higher liquidity in the market. As such,
the spread can be viewed as indication of banks’ perception of the creditworthiness of
other financial institutions and the general availability of funds for lending purposes.

The LIBOR-OIS spread has historically hovered around 10 basis points (bps).
However, in the midst of the financial crisis of 2007–2010, the spread spiked to an all-
time high of 364 basis points in October 2008, indicating a severe credit crunch. Since
that time the spread has declined erratically but substantially, dropping below 100
basis points in mid-January 2009 and returning to 10–15 basis points by September
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2009.

5.1.7 Agencies

Agencies refer to three government supported financial institutions that underwrite
and guarantee residential mortgages.

corporate bonds of GNMA, FNMA, FHLMC

Government National Mortgage Association (GNMA, pronounced Gennie Mae),
Federal National Mortgage Association (FNMA, pronounced Fannie Mae), and Fed-
eral Home Loan Mortgage Corporation (FHLMC, pronounced Freddie Mac) are
three government agencies that underwrite residential mortgages to the secondary
market.

These three agencies were set up after the World War II to help low income
and military veterans to purchase homes. Recently the congress, after recognizing
the historical mission has been successfully accomplished, announced that they were
no longer government agencies but private financial institutions. Yet, investors still
believe that there is implicit government backing when these three agencies are in
trouble. As a result, they issue corporate bonds with lower yields. An informal
rating for these three agencies is AAAA, one rating higher than the highest rating
given by rating agencies.

5.2 Interest Rate Models

There are two broad branches of interest rate models, known as the reduced-form (or
no-arbitrage) models and structural (or equilibrium) models. Reduced-form models
focus on market information and hence take market observables (such as interest
rates and volatilities) as inputs. Structural models focus on economic fundamentals
and hence take economic drivers as inputs.

The most famous structural models for the interest rates are Vasicek (1977)
and Cox-Ingersoll-Ross (1985) which can be written as follows:

drt = α(µ− rt)dt+ σdW Vasicek
drt = α(µ− rt)dt+ σ

√
rtdW Cox - Ingersoll - Ross

(5.1)

and the risk-free discount factor can be derived as:

Pt,T = At,T e
−rtBt,T (5.2)
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− lnAt,T =

(
µ− σλ

α
− σ2

2α2

)
(T − t−Bt,T ) +

σ2B2
t,T

4α

Bt,T =
1− e−α(T−t)

α

(5.3)

under the Vasicek model and

At,T =

[
2γe(α+λ+γ)(T−t)/2

(α + λ+ γ) (eγ(T−t) − 1) + 2γ

]2αµ/σ2

Bt,T =
2
(
eγ(T−t) − 1

)
(α + λ+ γ) (eγ(T−t) − 1) + 2γ

γ =
√

(α + λ)2 + 2σ2

(5.4)

under the CIR model where λ is the market price of risk. A simple numerical
example is provided below.

For the Vasicek model, the parameters can be reasonably set as:1

Inputs
α 0.2456
µ 0.0648
σ 0.0289
λ -0.2718

r(t) 0.0600

and the output yield curve is given below:

1This was estimated by Chen and Yang.
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Term Structure
T − t P (t, T ) y(T − t) T − t P (t, T ) y(T − t)
1 0.9380 0.0641 16 0.2639 0.0833
2 0.8740 0.0673 17 0.2413 0.0836
3 0.8106 0.07 18 0.2207 0.0840
4 0.7491 0.0722 19 0.2017 0.0842
5 0.6905 0.0741 20 0.1844 0.0845
6 0.6352 0.0756 21 0.1686 0.0848
7 0.5835 0.077 22 0.1541 0.085
8 0.5354 0.0781 23 0.1409 0.0852
9 0.4908 0.0791 24 0.1288 0.0854
10 0.4497 0.0799 25 0.1177 0.0856
11 0.4118 0.0807 26 0.1076 0.0857
12 0.3769 0.0813 27 0.0984 0.0859
13 0.3449 0.0819 28 0.0899 0.086
14 0.3155 0.0824 29 0.0822 0.0862
15 0.2886 0.0829 30 0.0751 0.0863

For the CIR model, the parameters can be reasonably set as:2

Inputs
α 0.2456
µ 0.0648
σ 0.14998
λ -0.129

r(t) 0.06

The resulting term structure by the CIR model is given as follows.

2This was estimated by Chen and Yang.



Interest Rate Models 89

Term Structure
T − t P (t, T ) y(T − t) T − t P (t, T ) y(T − t)
1 0.9379 0.0641 16 0.2641 0.0832
2 0.8738 0.0675 17 0.2417 0.0835
3 0.8099 0.0703 18 0.2212 0.0838
4 0.7481 0.0726 19 0.2025 0.0841
5 0.6891 0.0745 20 0.1853 0.0843
6 0.6336 0.0761 21 0.1696 0.0845
7 0.5818 0.0774 22 0.1552 0.0847
8 0.5337 0.0785 23 0.142 0.0849
9 0.4893 0.0794 24 0.1299 0.085
10 0.4483 0.0802 25 0.1189 0.0852
11 0.4107 0.0809 26 0.1088 0.0853
12 0.3761 0.0815 27 0.0996 0.0854
13 0.3443 0.082 28 0.0911 0.0856
14 0.3152 0.0825 29 0.0834 0.0857
15 0.2886 0.0829 30 0.0763 0.0858

The most widely used reduced-form model is the Heath-Jarrow-Morton model.
Here we introduce a “baby-version” of the model first derived by Ho and Lee (1986).
The model we use for the “risk-free” rate (represented by the U.S. Treasuries) is the
Ho-Lee (HL) model. The HL model is a special case of the popular Heath-Jarrow-
Morton (HJM) model and is very easy to implement.

The Ho-Lee model is a “forward rate” model and hence belongs to the HJM
family (although the Ho-Lee model was published 6 years prior to the HJM model).
However, the original version of the Ho-Lee model is a “forward price” model. It
was Phil Dybvig who then extended the Ho-Lee model to continuous time, forward
rate model in 1989.

Define the zero-coupon bond price as P (i, n, j) where i is current time, n is
maturity time, and j represents state of economy. The Ho-Lee model is a simple
formula as follows:


P (i, i+ k, j) =

P (i− 1, i+ k, j)

P (i− 1, i, j)
d(k)

P (i, i+ k, j + 1) =
P (i− 1, i+ k, j)

P (i− 1, i, j)
u(k)

(5.5)

where
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u(k) =
1

p+ (1− p)δk

d(k) =
δk

p+ (1− p)δk

and p is the risk-neutral probability and δ is the “volatility” parameter (that is,
δ itself is not volatility but it is directly related to volatility.) As we can see,
when δ = 1, then u(k) = d(k) for all k. Then there is no volatility. To maintain
u(k) > d(k) > 0, it must be that 0 < δ < 1. As δ becomes small the volatility
becomes large.

Take a four-year yield curve as an example:

Yield Curve
time to maturity discount factor yield to maturity

1 0.9524 0.049979
2 0.8900 0.059998
3 0.8278 0.065021
4 0.7686 0.068009

Given the current term structure of discount factors, we then can compute the
forward prices,

0.934481 =
0.8900

0.9524

0.869173 =
0.8278

0.9524

0.807014 =
0.7686

0.9524

Note that forward rates are returns of forward prices. For example:

f0,1,2 =
1

0.934481
− 1 =

(1 + 5.9998%)2

1 + 4.9979%
− 1 = 7.0112%

f0,1,3 =

√
1

0.869173
− 1 =

√
(1 + 6.5021%)3

1 + 4.9979%
− 1 = 7.2623%

f0,1,4 =
3

√
1

0.807014
− 1 =

3

√
(1 + 6.8009%)3

1 + 4.9979%
− 1 = 7.4088%

Different from the equity binomial that has only one pair of u and d. In our
example, we set p = 0.6 and δ = 0.9 and we have:
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Ho-Lee Pert Funcs
k d(k) u(k)
0 1.000000 1.000000
1 0.937500 1.041667
2 0.876623 1.082251
3 0.817631 1.121579
4 0.760749 1.159501

In the HL model, the next period’s up term structure and down term structure
are computed by applying the proper u and d on the forward price. For convenience,
we introduce the following labeling system. P (i, n, j) represents the discount factor
value at current time i, for maturity time n, and in state j. For convenience, we
also label the lowest state 0 and 1, 2, . . . as we go up. So for today, we have four
discount factors P (0, 1, 0), P (0, 2, 0), P (0, 3, 0), P (0, 4, 0) which are 0.9524, 0.8900,
0.8278, and 0.7686 respectively. For next year, we apply the forward prices computed
above and multiply them by corresponding u’s and d’s. For example,

0.9734 = P (1, 2, 1)︸ ︷︷ ︸
up

=
P (0, 2, 0)

P (0, 1, 0)
u(1) =

0.8900

0.9524
× 1.041667

0.8761 = P (1, 2, 0)︸ ︷︷ ︸
down

=
P (0, 2, 0)

P (0, 1, 0)
d(1) =

0.8900

0.9524
× 0.9375

0.9407 = P (1, 3, 1)︸ ︷︷ ︸
up

=
P (0, 3, 0)

P (0, 1, 0)
u(2) =

0.8278

0.9524
× 1.082251

0.7619 = P (1, 3, 0)︸ ︷︷ ︸
down

=
P (0, 3, 0)

P (0, 1, 0)
d(2) =

0.8278

0.9524
× 0.876623

0.9051 = P (1, 4, 1)︸ ︷︷ ︸
up

=
P (0, 4, 0)

P (0, 1, 0)
u(3) =

0.8278

0.9524
× 1.121579

0.6598 = P (1, 4, 0)︸ ︷︷ ︸
down

=
P (0, 4, 0)

P (0, 1, 0)
d(3) =

0.7686

0.9524
× 0.817631

Put in the table,
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Year = 1
current maturity state state state state state
time time 0 1 2 3 4
1 1 1 1

2 0.8761 0.9734
3 0.7619 0.9407
4 0.6598 0.9051

Now we have two term structures of the next year (time 1). The task continues
to time 2. For each term structure in time 1, we shall compute two term structures
in time 2 (up and down) by applying the same principle. The up and down term
structures of the left are:

0.9060 = P (2, 3, 1) =
P (1, 3, 0)

P (1, 2, 0)
u(1) =

0.7619

0.8761
× 1.041667

0.8154 = P (2, 3, 0) =
P (1, 3, 0)

P (1, 2, 0)
d(1) =

0.7619

0.8761
× 0.9375

0.8151 = P (2, 4, 1) =
P (1, 4, 0)

P (1, 2, 0)
u(2) =

0.6598

0.8761
× 1.082251

0.6603 = P (2, 4, 0) =
P (1, 4, 0)

P (1, 2, 0)
d(2) =

0.6598

0.8761
× 0.876623

and of the right are:

1.0066 = P (2, 3, 2) =
P (1, 3, 1)

P (1, 2, 1)
u(1) =

0.9407

0.9734
× 1.041667

0.9060 = P (2, 3, 1) =
P (1, 3, 1)

P (1, 2, 1)
d(1) =

0.9407

0.9734
× 0.9375

1.0063 = P (2, 4, 2) =
P (1, 4, 1)

P (1, 2, 1)
u(2) =

0.9051

0.9734
× 1.082251

0.8151 = P (2, 4, 1) =
P (1, 4, 1)

P (1, 2, 1)
d(2) =

0.9051

0.9734
× 0.876623

and put in table,

Year = 2
current maturity state state state state state
time time 0 1 2 3 4
2 2 1 1 1

3 0.8154 0.9060 1.0066
4 0.6603 0.8151 1.0063
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It can be seen that from the left (applying u(k)) we arrive at P (2, 3, 1) = 0.9060
which is the same from the right (applying d(k)). This also applies to P (2, 4, 1) =
0.8151. This is known as the re-combination assumption. Note that this assumption
must be maintained or the binomial model will explode.

Continuing this process going forward, we can derive the complete the 4-year
table for the Ho-Lee model:

Complete Ho-Lee Model
current maturity state state state state state
time time 0 1 2 3 4
0 0 1

1 0.9524
2 0.89
3 0.8278
4 0.7686

1 1 1 1
2 0.8761 0.9734
3 0.7619 0.9407
4 0.6598 0.9051

2 2 1 1 1
3 0.8154 0.906 1.0066
4 0.6603 0.8151 1.0063

3 3 1 1 1 1
4 0.7592 0.8435 0.9372 1.0414

4 4 1 1 1 1 1

This concludes the discrete example.

There have been a huge number of term structure models in the literature.
The following table roughly summarized (by no means exhaustive but hopefully
representative). There is no clear way to classify interest models. Roughly we use
the following matrix:
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Term Structure Models
Factor models (also called No-arbitrage models (also called
Stru. / Eqm. models) Reduced-form models)

Single-factor

Vasicek (1977) Ho-Lee (1986)
Cox-Ingersoll-Ross (1985) Black-Derman-Toy (1989)
Dothan (1978) Black-Karasinzinsky (1990)
Ball-Torous (1983) Bloomberg model (flat vol)
Duffie-Kan (1996) Heath-Jarrow-Morton (1992)

Multi-factor

Cox-Ingersoll-Ross (1985) Hull-White (1990)
Langetieg (1980) Heath-Jarrow-Morton (1992)
Brennan-Schwartz (1978) Scott (1997)
Longstaff and Schwartz (1992) Chen-Yang (2002)
Duffie-Pan-Singleton (2000)

Others
Quadratic Random field
Constantinides (1992) Goldstein (2000)
Leippold-Wu (2002)

The no-arbitrage models are discussed in Chapter ??, yet only Ho-Lee, Black-
Derman-Toy, and Heath-Jarrow-Morton models are covered. So far in this chapter,
only Vasicek and CIR models are discussed. In this section, we try to bring in
some practical flavor, given that Vasicek and CIR models while provide tremendous
insight into term structure theories, are too limited to be used in the real world.

The Dothan model is similar to the Vasicek and CIR models but assumes a
lognormally distributed short rate. It has been shown that this model could be
unstable on the long end of the yield curve.

Ball and Torous model bonds with a Brownian Bridge process as the BB
process is still Gaussian and yet the end of the variable can be pinned at any given
value (such as face value of the bond). However, as Cheng (1991) pointed out, this
model is not arbitrage-free.

One factor models bring tremendous insight to the term structure theories
and yet they are not useful in reality. Empirists have found that one factor models
are too limited in explaining the curvature and dynamics and the term structure.
Hence, researchers have developed multi-factor models. The first such proposal was
by Cox, Ingersoll, and Ross. In their paper where the seminal one factor model was
introduced, they proposed the following multi-factor framework: r =

∑n
i=1 yj where

r is the the short rate and it is a sum of multiple independent factors yj. However,
no explicit solution is given by CIR.

Langetieg, using the CIR suggestion, derived an explicit solution to the Vasicek
model. This is straighforward as the sum of Gaussian variables is still Gaussian.
This is difficult to do in the CIR model as the sum of non-central chi-square variables
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(unless they are independent) is not a non-central chi-square variable. The mean
reverting processes used in Vasicek and CIR models are AR(1) processes and hence
they are not independent.

Brennan and Schwartz explicitly specify a separate long rate to build their
two factor model. This approach is better than the CIR suggestion in that these
factors are observable (as opposed to unobservable yj). The model has no closed
form solution and needs to be solved numerically (e.g. finite difference method).
However, since term rates cannot be modeled directly by separate processes as they
may conflict each other, the Brennan-Schwartz model is not arbitrage-free.

The Duffie-Kan model broadened the scope and established the general solu-
tion of the affine family of term structure models. The Duffie-Pan-Singleton model
extends the Duffie-Kan model to include credit risk. We shall discuss them sepa-
rately.

Outside of the affine family, the solutions become unmanageable. There are
two proposals in the literature. One is the quadratic approach where r =

∑n
j=1 y

2
j .

This approach is plausible as the short rate will not be negative and each factor yj
can be normally distributed. Constantinides first proposed this idea and then was
followed by other researchers, such as Leippold and Wu. The problem is that the
solution is expressed in terms of yj which are non-observable. Empirists have found
that such models can explain the dynamics of the term structure better.

Lastly, Goldstein adopted the Random Field theory in physics to model the
term structure. In physics, a field is a physical quantity associated to each point of
spacetime. A field may be thought of as extending throughout the whole of space.
The Random Field theory has given the term structure model infinite degrees of
freedom so it is rich in nature. Yet the model is not practical and has not been
tested empirically.

5.3 Forward Curves

Forward curves are the most important source where fixed income participants
(traders, investors, regulators, etc.) draw information about the market.
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5.3.1 Curve Construction

5.3.2 Forward Expectation

5.3.3 A Simple Concept

A forward expectation is an expected value taken under the “forward” probability
measure. Under this probability measure the probability of greater than the mean
is exactly half and same as the probability of lower than the mean.

We first take a look at the simple Black-Scholes model. The put-call parity
states that p + S = c + P (t, T )K. Since the ITM probability of the put is exactly
the same as the OTM probability of the call. As a result, for c = p, it must be that
the in and out of money probabilities for both put and call are equal. From the
parity, this means that S = P (t, T )K, or K = S/P (t, T ) which is the forward price
of the stock.

In other words, if we set the strike price as the forward price of the stock then
it precisely separates the distribution to be half and half.

In swap contracts, we set the swap rates so that the contract has no value.
In other words, the swap rate must be the value which set the rate-rising and rate-
falling probabilities equal to be 50%.

The forward probability measure can be derived rigorously just like the risk-
neutral probability measure. One easy distinction between the two is that under the
risk-neutral measure, the expectation of any future asset value is the future price of
the asset today; and under the forward measure, the expectation of any future asset
value is the forward price.

We also note that any forward price of an asset is not model-independent but
only the compound value of the current asset price:

F (t, T ) =
S(T )

P (t, T )
(5.6)

The forward measure is to show that the forward price can define a probability
measure under which its expected value is also its median.

5.3.4 More Formal Mathematics

The forward measure is mainly used under stochastic interest rates, as it involves
discounting. Under deterministic interest rates, discounting stays fixed over time
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and hence the forward measure does not exist. Under this circumstance, the futures
price and the forward price are equal.3

X(t) = Êt

[
exp

(
−
∫ T

t

r(u)du

)
X(T )

]
= P (t, T )F (t, T )

= P (t, T )Ẽ(T )
t [X(T )]

(5.7)

We note that (without giving a proof) forward measure is maturity-dependent
(superscript) and hence is not unique; unlike the risk-neutral measure which is
unique. Given that:

P (t, T ) = Êt

[
exp

(
−
∫ T

t

r(u)du

)]
it is clear that the change of measure can be performed on (5.7). See Chen (2013).

5.4 IR Risk Management

While VaR can be used in IR risk management, additional risk management mea-
sures are introduced due to the specific nature of fixed income assets.

The sources of interest rate risk (very different from stocks) can come from:

� fed policies monetary

� inflation

� economy real rate

� reflect more macro risks and micro risks

� PCA = 3

� liquidity and credit are important

3A formal proof is given by Cox, Ingersoll, and Ross (1981).
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5.4.1 Conventions

One thing very unique about fixed income securities markets is the trading and
quoting conventions. Fixed income securities have the most complex trading and
quoting conventions than any other securities.

Trading Conventions

Accrued interest is a convention in trading fixed income securities. For reason given
before I was born, bonds are quoted by their “clean price” instead of the real price
(called “dirty price”). Investors of bonds need to compute the price (dirty price)
they have to pay by adding accrued interest to the clean price.

 Previous 

coupon 

date 

Next 

coupon 

date 

 

 

Today 

60 

days 

122 

days 

 
Figure 5.1: Accrued Interest

Hence, the dirty price is:

Dirty Price = Clean Price +
60

182
× cpn

2

Tick size. Most fixed income securities are quoted on the thirty second basis.
For example, a bond quoted at 100.16 does not mean the bond will be bought and
sold at 100 dollars and 16 cents. But rather, the bond will be bought and sold at
100 + 16/32, which is 100 dollars and 50 cents. One tick in fixed income securities
is 1/32. Stocks used to have ticks too of 1/8 and 1/16 but they do not have that
anymore.

Rate quotes versus price quotes.

It is important to differentiate rate quotes, that are to determine transaction
prices, and rates of return, that represent percentage return of an investment. Rate
quotes are subject to day count conventions. For example, T bill quotes are subject
to Actual/360 convention. Hence, a quote of 3.24 of a bill 21 days to maturity has
a price of:

100− 3.24× 21

360
= 99.81
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The rate of return of this bill can be computed discretely as:

100− 99.81

99.81
× 365

21
= 3.285%

Hence 3.24 is not representing rate of return, 3.285 is. Note that 99.81 is a
percent quote. It represents the price to pay for acquiring a bond is 99.81% of its
face value. If the face value is $100, it costs $99.81; if it is 100, 000, itcosts99,810. If
it is $1, then it costs 0.9981. This is known as the discount factor.

Daycount Conventions

Daycount is a very special trading convention in the world of fixed income securities.
Other markets have trading conventions (e.g. CBOE does not specify maturity date
as a fixed date but the Saturday of the third Friday of the expiration month). The
daycount convention specifies how many days should be in a month and in a year.
There are 5 popular daycount conventions:

1. 0: 30/360 (corporate fixed)

2. A/A (T notes/bonds)

3. A/360 (corporate floaters, T bills)

4. A/365

5. European 30/360

The code is what is used by the Excel function yearfrac(a,b,c) where a is the
beginning date, b is the ending date, and c is the code of the daycount convention .
Lets first study 30/360 convention. This convention assumes that there are exactly
30 days in a month for any fraction of a month. For example, from 1/2/2003 to
2/28/2003, both months are not full months. In a normal calendar, January has
29 days and February has 28 days. But under 30/360, there are only 28 days in
January (28 = 30 – 2) and 28 days in February. Hence, the period in years is:

0.155556 =

[
30− 2

30
+

28

30

]
÷ 12

This implies that there will be 1 day in January if we count from 1/29/2003
and 0 day if we count from 1/30/2003:

0.08055556 =

[
30− 29

30
+

28

30

]
÷ 12



100 Chapter 5: Fixed Income Risk Management

Interestingly, since there can be only 30 days in a month, it will be 0 day if we
count from 1/30/2003 and 1/31/2003:

0.07777778 =

[
0

30
+

28

30

]
÷ 12

But on the other hand, if the ending date is 3/1/2003, then we will have a full
month for February. Hence, although there is only one day difference between 2/28
and 3/1, the 30/360 daycount treats it as three days apart:

0.163888889 =

[
30− 2

30
+ 1 +

1

30

]
÷ 12

5.4.2 Duration (delta) and Convexity (gamma)

Duration and convexity are very close to delta and gamma in option. It is first
and second order derivatives of the bond price (or any fixed income security) with
respect to a specific interest rate (or a collection of interest rates). Depending on
which interest rate(s) chosen, we have different durations and convexities. This
lesson introduces various duration and convexity calculations and how to use them.
Finally, we shall talk about a very simple idea of immunization.

In the universe of fixed income, participants believe that the price of a fixed
income security (bond, swap, ...) is a function of the yield curve. Hence, the change
in the price is then a result of the rate change. Taylor’s series expansion then
provides a nice tool to analyze how the changes of various interest rates affect the
price of the fixed income security.

Let P be the price of a fixed income security and yi be the i-th interest rate
on the yield curve that affects the price. Then Taylor’s series expansion gives:

dP (y1, y2, · · · yn, t) =
∂P

∂t
dt+

∑n

j=1

∂P

∂yj
dyj +

1

2

∑n

i=1

∑n

j=1

∂2P

∂yi∂yj
dyidyj + o(dt)

where o(dt) includes terms that are small and lim
dt→0

o(dt)
dt

= 0. The first term

is similar to Theta in option and known as “roll-down” on the yield curve. As
time goes by, the life of a fixed income security become shorter. If nothing else in
the economy changes (hence, the yield curve stays exactly the same), the yield will
become less (in an upward sloping situation). The second term is duration with
respect to various interest rates, and the third is convexity with respect to various
interest rates.
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MaCaulay Duration

MaCaulay duration is to treat the bond as a function of only its own yield. That
is, recall from the previous lesson the yield to maturity formula:

P =

[
c/2

(1 + y)(T1−t)
+

c/2

(1 + y)(T2−t)
+ · · ·+ 1 + c/2

(1 + y)(Tn−t)

]
N

=

[
n∑

j=1

c/2

(1 + y)(Tj−t)
+

1

(1 + y)(Tn−t)

]
N

where c is coupon rate, Tj is the coupon time, y is yield to maturity and N is
notional. We must solve for the yield y for the bond. Duration is the first order
derivative:

dP

dy
=

[
n∑

j=1

− (Tj − t)
c/2

(1 + y)Tj−t−1
− (Tn − t)

1

(1 + y)Tn−t−1

]
N

MaCaulay duration is “scaled” interest rate sensitivity measure:

DMaCaulay = −dP

dy

1 + y

P
=

1

P

[
n∑

j=1

(Tj − t)
c/2

(1 + y)Tj−t
+ (Tn − t)

1

(1 + y)Tn−t

]
N

Interpretation 1: Note that it is also elasticity:

−dP

dy

1 + y

P
= −

dP/P
d(1+y)/1+y

= − %∆ in P

%∆ in 1 + y

Interpretation 2: Note that it is also weighted average of coupon payment
times:

1

P

[
n∑

j=1

(Tj − t)
c/2

(1 + y)Tj−t
+ (Tn − t)

1

(1 + y)Tn−t

]
N

=
n∑

j=1

(Tj − t)wj

and
n∑

j=1

wj = 1



102 Chapter 5: Fixed Income Risk Management

 

  
1
T    

2
T  

 
         

n
T  

 

t

 
Figure 5.2: Duration as Weighted Average of Coupon Payment Times

Interpretation 3: In physics, MaCaulay has an interpretation of “mass center”:

Note that in text books and for the exams, we use integer periods to simplify
the calculation: annual coupons:

P =

[
c

(1 + y)
+

c

(1 + y)2
+ · · ·+ 1 + c

(1 + y)n

]
N

semi-annual coupons:

P =

[
c/2

(1 + y/2)
+

c/2

(1 + y/2)2
+ · · ·+ 1 + c/2

(1 + y/2)2n

]
N

any arbitrary frequency:

P =

[
c/m

(1 + y/m)
+

c/m

(1 + y/m)2
+ · · ·+ 1 + c/m

(1 + y/m)mn

]
N

MaCaulay duration:

DMaCaulay =
1

m

1

P

[
mn∑
j=1

j
c/m

(1 + y/m)j
+mn

1

(1 + y)mn

]
N

Fisher-Weil Duration

The Fisher-Weil duration is similar to the MaCaulay duration. The difference is
that Fisher-Weil duration allows the yield curve to be non-flat.

Partial Duration (Key Rate Duration)

Move one rate at a time. These are zero rates. To calculate a key rate duration,
we simply bump up (or down) the key rate by 1 basis point and compute the price
impact.
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Figure 5.3: Triangular Rule for Key Rate Duration

Effective Duration

Effective duration measures the price change of the entire yield curve change (parallel
shift). The computation is a triangular method. It makes sure that the sum of all
key rate durations is equal to the effective duration.

PV01 (DV01)

DV01 or PV01 simply means price impact of 1 basis point (01) move in “interest
rate” whatever that “interest rate” is. Hence it is easier to interpreted it as the key
rate. In the case of fixed income securities, this can be interpreted as the key rate
duration. (And if move all key rates, then same as effective duration.)

This can be used for other securities as well. In the case of an option this is
the Greek letter Rho.

Stochastic Duration

A stochastic duration is calculated when a specific interest rate model is employed
to model the yield curve. The sensitivity is not measured with respect to a chosen
interest rate from the yield curve but to the risk factor in the theoretical model.

Duration Calculation Using the Ho-Lee Model

See Excel.

5.4.3 IR Swaps

An IRS is (fixed-floating):
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N
∑n

i=1
(ℓi − w0)P0,Ti

where ℓ is the LIBOR rate (usually the index rate in an IRS) and w0 is today’s swap
rate.

A deal is made if the following equilibrium is reached:

0 = N
∑

(E[ℓi]− w0)P0,Ti (5.8)

Solving for the swap rate w0, we get:

w0 =

∑n
i=1 P0,Ti

E[ℓi]∑n
i=1 P0,Ti

=

∑n
i=1 P0,Ti

fi∑n
i=1 P0,Ti

(5.9)

which indicates that the swap rate is a weighted average of future “forward rates”.
An alternative formula is also often used (less intuitive, but easier to compute):

w0 =

∑n
i=1 P0,Ti

fi∑n
i=1 P0,Ti

=

∑n
i=1 P0,Ti

(1 + fi)∑n
i=1 P0,Ti

− 1

=

∑n
i=1 P0,Ti

P0,Ti−1

P0,Ti∑n
i=1 P0,Ti

− 1

=

∑n
i=1 P0,Ti−1

−
∑n

i=1 P0,Ti∑n
i=1 P0,Ti

=
1− P0,Tn∑n

i=1 P0,Ti

(5.10)

A Two-Period Example

To get the result of the swap rate being a weighted average of forward rates, we
examine the following simple (2pd) example.
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2-Period Example
now one yr later two yrs later
long swap: cost 0 ℓ1 − w0 ℓ2 − w0

short 1y fwd: cost 0 f1 − ℓ1 nothing happens
short 2y fwd: cost 0 nothing happens f2 − ℓ2
short (f1 − w0) of P0,1 −(f1 − w0) nothing happens
short (f2 − w0) of P0,2 nothing happens −(f2 − w0)
(f1 − w0)× P0,1 0 0
+(f2 − w0)× P0,2

Given that the portfolio generates no cash flow in the future, the value of the
portfolio today must also be 0 to avoid arbitrage. As a result,

−(f1 − w0)× P0,1 − (f2 − w0)× P0,2 = 0

w0 =
f1P0,1 + f2P0,2

P0,1 + P0,2

An alternative way to form a risk-free portfolio (better way because prices as
opposed to rates are used):

2-Period Example
now one yr later two yrs later
long swap: cost 0 ℓ1 − w0 ℓ2 − w0

short (1 + ℓ1 − w0) of P0,1 −(1 + ℓ1 − w0) nothing happens
long (1 + w0) of P0,2 short (1/P1,2) of P1,2 (1 + w0)− (1 + ℓ2)
(1 + ℓ1 − w0)× P0,1 − (1 + w0)× P0,2 0 0

Note that 1 + ℓ1 =
1

P0,1
and 1 + ℓ2 =

1
P1,2

. As a result, we have:

w0 =
1− P0,2

P0,1 + P0,2

The term structure is such that :one-year rate is 5% and two-year rate is 7%
(hence the forward rate is 9%) discount factors are:

P0,1 =
1

1.05
= 0.9524

P0,2 =
1

1.072
= 0.8734
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Hence, the swap rate is:

w0 =
P0,1ℓ1 + P0,2f2
P0,1 + P0,2

=
0.9524× 0.05 + 0.8734× 0.09

0.9524 + 0.8734
=

0.1262

1.8258
= 6.91%

PV01

An IRS is “at the money” at inception. But over time it can be either in or out of
the money, as the swap rate moves up or down. The value is equal to:

Vt = N
∑

(wt − wt−1)Pt,Ti

which is a result of doing a reverse swap. Hence the PV01 is:

Vt = N
∑

(wt − w0)Pt,Ti

∂Vt

∂wt

= N
∑

Pt,Ti

which is a risk-free annuity.

Take the HL model as an example, the PV01 of a 4-year swap is 0.9524 +
0.8900 + 0.8278 + 0.7686 = 3.4388. This PV01 (and swap rate and swap value) can
be computed for the future as well. For example, the current swap rate is 6.73%
(which is equal to (1 − 0.7686)/3.4388). The swap rate for the next year is either
14.81% or 3.37% respectively. And hence the swap value is either 18.56% of the
notional (in the money) or −9.48% (out of the money).

5.5 FX Risk Management

So far we have only discussed interest rate risk within the domestic economy. Yet
many global conglomerates have exposures to other currencies. In an open economy
(i.e. multiple nations), we have interest risks under various currencies. For simplic-
ity, here we only discuss foreign exchange (FX hereafter) risk under two nations.

As before, we label domestic discount factors (or risk-free zero coupon bond
price) P (t, T ). In parallel, we now label foreign discount factors P ∗(t, T ). Note
within each nation, it is a closed economy and hence analyses for P (t, T ) can readily
apply to P ∗(t, T ). Finally, the exchange rate is labeled as e(t) which is random.
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Figure 5.4 is a quick snapshot of the market. These are spreads over the FX
rates. We can see that the term structure of these FX spreads is sometimes reverted
(i.e. not necessarily upward sloping).
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Figure 5.4: 2D Plot of FX Swap Rates since the Lehman Crisis

5.5.1 FX Forward and Interest Rate Parity

Interest Rate Parity (IRP) states that a forward exchange rate must bring domestic
and foreign discount factors in sync. In other words, a domestic deposit (which
earns the domestic interest – 1/P (t, T )) and a foreign deposit (which earns the
foreign interest – 1/P ∗(t, T )) can jointly determine the forward FX rate (which is a
forward contract on the FX rate).

f(t, T ) = e(t)
P ∗(t, T )

P (t, T )
, 4

FX forward is closely tied with FX swap. Same way how IRS is tied to forward
interest rate. Expectations taken are usually forward expectations.

Do not confuse IRP with PPP (Purchasing Power Parity). PPP decides the
current FX rate and IRP decides the forward FX rate. But note that usually we

4Under constant interest rates r and r∗, we have f(t, T ) = e(t)e(r−r∗)(T−t). This is commonly
known as interest rate differential.
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adopt a reduced-form approach and directly assume a stochastic process for the FX
rate and do not pursue the fundamentals (i.e. PPP) of how FX rates are determined.

5.5.2 FX Swaps

Using FX forward rates, we can not determine FX swap rates. The swap contract
must be 0 value at inception. A fixed-fixed FX swap is as follows:

 

w w w w 

w* e1 

w 

w* e2 w* e3 w* en 

N* en 

N 

 

Figure 5.5: Fixed-fixed FX Swap

Hence, traders must set w and w∗ in such a way that the following holds:

0 =
∑n

i=1
P (t, Ti) (w

∗
tN

∗E[e(Ti)]− wtN) + P (t, Tn) (N
∗E[e(Tn)]−N)

where N is notional in domestic currency and N∗ is notional in foreign currency,
similarly wt and w∗

t are domestic fixed and foreign fixed rates respectively. Usually
notionals are set by (N∗e(t)−N) = 0.

It turns out that (known as the forward expectation – see the Appendix for a
brief discussion of the forward expectation):
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Et[e(Ti)] = f(t, Ti)

which is the forward FX rate. Then:

∑n

i=1
P (t, Ti) (w

∗
0N

∗f(t, Ti)− w0N) + P (t, Tn) (N
∗f(t, Tn)−N) = 0

w0N = w∗
0N

∗
∑n

i=1 P (t, Ti)f(t, Ti)∑n
i=1 P (t, Ti)

+
P (t, Tn) (N

∗f(t, Tn)−N)∑n
i=1 P (t, Ti)

We can see that ifN∗f(t, Tn) = N , then the relative fixed rates, i.e. w0N/w∗
0N

∗,
are set as in IRS which is the weighted average of forward FX rates.

An Example – Fixed-Fixed FX Swap

A fixed-fixed FX swap is £100 for $150 as the current exchange rate is 1:1.5 (e0 =
1.5). In each country the interest rate is 5% (w∗

0 = w0). Note that

N∗e0 −N = £100× 1.5− $150 = 0

as the initial condition. The exchange of the currencies is £5 for $7.5 annually.

The actual cash flows (cash flows are fixed but exchange rates are random)
are:

∑n

i=1
(w∗

0N
∗ei − w0N0)P1,Ti

+ (N∗en −N0)P1,Tn

One year later the exchange rate changes to 1:2 (e1 = 2). Then a new FX
swap will be £5 for $10. In this case, N1 = e1N

∗ = $200. In this case, we can do a
reverse swap:

−
{∑n

i=2
(w∗

0N
∗ei − w0N1)P2,Ti

+ (N∗en −N1)P2,Tn

}
which will cancel the previous swap on the pound leg and lead to the following net:

V1 =
∑n

i=2
w0(N1 −N0)P2,Ti

+ (N1 −N0)P2,Tn

=
∑n

i=2
w0(ē1N

∗ − ē0N
∗)P2,Ti

+ (ē1N
∗ − ē0N

∗)P2,Tn

= N∗
{∑n

i=2
w0(ē1 − ē0)P2,Ti

+ (ē1 − ē0)P2,Tn

}
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init 150 100 1.5     

 dollar leg pound leg ex rate      

0        

1 -7.5 5 200 100 2  

2 -7.5 5 10 -5 2.5 0

3 -7.5 5 10 -5 2.5 0

4 -7.5 5 10 -5 2.5 0

5 -7.5 5 10 -5 2.5 0

6 -7.5 5 10 -5 2.5 0

7 -7.5 5 10 -5 2.5 0

8 -7.5 5 10 -5 2.5 0

9 -7.5 5 10 -5 2.5 0

10 -157.5 105 210 -105 52.5 0

         

yield 5% 5% 5% 5%   

Figure 5.6: Same w

Fixed-Floating FX Swap

A fixed-floating FX swap is more popular but more complex as it involves both
random exchange rates and random foreign interest rates. Using the same derivation
as in fixed-fixed, we have:

Êt

[∑n

i=1
Λ(t, Ti) (x

∗
iN

∗ei − w0N) + Λ(t, Tn) (N
∗en −N)

]
=
∑n

i=1
P (t, Ti)

(
N∗Ẽ(i)

t [x∗
i ei]− w0N

)
+ P (t, Tn)

(
N∗Ẽ(n)

t [en]−N
)
= 0

where Êt is risk-neutral expectation and Ẽt is forward expectation.

But now we have to deal with the covariance between x∗
i and ei. This is known

as the “quanto” effect in FX analyses. We shall discuss this effect later. Note that if
the foreign interest rates (i.e. x∗) and the exchange rate (i.e. e) are not correlated,
then the expectation can be separated, and then there is no quanto effect. Hence,
quanto is a result of correlation between x∗ and e.

To avoid the problem, we keep all foreign cash flows in the foreign country and
only discount them once:
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init 150 100 1.5     

 dollar leg pound leg ex rate      

0        

1 -12 5 150 100 1.5  

2 -12 5 15 -5 3 0

3 -12 5 15 -5 3 0

4 -12 5 15 -5 3 0

5 -12 5 15 -5 3 0

6 -12 5 15 -5 3 0

7 -12 5 15 -5 3 0

8 -12 5 15 -5 3 0

9 -12 5 15 -5 3 0

10 -162 105 165 -105 3 0

         

yield 8% 5% 10% 5%   

 

Figure 5.7: Different w and w*
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e0Ê∗
t

[∑n

i=1
Λ∗(t, Ti)x

∗
iN

∗ + Λ∗(t, Tn)N
∗
]
− Êt

[∑n

i=1
Λ(t, Ti) (w0N) + Λ(t, Tn) (N)

]
= 0

e0

[∑n

i=1
P ∗(t, Ti)f

∗
i + P ∗(t, Tn)

]
N∗ −

[∑n

i=1
P (t, Ti)w0 + P (t, Tn)

]
N = 0

w0 =
1∑n

i=1 P (t, Ti)

{
e0
∑n

i=1
P ∗(t, Ti)f

∗
i + [e0P

∗(t, Tn)N
∗ − P (t, Tn)N ]

}
This way, we by pass the quanto issue.

Floating-Floating FX Swap

Usually there is a fixed spread on one of the sides of the swap so that the swap
contract has 0 value. If no spread is specified, then it is known as the differential
swap (or diff swap) and in such cases there WILL BE a cash amount exchanged at
inception.

Êt

[∑n

i=1
Λ(t, Ti) (x

∗
iN

∗ei − (xi + s)N) + Λ(t, Tn) (N
∗en −N)

]
=
∑n

i=1
P (t, Ti)

(
N∗Ẽ(i)

t [x∗
i ei]− (Ẽ(i)

t [xi] + s)N
)
+ P (t, Tn)

(
N∗Ẽ(n)

t [en]−N
)
= 0

This is too complicated. So we will not convert till end.

e0Ê
∗
[∑n

i=1
Λ∗(t, Ti)x

∗
iN

∗ + Λ∗(t, Tn)N
∗
]
− Ê

[∑n

i=1
Λ(t, Ti) ((xi + s)N) + Λ(t, Tn) (N)

]
= 0

e0

[∑n

i=1
P ∗(t, Ti)f

∗
i + P ∗(t, Tn)

]
N∗ −

[∑n

i=1
P (t, Ti)(fi + s) + P (t, Tn)

]
N = 0

s =
1∑n

i=1 P (t, Ti)

{
e0
∑n

i=1
P ∗(t, Ti)f

∗
i −

∑n

i=1
P (t, Ti)fi + [e0P

∗(t, Tn)N
∗ − P (t, Tn)N ]

}
If e0P

∗(t, Tn)N
∗ − P (t, Tn)N = 0, then

s =
e0
∑n

i=1 P
∗(t, Ti)f

∗
i −

∑n
i=1 P (t, Ti)fi∑n

i=1 P (t, Ti)

which is that the spread is simply the fixed-floating FX swap rate minus the corre-
sponding domestic swap rate.
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PV01

FX PV01 is:

∂V1

∂ē1
= N∗

{∑n

i=2
w0P2,Ti

+ P2,Tn

}
which is the price of a domestic bond (fixed rate at w0) with a foreign currency
notional.

A FX swap can be coupled with an IR swap. That is, to swap out of the fixed
rate w. This way the FX swap will be free from domestic IR risk. In that case,
there is an IR PV01 in the combined deal. And that IRS will have a PV01 described
above which can be combined with the following PV01:

∂V1

∂w0

= N∗
{∑n

i=2
(ē1 − ē0)P2,Ti

}
Say 100 pounds for $150 and each year 5 pounds for $7.5. Now it is 5 pounds

for $8 (wt to 5.3%)

Swap rates are different in two different countries.

See demonstration

5.5.3 Quanto

The quanto effect exists when the exchange rate and the two interest rates are all
random and correlated. To see this more clearly, we use the Nikkei option5 as an
example.

Define a “variable rate” call option that pays max{S∗
T − K, 0} in yen. Then

in dollars, it is YT max{S∗
T −K, 0} at time T . Now we can simply discount it back

at the domestic rate r:

C∗
t = e−r(T−t)Êt[YT max{S∗

T −K, 0}]
= e−r(T−t)e(r−r∗)(T−t)YtÊ(Y )

t [max{S∗
T −K, 0}]

= e−r∗(T−t)Yt

[
er

∗(T−t)S∗
tN(d+)−KN(d−)

]
= Yt

[
S∗
tN(d+)− e−r∗(T−t)KN(d−)

] (5.11)

5The Nikkei index put option is ...
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where

d± =
lnS∗

t − lnK + (r∗ ± 1/2v∗)(T − t)√
v∗(T − t)

and hence there is no quanto effect in the option price.

Define a “fixed rate” call that pays Ȳ max{S∗
T −K, 0}. Then,

C̄t = e−r(T−t)Ȳ Êt[max{S∗
T −K, 0}]

= e−r∗(T−t)Ȳ
[
e(r

∗+ρσY v∗)(T−t)S∗
tN(d+)−KN(d−)

] (5.12)

where

d± =
lnS∗

t − lnK + (r∗ ± 1/2v∗2)(T − t)

v∗
√
T − t

and hence the quanto effect exists.

5.5.4 FX Option Formula

Consider the interest rate parity theorem and a simple Black-Scholes type model:

de

e
= (r − r∗)dt+ σdWe

dr = κ(θ − r)dt+ γdW

dr∗ = κ∗(θ∗ − r∗)dt+ γ∗dW ∗

and dWidWj = ρijdt and i, j = e, r, ∗. The IRP theorem restricts the drift of the
exchange rate to be the difference between the two rates. (Note alternatively we
can view the foreign interest rate as a “dividend” that takes away the return from
investing in the domestic risk-free bond.)

We also modify the Black-Scholes option formula as follows:

Ct = P ∗
t,T etN(d1)− Pt,TKN(d2)

where
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d1 =
ln et − lnK − lnPt,T + lnP ∗

t,T + v2/2
√
v

d2 = d1 − v
√
T − t

v2 = var[ln eT − lnDt,T + lnD∗
t,T ]

Dt,T = exp

{
−
∫ T

t

rudu

}
D∗

t,T = exp

{
−
∫ T

t

r∗udu

}

5.5.5 FX Basis

An FX basis is the discrepancy between the IRP and actual IR differential. In other
words, an FX basis is where the market disagrees with the theory. In theory there
will exist arbitrage profits but due to market frictions, such profits are too small to
be worth taking.

One key aspect of FX bases is that they are random. This adds an additional
risk to consider and hedge/manage.

5.5.6 FX models

First we review the Black-Scholes model. In the case of stocks, we have:

dS

S
= (µ− ℓ)dt+ σdW (5.13)

where µ is the expected return of the stock and ℓ is the (continuous) dividend yield.6

In a general case, d can be regarded as any leakage of return from the underlying
asset. In the case of FX, it is the foreign risk-free rate; in the case of real estate, it
is rent; in the case of commodities, it is convenience yield; and finally in the case of
futures, it is risk-free rate itself.

The FX rates are also modeled the same way as (5.13):

dX

X
= (rD − rF )dt+ σdW (5.14)

where rD and rF are domestic and foreign risk-free rates respectively. Compared
with equation (5.13), the above equation substitutes rD for µ and rF for ℓ. This

6We note that under discrete dollar dividends, the model is quite different.
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result is a consequence of what is known as the interest parity theorem. An investor
can choose to put his or her money in a domestic risk-free account (making the
domestic risk-free return) or a foreign risk-free account (making the foreign risk-free
return). Since the investor can only choose one or the other, by choosing one, he or
she has to let go of the other. For the domestic point of view, the foreign risk-free
return is a “leak”.

Another way to look at this is the notion of opportunity cost. By investing
domestically, a foreign opportunity is let go and hence it must be considered as a
loss (just like dividends) to the “return” on the exchange rate. Such a notion is
applied repeatedly in other asset classes (convenience yield in commodities and rent
in real estate).

The FX option (e.g. call) hence is evaluated similar to the Black-Scholes
formula as in equity as follows:

Ct = e−rF (T−t)XtN(d1)− e−rD(T−t)KN(d2) (5.15)

The binomial model needs to be modified as shown in Figure 5.8.

 
 

0X

11 0X uX=

10 0X dX=

 
Figure 5.8: Binomial Model for the FX Rate

where the probabilities are modified as:

p̂ =
e(rD−rF )∆t − d

u− d
(5.16)

and rD and rF are domestic and foreign risk-free rates respectively.

5.6 Total Return Swap

A total return swap (TRS) is usually a floating-floating swap, or diff swap. A typical
example is a swap between an equity index (e.g. S&P 500) and an interest rate index
(e.g. LIBOR). As in any diff swap, there is a spread on the IR leg.



Residential Mortgage 117

Another popular TRS can be a real estate index (e.g. NCREIF) for an IR
index.

5.7 Residential Mortgage

Residential mortgages (usually refer to Prime mortgages) are guaranteed by govern-
ment agencies known as GNMA (Ginnie Mae), FNMA (Fannie Mae), and FHLMC
(Freddie Mac).78

Residential mortgages are exposed to prepayment risk. Prepayment is an ac-
tion taken by mortgage borrowers to pay pre-maturely full or partial amount of the
loan. Prepayments affect the incomes of the lenders. Simply speaking, prepayments
reduce the loan amounts and hence reduce the interests earned by the lenders. As
a result, prepayments represent a risk. However, not all prepayments are bad news.
When prepayments occur in a time when interest rates are high, then banks can loan
out the early payment amounts at a higher rate and make more interest incomes.
On the contrary, when prepayments occur in a time when interest rates are low,
banks directly lose interest earnings.

If the reason of a prepayment is non-economical, such as divorce, job change,
addition to family, then prepayments can be either good or bad news. However, if a
prepayment is due to re-finance of the mortgage, then it is surely bad for the bank.
Hence, the models for mortgages are categorized into two big areas: prepayment
and refinance.

5.7.1 Refinance Modeling

Refinancing is a decision directly linked to mortgage rates, which in turn related to
Treasury interest rates (most commonly the 10-year rate). As rates drop, borrowers
substitute new mortgages that have lower mortgage rates for existing mortgages that
have higher mortgage rates. And as borrowers refinance, banks lose future interest
revenues. In other words, the values of mortgages that banks make decrease.

As refinancing is a predictable event that happens when rates drop, we can then
run an interest rate model to forecast and gauge the impacts of future rate drops.
Then the impacts can be factored into today mortgage rate. For example, if rates
are expected to fall and refinancing is highly expected, then banks should charge a

7They are Government National Mortgage Association, Federal National Mortgage Association,
and Federal Home Loan Mortgage Corporation respectively.

8Note that there are a small number of residential mortgages that are not guaranteed by the
three agencies. These mortgages are not included in this section.
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higher mortgage rate to compensate for the future loss. Figure 5.9 demonstrates how
refinance actions are modeled in an interest rate model. As Figure 5.9 demonstrates,
the lower part of the model is the refinance area as rates are low.

 

 

low rates and refi likely 

 

Figure 5.9: An Interest Rate Model

5.7.2 Prepayment Modeling

Prepayment is usually modeled with some kind of “response function” which is
graphically similar to an “S” curve. An “S” function is bounded between 0 and 1
and can be modeled via a number of different functional forms such as arc-tangent,
logit, and probit. In the mortgage area, the logit function is the most popular
choice.9

The logit function is:

p =
exp(α +

∑
βkxk)

1 + exp(α +
∑

βkxk)
(5.17)

where the dependent variable p is the prepayment rate and the explanatory variables
are chosen as follows.

9OTS, or Office of Thrift Supervision, used to use an arc-tangent function for prepayment but
it was dissolved in 2011.
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� Housing Turnover Rate (When a house is bought and sold, the existing mort-
gage is usually prepaid completely and a new mortgage is taken (unless the
existing mortgage is assumable). As a result, higher turnover rates for a par-
ticular housing sector implies higher prepayment rate and hence higher risk for
investors. For example, apartments are turned over faster then single homes.)

� Seasonality (Housing markets present seasonality – more people are buying
homes in summer than in winter. As mentioned above, housing turnover is
directly linked to prepayment. Hence summer prepayment rate is higher than
that in winter.)

� Cash-out (This is how much cash is left in the mortgage. As the property
appreciates, the difference between house value and mortgage gets larger, and
the cash-out effect becomes stronger.)

� Refinance (This is to be discussed separately later. Basically, refinance occurs
in low interest rate times.)

� Age (This is the age of the mortgage, not the age of the borrower. The age of
a mortgage has a negative impact of prepayment. In other words, the longer
a homeowner holds on to the mortgage, the less likely he or she will prepay
early.)

� Burnout (In a mortgage-backed security, the percentage of mortgages under-
lying the security that were not re-financed following a drop in interest rates.
Historically, a mortgage that is not re-financed is less likely to re-finance at the
next drop in interest rates. As a result, potential investors in mortgage-backed
securities often look for a high burnout rate because it reduces prepayment
risk, or the risk that investors will be deprived of future interest payments
because too many mortgages are prepaid.)

� Yield Curve (Interest rates have the most impacts on prepayments (or refi-
nance).)

� Equity (As monthly payments are made, the equity of the house increases.
The homeowner now can borrow more now as the LTV improves.)

� Credit (As mortgage is paid off gradually (FRM), credit is improved as LTV
is improved.)

� Curtailment (As opposed to prepayment that pays off the mortgage in entirety,
a curtailment is to pay more than the required monthly payment. Hence, the
effect of curtailments is similar to (but milder than) that of prepayment.)
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The most common measure of prepayment speed is SMM (single month mor-
tality) rate. SMM is used in interest rate models to evaluate mortgages. SMM is
estimated empirically using the above factors. In other words, SMM is the dependent
variable (think of a regression) and the above factors are independent (explanatory)
variables. The function used is a response function. The usual shape of a response
function is an S curve bounded between 0 and 1. Logit or probit functions (both
bounded between 0 and 1) are also plausible functions used for estimating SMM.
Arc-tangent functions can be used as well.

The other two measures used in practice are:

� PSA (Public Securities Association) Standards

� CPR (constant prepayment rate)

These are measures of the speed of prepayment and not models of prepayment.
However, by monitoring these measures one can gain a sense of how the prepayment
behavior. Models of prepayment can be found in many fixed income textbooks.

5.7.3 Default Modeling

Since prime residential mortgages are usually underwritten by the Agencies, they
are default-protected by the Agencies. This is the credit-enhancement provided by
the Agencies so that investors do not need to worry about defaults. This is one
of the major functions the Agencies provide in order to facilitate secondary market
trading.

While defaults are not a concern in residential mortgages, they are a true
concern for commercial mortgages. Since commercial mortgages are not protected
by the Agencies, they are subject to default risk.

However, commercial mortgages do not suffer from prepayment risk in that
all commercial loans have a “yield maintenance” clause which protects investors by
having a guaranteed yield for a certain period (hence yield is “maintained”). In other
words, there is a heavy prepayment penalty which is so high that borrowers have
no incentive to prepay. The period under protection is called the yield maintenance
period (or YM period)

5.7.4 OAS – Option Adjusted Spread

Spread01 or Spread PV01.
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5.8 Combined with Other Assets

How do we compute IR risk for a portfolio of stocks and bonds. Stocks are affected
by interest rates but there are no clean models (both are “primary assets”). The
common practice is to run regression (one could do PCA but then each PC must be
investigated to see if it is sensitive to interest rates) of stock on rates.

dS = b0 +
∑K

k=1
bkrk + · · ·+ e

Then, dS/drk = bk can be used in the portfolio VaR calculation.

A portfolio of a call and a bond. The call option must be evaluated with the
Rabinovitch model (1989) which takes into account of random interest rates. Then
we have

dV = nCdC + n2dP

= n1mC + n2mP

where

mC = CSdS + 1/2CSSdS
2 + Ctdt+ Crdr + 1/2Crrdr

2 + CSrdSdr

and

mP = Prdr + 1/2Prrdr
2 + Ptdt

Then

var[dV ] = n2
C var[mC ] + n2

P var[mP ] + 2nCnP cov[mC ,mP ]

= n2
C

{
C2

S var[dS] + C2
r var[dr] + 2CSCr cov[dS, dr]

}
+ n2

PP
2
r var[dr]

+ 2nCnP {CSPr cov[dS, dr] + CrPr var[dr]}

A convertible bond is another good example. A CB is exposed to three im-
portant risks – equity (convert), interest rate (coupons and principal), and credit
(default). A convertible bond can be expressed as:

B =

{
max{Π, ξS} if survives

R if defaults
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5.9 Appendix

5.9.1 FX Swap Curve and Fixed-Fixed FX Swaps

If we already know the coupons of domestic and foreign bonds, then we can solve
for the FX swap rate as follows.

V0 = 0 =
∑

(w∗
0N

∗ē0 − w0N)P0,Ti
+ (N∗ē0 −N)P0,Tn

=
∑

(w∗
0N

∗ē0 − w0N
∗e0)P0,Ti

+ (N∗ē0 −N∗e0)P0,Tn

= N∗
∑

(w∗
0 ē0 − w0e0)P0,Ti

+ (ē0 − e0)P0,Tn

The job is to solve for the FX swap rate. It is clear that the FX swap rate can
be solved the same way as the IR swap rate.

∑n

i=1
w0e0P0,Ti

+ e0P0,Tn = ē0

{∑n

i=1
w∗

0P0,Ti
+ P0,Tn

}
ē0 =

∑n
i=1w0e0P0,Ti

+ e0P0,Tn∑n
i=1w

∗
0P0,Ti

+ P0,Tn

where the similarity remains. However, note that this is not to contradict the result
in the text where we solve for the relative coupon rates using the FX forward curve.

5.9.2 Commodities and Real Assets

Some times commodities are included in the category of fixed income and so named
FICC (Fixed Income, Currencies and Commodities), although the risk characteris-
tics of commodities are quite different from IR and FX.

Commodities are very difficult to price and also their derivatives. Unlike fi-
nancial assets, commodities (or real assets) are:

� difficult to transact (hence liquidity is very low)

� require large storage cost (including funding cost)

� usually present cycles (including seasonality)

In commodities, two popular terminologies should be paid attention to:

� contango
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� backwardation

Contango is defined as the futures price greater than the spot price: Φ(t, T ) >
S(t) where T is the settlement date. This is a normal situation as storage cost
is high. For a buyer who wants a commodity in the future, he can either buy
futures contracts, or he can buy spot and store it, whichever is cheaper. As a result,
Φ(t, T ) = S(t) + C(t, T ) > S(t).

Backwardation is defined as the futures price smaller than the spot price:
Φ(t, T ) < S(t). Under the phenomenon of cost of carry, this is not possible as
arbitrageurs of such commodities will just buy futures and sell short the spot to make
profits. Hence the only logical explanation of backwardation existing must be that
short-selling commodities is prohibitedly costly. Such a cost is termed convenience
yield.

Convenience yield happens (i.e. backwardation) when the spot is very rare
and hence short-selling is difficult. To short sell, the seller must borrow the spot.
When the spot is rare, then the cost of borrowing is consequently high. There are
two kinds of rareness. The first is physical, which means the commodity is simply
not available. For example, during winter, agriculture products (e.g. corn) are rare,
as farmlands cannot produce. Hence to borrow corn to short must pay a higher
price. The other kind is the spot is in high demand and its price is skyrocketing.
Under this situation, the borrower must pay for the expected growth in price as part
of the borrowing cost. For example, gold (or precious metals) is very expensive to
borrow during a recession as everyone buys gold to hedge a recession.

As we can see, convenience yield shares the same flavor as seasonality as spot
prices of commodities can present cyclical patterns repeatedly. As the two examples
earlier, agricultural products present price cycles within a year (seasonality) and
precious metals present price cycles along with recessions. Should commodities be
absolutely liquid, such cycles cannot exist as one can buy and sell these goods easily
at no cost.

By now, we can understand the classical financial models cannot be applied
easily to commodities. All financial models assume perfect liquidity that rules out
cyclicality and seasonality. However, convenience yield can be regarded as leakage of
the spot because it represents the cost of hold the spot. This is similar to dividends
of stocks, or foreign interest returns of exchange rates.

Equation (5.13) is then used as the best approximation to model commodities.
Eduardo Schwartz (1979) uses equation (5.13) with a mean-reverting convenience
yield process:
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dS

S
= (µ− ℓ)dt+ σdW1

dℓ = κ(θ − ℓ)dt+ γdW2

(5.18)

where ℓ represents “convenience yield” and dW1dW2 = ρdt. The convenience yield
here now can be either positive or negative. When it is substantially negative (larger
than µ so µ− ℓ < 0), then the futures price will be smaller than the spot price and
we have a backwardation. If ℓ is negative, then it is similar to having a contango.
Given that ℓ is normally distributed, there is a closed-form solution to the futures
price (and futures option):

Φ(t, T ) = Ê[ST ] = exp

{
Ê[lnST ] +

1

2
V̂[lnST ]

}
where

Ê[lnST ] = lnSt + (µ− 1
2
σ2)(T − t)−

[
ℓt
1

κ

(
e−κ(T−t) − 1

)
+ θ

(
T − t− 1

κ

(
e−κ(T−t) − 1

))]
V̂[lnST ] =

γ2

2κ

(
e2κ(T−t) − 1

)
+ σ2(T − t) +

2ργσ

κ

(
eκ(T−t − 1

)
Another important pricing question related to commodities (and not so much

for financial assets) is the level of inventory. As storing commodities suffers (enjoys)
high storage costs (convenience yield), how much to store (level of inventory) is an
important decision. William J. Baumol (1952) has a simple model to explain the
demand for inventory.10 Say farmers hold Q bushels of wheat of which Q1 to be
sold at time T1 and Q2 to be sold at time T2. P1 and P2 are prices respectively. If
P1 > PV[P2], then farmers will sell all Q at T1.

A marketing cost is assumed as ξQ2. Also PV[P2] = DP2. So the total revenue
from both sales is (P1Q1 − ξQ2

1) + D(P2Q2 − ξQ2
2). Maximizing the total revenue

leads to (substituting Q − Q2 for Q1 and taking first order derivative with respect
to Q2):

−P1 + 2ξ(Q−Q2) +D(P2 − 2ξQ2) = 0

and the optimal solution for Q2 is:

10William J. Baumol, The Quarterly Journal of Economics, Vol. 66, No. 4 (Nov., 1952), pp.
545-556.
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Q̂2 =
DP2 − P1 + 2ξQ

2ξ(1 +D)

which implies a positive inventory (i.e. Q2 > 0) if:

DP2 − P1 > −2ξQ

that is the price differential must be larger enough to justify an inventory. The
larger is the price in the second sale (P2), the higher is the inventory level (Q2).
This is known as the transaction demand for inventory.

A second theory for inventory is known as the precautionary demand for in-
ventory (S. C. Tsiang, 1969).11 Let z be amount arrived; I precautionary stock; x
a unit loss from the shortage; K demand; and c cost of holding an inventory.12

If z is too low to operate at full capacity, then the firm will suffer a shortage
cost:

(K − I − z)x

Expected shortage cost:∫ K−I

0

(K − I − z)xf(z)dz

Cost of precautionary inventory is Ic so the total cost is:

Ic+

∫ K−I

0

(K − I − z)xf(z)dz

Optimal level of inventory I∗ is:

c−
∫ K−I∗

0

xf(z)dz = 0

The higher is storage cost c, the less should be the inventory (i.e. I∗ is smaller
andK−I∗ is larger). The higher is the opportunity cost x, the lower is the inventory.

Real estate is another real asset that follows the same model. In investing in
real estate, the buyer now needs not to rent and therefore return on the property

11S. C. Tsiang, Journal of Political Economy, Vol. 77, No. 1 (Jan. - Feb., 1969).
12The following derivation is taken from The Economic Function of Futures MarketsOct 27, 1989

by Jeffrey C. Williams.



126 Chapter 5: Fixed Income Risk Management

must be reduced by the amount of rent. Now ℓ represents the percentage rent.
Another way to look at this is that the buyer buys the property for purely rental
purposes. He or she spends the money and expects to gain returns on the investment.
Rental incomes therefore must be a part of the total (cum) return. Given that rents
are collected (leaked out) in cash, it must be deducted from the total return.

One thing particular to the real estate market is that properties need to be
depreciated. As a result, the minimum return for the property to generate is the de-
preciate rate. Because of this, the convenience yield now ℓ is rent minus depreciation
rate.



Appendix 127

0
.0

0
0
1

0
.0

0
0
1

0
.0

0
0
1

0
.0

0
0
1

0
.0

0
0
1

0
.0

0
0
1

0
.0

0
0
1

0
.0

0
0
1

0
.0

0
0
1

0
.0

0
0
1

1
0
.0

8
9
4
3
2

0
.9

1
7
9
1

0
.0

8
9
5
3
2

0
.9

1
7
8
2
5

0
.0

8
9
4
3
2

0
.9

1
7
9
1

0
.0

8
9
4
3
2

0
.9

1
7
9
1

0
.0

8
9
4
3
2

0
.9

1
7
9
1

0
.0

8
9
4
3
2

0
.9

1
7
9
1

0
.0

8
9
5
3
2

0
.9

1
7
8
2
5

2
0
.0

9
2
0
6
1

0
.8

3
8
5
0
6

0
.0

9
2
0
6
1

0
.8

3
8
5
0
6

0
.0

9
2
1
6
1

0
.8

3
8
3
5
3

0
.0

9
2
0
6
1

0
.8

3
8
5
0
6

0
.0

9
2
0
6
1

0
.8

3
8
5
0
6

0
.0

9
2
0
6
1

0
.8

3
8
5
0
6

0
.0

9
2
1
6
1

0
.8

3
8
3
5
3

3
0
.0

5
0
9
3
6

0
.8

6
1
5
3
3

0
.0

5
0
9
3
6

0
.8

6
1
5
3
3

0
.0

5
0
9
3
6

0
.8

6
1
5
3
3

0
.0

5
1
0
3
6

0
.8

6
1
2
8
7

0
.0

5
0
9
3
6

0
.8

6
1
5
3
3

0
.0

5
0
9
3
6

0
.8

6
1
5
3
3

0
.0

5
1
0
3
6

0
.8

6
1
2
8
7

4
0
.0

5
9
4
1
7

0
.7

9
3
8
3
8

0
.0

5
9
4
1
7

0
.7

9
3
8
3
8

0
.0

5
9
4
1
7

0
.7

9
3
8
3
8

0
.0

5
9
4
1
7

0
.7

9
3
8
3
8

0
.0

5
9
5
1
7

0
.7

9
3
5
3
9

0
.0

5
9
4
1
7

0
.7

9
3
8
3
8

0
.0

5
9
5
1
7

0
.7

9
3
5
3
9

5
0
.0

5
7
0
1
7

0
.7

5
7
8
6

0
.0

5
7
0
1
7

0
.7

5
7
8
6

0
.0

5
7
0
1
7

0
.7

5
7
8
6

0
.0

5
7
0
1
7

0
.7

5
7
8
6

0
.0

5
7
0
1
7

0
.7

5
7
8
6

0
.0

5
7
1
1
7

0
.7

5
7
5
0
2

0
.0

5
7
1
1
7

0
.7

5
7
5
0
2

0
.9

6
6
3
4
3

0
.9

6
6
3
3
9

0
.9

6
6
3
3
5

0
.9

6
6
3
3

0
.9

6
6
3
2
8

0
.9

6
5
9
6
6

0
.9

6
5
9
2
7

0
.0

4
2
1
2
4

0
.0

7
6
7
7
1

0
.1

2
2
9
4
3

0
.1

4
9
8
2
8

3
.7

6
3
0
7
7

4
.1

5
4
7
4
4

0
.0

0
0
1

0
.0

0
0
1

0
.0

0
0
0
5

0
.0

0
0
0
5

0
.0

0
0
1

0
.0

0
0
1

0
.0

0
0
1

0
.0

0
0
0
5

0
.0

0
0
0
5

0
.0

0
0
1

0
.0

0
0
1

0
.0

0
0
1

1
0
.0

8
9
4
3
2

0
.9

1
7
9
1

0
.0

8
9
5
3
2

0
.9

1
7
8
2
5

0
.0

8
9
4
3
2

0
.9

1
7
9
1

0
.0

8
9
4
3
2

0
.9

1
7
9
1

0
.0

8
9
4
3
2

0
.9

1
7
9
1

0
.0

8
9
4
3
2

0
.9

1
7
9
1

0
.0

8
9
5
3
2

0
.9

1
7
8
2
5

2
0
.0

9
2
0
6
1

0
.8

3
8
5
0
6

0
.0

9
2
1
1
1

0
.8

3
8
4
2
9

0
.0

9
2
0
6
1

0
.8

3
8
5
0
6

0
.0

9
2
1
1
1

0
.8

3
8
4
2
9

0
.0

9
2
0
6
1

0
.8

3
8
5
0
6

0
.0

9
2
0
6
1

0
.8

3
8
5
0
6

0
.0

9
2
1
6
1

0
.8

3
8
3
5
3

3
0
.0

5
0
9
3
6

0
.8

6
1
5
3
3

0
.0

5
0
9
3
6

0
.8

6
1
5
3
3

0
.0

5
0
9
3
6

0
.8

6
1
5
3
3

0
.0

5
1
0
3
6

0
.8

6
1
2
8
7

0
.0

5
0
9
3
6

0
.8

6
1
5
3
3

0
.0

5
0
9
3
6

0
.8

6
1
5
3
3

0
.0

5
1
0
3
6

0
.8

6
1
2
8
7

4
0
.0

5
9
4
1
7

0
.7

9
3
8
3
8

0
.0

5
9
4
1
7

0
.7

9
3
8
3
8

0
.0

5
9
4
1
7

0
.7

9
3
8
3
8

0
.0

5
9
4
6
7

0
.7

9
3
6
8
8

0
.0

5
9
4
1
7

0
.7

9
3
8
3
8

0
.0

5
9
4
6
7

0
.7

9
3
6
8
8

0
.0

5
9
5
1
7

0
.7

9
3
5
3
9

5
0
.0

5
7
0
1
7

0
.7

5
7
8
6

0
.0

5
7
0
1
7

0
.7

5
7
8
6

0
.0

5
7
0
1
7

0
.7

5
7
8
6

0
.0

5
7
0
1
7

0
.7

5
7
8
6

0
.0

5
7
0
1
7

0
.7

5
7
8
6

0
.0

5
7
1
1
7

0
.7

5
7
5
0
2

0
.0

5
7
1
1
7

0
.7

5
7
5
0
2

0
.9

6
6
3
4
3

0
.9

6
6
3
3
5

0
.9

6
6
3
4
3

0
.9

6
6
3
1
9

0
.9

6
6
3
4
3

0
.9

6
5
9
5
9

0
.9

6
5
9
2
7

0
.0

8
0
5
1
2

0
0
.2

3
6
2
5
4

0
3
.8

3
8

4
.1

5
4
7
4
4

F
ig
u
re

5.
10
:
T
ri
an

gu
la
r
R
u
le

fo
r
K
ey

R
at
e
D
u
ra
ti
on



128 Chapter 5: Fixed Income Risk Management



Chapter 6

Beyond VaR

6.1 Introduction

In this chapter, three additional risk measures are introduced. The first is designed
to correct the biases in volatility. The second is to include another important aspect
VaR ignores – capital limitation. Finally, P&L attribution is crucial in assigning
responsibilities in fund management.

VaR is far from perfect. Furthermore, VaR cannot detect some very risky
situations. For example, there could be a long period over which VaR is satisfactory
and yet in a few days in the period the investment suffers a substantial loss which
can be so big that wipes out the entire endowment. Or a fund may eventually
be profitable but during a turmoil period, substantial withdrawals could terminate
the fund. Hence, in addition to VaR, fund management companies often look at
drawdowns.

VaR is usually criticized because of its two bad assumptions – normality and
volatility. The former is the assumption taken by the parametric VaR for the dis-
tribution of returns. This problem is usually circumvented by adopting EVT (see
Chapter 4). The latter is more fundamental in that VaR assumes volatility repre-
sents risk. However, many believe that volatility cannot properly represent risk, at
least not symmetrically. Risk results from fear of uncertainty. VaR uses volatility
to proxy uncertainty. When market is bearish, volatility can probably be regarded
as risk (this is mainly why VIX is called the fear index). However, when the market
is bullish, volatility does not create any fear to investors and hence should not be
regarded as risk. As a result, Frank A. Sortino and Lee N. Price develop a measure
in which only downside moves are considered risk and then use it to propose the
Sortino index.
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Lastly, in fund management, VaR which is a risk-return measure is not suitable
in evaluating the performance of fund managers. In addition to risk and return, there
is a need to evaluate a portfolio manager by his professional skills (this could be his
experience, insight, or use of proper models). The measure used here is P&L (profit
and loss) attribution. P&L attribution can distinguish a successful manager is not
successful because of his good luck and an unsuccessful manager is not unsuccessful
because of his skills.

6.2 Sortino Ratio12

As said earlier, VaR is far from perfect. Although various improvements are proposed
to add upon to VaR, still, many are unsatisfied because the underlying measure of
risk (i.e. volatility) is flawed. It is widely acceptable that volatility is only risk when
the market is going down. It is not necessarily risk when the market is going up. As
a result, there has been distinction made for “good volatility” and “bad volatility”3.
In other words, only one-sided volatility can be viewed as risk. The Sortino ratio is
a ratio takes that into consideration and only measure the downside risk.

6.2.1 Various Performance Indices

Before we check out the Sortino ratio, we should first review various famous and
popular performance indices.

Sharpe Index

Also known as the Sharpe ratio, the Sharpe index is perhaps the most widely used
index in measuring the performance of a stock or a portfolio.

ISharpe =
µi − r

σi

where i can be a single stock or a portfolio, and µ and σ are usually replaced by
sample mean and standard deviation as follows:

1Sortino, F.A.; Price, L.N. (1994). ”Performance measurement in a downside risk framework”.
Journal of Investing. 3: 50–8.

2http://www.redrockcapital.com/Sortino__A__Sharper__Ratio_Red_Rock_Capital.pdf
3For example, see http://public.econ.duke.edu/~boller/Papers/jfqa_19.pdf

http://www.redrockcapital.com/Sortino__A__Sharper__Ratio_Red_Rock_Capital.pdf
http://public.econ.duke.edu/~boller/Papers/jfqa_19.pdf
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µi =
1

T

∑T

t=1
ri,t

σi =

√
1

T − 1

∑T

t=1
(ri,t − µi)2

(6.1)

Jensen Index

In a diversified portfolio, it is the systematic risk (β), not the total risk (σ) that is
relevant.

IJensen =
µi − r

βi

where β is the coefficient of the following regression:

ri,t = αi + βirM,t + ei,t

and rM,t is the return of the market portfolio.

Trenor Index

Jack Trenor is the mentor of Fischer Black who invented the Black-Scholes formula.
Trenor index is also called Trenor’a alpha.

ITrenor = ri − µi

= ri − (r + βi(µM − r))
(6.2)

Again, usually theoretical mean µ and volatility σ are replaced by sample
mean and standard deviation. Similarly, the market portfolio is usually replaced by
a popular stock index (e.g. S&P 500).4

6.2.2 Sortino Ratio

ISortino =
µ∗
i − r

σ∗
i

4Note that theoretically the market portfolio should be the tangent portfolio on the efficient
frontier.
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where

µ∗
i =

1

T ∗

∑T ∗

t=1
r∗i,t

σ∗
i =

√∑T ∗

t=1
(r∗i,t − µ∗

i )
2

(6.3)

and r∗i,t is the return below the risk-free rate (or any benchmark). Hence, µ∗
i and

σ∗
i can be viewed as mean and standard deviation of those returns (and T ∗ is the

number of days) that fall below a certain target return.

6.2.3 Omega Ratio5

Omega Ratio is first proposed by Con Keating and William F. Shadwick.6 Omega
ratio is closely related to Sortino ratio in the spirit of downside market and lower
partial moments of the distribution. Omega ratio captures all of the higher moments
of the returns distribution. The performance measure is applied to a range of hedge
fund style or strategy indices. Originally, the Omega ratio is defined as follows:

Ω(K) =

∫ b

K
[1− F (r)]dr∫ K

a
F (r)dr

where K is a threshold and F (r) is the cumulative density function of r (return)
over [a, b]. 7 Intuitively speaking, Omega ratio is:

Ω(K) =

∑
(winning - benchmarking)∑
(benchmarking - losing)

=
1
T ∗

∑T
t=1(rt −K)1rt>K

1
T ∗∗

∑T
t=1(K − rt)1rt<K

(6.4)

where 1· is the indicator function which takes a value of 1 if the statement in the
subscript is true and 0 if it is false, and T ∗ and T ∗∗ are the numbers of those returns
in 1rt>K and 1rt<K respectively.

Note that equation 6.4 is theoretically identical to the following:

5Materials here are drawn from https://quantdare.com/

omega-ratio-the-ultimate-risk-reward-ratio/
6Keating and Shadwick, 2002, ”A Universal Performance Measure,” the Finance Development

Centre Limited.
7Hence, it is common to set a = −∞ and b = ∞ under continuous returns.

https://quantdare.com/omega-ratio-the-ultimate-risk-reward-ratio/
https://quantdare.com/omega-ratio-the-ultimate-risk-reward-ratio/
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Ω(K) =
E[max{r −K, 0}]
E[max{K − r, 0}]

=
C

P

=
µ−K

E[max{K − r, 0}]
+ 1

which is similar to the Sortino ratio if we rewrite the Sortino ratio in its theoretical
form as:

S =
µ−K√

E [max{K − x, 0}2]

6.3 Maximum Drawdown

Investopedia:

A maximum drawdown is the maximum observed loss from a peak to a trough
of a portfolio, before a new peak is attained. Maximum drawdown is an indicator
of downside risk over a specified time period. It can be used both as a stand-
alone measure or as an input into other metrics such as ”Return over Maximum
Drawdown” and the Calmar Ratio. Maximum Drawdown can be expressed in dollar
or percentage terms.

As the term suggests, the maximum drawdown is a downward deviation from
a defined threshold which is commonly set at the current capital. In other words,
a drawdown is how much loss an investment suffers and the maximum drawdown
is the maximum loss in a past period (e.g. past 10 years). The purpose of the
maximum drawdown is to help avoid the blind spot of an investment’s performance.
A profitable investment could suffer a maximum drawdown that exceeds the initial
capital and in such a case, although the investment is ultimately profitable, it may
never be able to reach it because the fund will go bankrupt before it reaches the end
of the investment horizon.

Sterling Ratio

Wikipedia:

The original definition was most likely suggested by Deane Sterling Jones (a
company no longer in existence). The Sterling ratio (SR) is a measure of the risk-
adjusted return of an investment portfolio.
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RS =
R

|D − 10%|

where R is compounded ROR, D is the average annual drawdown.

If the drawdown is put in as a negative number, then subtract the 10%, and
then multiply the whole thing by a negative to result in a positive ratio. If the
drawdown is put in as a positive number, then add 10% and the result is the same
positive ratio.

To clarify the reason he (Deane Sterling Jones) used 10% in the denominator
was to compare any investment with a return stream to a risk-free investment (T-
bills). He invented the ratio in 1981 when t-bills were yielding 10%. Since bills
did not experience drawdowns (and a ratio of 1.0 at that time), he felt that any
investment with a ratio greater than 1.0 had a better risk/reward tradeoff. The
average drawdown was always averaged and entered as a positive number and then
10% was added to that value.

RS =
rP − r

L

where rP is annual portfolio return and L is average largest drawdown.

Calmar Ratio

Investopedia:

The Calmar ratio is a gauge of the performance of investment funds such as
hedge funds and commodity trading advisors (CTAs). It is a function of the fund’s
average compounded annual rate of return versus its maximum drawdown. The
higher the Calmar ratio, the better it performed on a risk-adjusted basis during the
given time frame, which is mostly commonly set at 36 months.

The Calmar ratio was developed and introduced in 1991 by Terry W. Young, a
California-based fund manager. He argued that the ratio offered a more up-to-date
reading of a fund’s performance than the Sterling or Sharpe ratios, other commonly
used gauges, because it was calculated monthly while they were done annually. The
monthly update also made the Calmar ratio smoother than what Young called the
”almost too sensitive” Sterling ratio.

The Calmar ratio is, in fact, a modified version of the Sterling ratio. Its name
is an acronym for California Managed Account Reports. Young also referred to the
Calmar ratio as the drawdown ratio.

The ratio is defined as:
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ICalmar =
rP − r

D∗

where D∗ is the maxmimum drawdown.

6.4 P&L Attribution

The P&L attribution is to explain where the profits and losses come from. Due to
the fact that luck plays a critical role in trading, managers need to make sure that
their traders make money not due to luck but due to skills (or talents). As a result,
P&L attribution has become essential in trading and fund management business.

6.4.1 Taylor’s Series Expansion and Explanatory Risk Fac-
tors

Greeks are key to explain relative importance of each risk factor. We define the
basic Greeks as follows:

∆ = ∂C
∂S

= partial derivative of target (e.g. call) with respective to the under-
lying (e.g. stock)

V = ∂C
∂σ

= partial derivative of target (e.g. call) with respective to the volatility

P = ∂C
∂r

= partial derivative of target (e.g. call) with respective to the the
interest rate

Θ = ∂C
∂t

= partial derivative of target (e.g. call) with respective to time (known
as time decay)

Γ = ∂2C
∂S2 = partial derivative of target (e.g. call) twice with respective to the

underlying

Cross Greeks can be defined, as a few examples, as follows:

∆V = V ∆ =
∂2C

∂S∂σ
(Vanna)

ΓV =
∂2C

∂σ∂σ
(Volga)

∆P = P∆ =
∂2C

∂S∂r

PV = V P =
∂2C

∂r∂σ

where the first two are popular in FX.
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Take a single product as an example (e.g. call option). The explanatory factors
are price, volatility, and time – which translate to Delta, Gamma, Vega, and Theta.
If the BS model is the correct model, then we know that:

dC =
(
µSCS + σ2S2CSS + Ct

)
dt+ σSCSdW

=
(
µS∆+ σ2S2Γ + Θ

)︸ ︷︷ ︸
explanatory factors

dt+ σS∆dW︸ ︷︷ ︸
unexplained

(6.5)

and there is no Vega. If the volatility and the risk-free rate are both random, then
we must first define the volatility and interest rate processes. Usually we write both
of them as mean-reverting square root processes:

dS = µSdt+
√
V SdW1

dV = α(β − V )dt+
√
V γdW2

dr = a(b− r)dt+
√
rgdW3

(6.6)

where dWidWj = ρijdt. Then the P&L attribution becomes:

dC = CSdS + CV dV + Crdr + CSS(dS)
2 + CV V (dV )2 + Crr(dr)

2

+ CSV (dS)(dV ) + CSr(dS)(dr) + CV r(dV )(dr) + Ct

=

[
µSCS + α(β − V )CV + a(b− r)Cr + Ct+

V S2CSS + γ2V CV V + g2rCrr + V Sγρ12CSV + rSgρ13CSr +
√
rV γgρ23CV r

]
dt

+
√
V SCSdW1 + σ

√
V CV dW2 + g

√
rPdW3

=

[
µS∆+ α(β − V )V + a(b− r)P + Θ+

V S2Γ + γ2V V V + g2rPP + V Sγρ12∆V + rSgρ13∆P +
√
rV γgρ23V P

]
︸ ︷︷ ︸

explanatory factors

dt

+
√
V S∆dW1 + γ

√
V V dW2 + g

√
rPdW3︸ ︷︷ ︸

unexplained

(6.7)

As we can see, the model can expand to as many random factors as we wish. As
shown in the exhibit earlier, the random factors can include FX, multiple key interest
rates, credit, prepayment, and any other risk factors. At the end, the equation can
be very long and the number of parameters can become quite unimaginable. Some
simplifications must be necessary.

The first simplification is as easy as just ignoring higher order (and cross)
Greeks. We can assume that higher order Greeks such as Vega-Vega and Delta-
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Vega effects are small and ignore them. The second simplification is to adopt the
VaR methodology and choose several key benchmark indices.

6.4.2 Pictorial P&L Attribution

Figure 6.1 is taken from http://www.pnlexplained.com/ on 12/15/2009 which de-
scribes very well the concept of P&L attribution.

 

 

Figure 6.1: P&L Decomposition

At the bottom layer, we see various first order Greeks such as Delta and Vega,
and various higher order Greeks such as Gamma and cross Greeks (cross Gamma
and Vega-Gamma).
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6.4.3 How Does It Work Empirically

The theory explained in Section 6.4.1 often does not apply in reality simply because
only very few models exist for the large universe of securities. Usually, these models
are for derivatives and hence “cash” products like stocks, FX, commodities, etc. will
not be able to leverage upon Taylor’s series expansion because they are not deriva-
tives. However, we do recognize that these cash products are significantly influenced
by macro economic conditions such as GDP, inflation, exports and imports, etc. In
other words, we can view these cash products as derivatives of more fundamental
economic conditions. However, unfortunately, it is hard to develop an analytical
model of these cash products as a result of those macro economic factors.

As a result, regression is used to specify the relationship of these cash products
and the macro economic factors. One can specify any functional form such as follows:

ri = b0 +
∑K

k=1
bkxk + ei

where for example x1 can be GDP and x2 can be GDP2 and x3 can be GDP3.
Interaction terms such as GDP×Inflation can also be included.

Then the partial derivatives are simply the regression coefficients and the de-
composition depicted in Section 6.4.2 can be implemented. Certainly, regression
results are not stable. They vary from period to period and also are sensitive to
how the sample is chosen. Interested reader can use the regression model (xk’s are
polynomials of the stock price) to price a call option and compare it against the
Black-Scholes price.
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Value Adjustment

7.1 VA – Value Adjustment

As previously discussed, valuation is important in providing reliable risk manage-
ment. This is particularly so when there are no liquidly observable prices. When
prices are not always observable, models are used to estimate those prices. Models
make assumptions about the connections between observables in the market place
(inputs to the model) to the prices and risk metrics (outputs of the model) of the
assets. Complex models are believe to generate more accurate estimates for prices
but require a comprehensive set of inputs and often need a long time to compute
prices and risk metrics. As a result, these models cannot be used for day-to-day risk
management. Simpler models are therefore developed to quickly estimate prices
for day-to-day risk management but these estimates can be inaccurate. To balance
between the two, a concept of VA (value adjustment) is adopted by the industry.

The idea of a VA is to run simple models every day but periodically check
against more comprehensive models. In other words, simple models are “calibrate”
to more complex models on a less frequent basis and then run on their own until
the next calibration. This constant process of re-calibration has its own become an
important methodology which needs to be validated to insure the “calibration” each
time is done properly. The complex models themselves are subject to extra scrutiny
to insure absolute accuracy in providing proper valuation.

The complex models need to validated thoroughly. This always requires care-
fully designed econometric methods for parameter estimation (see later), compre-
hensive back tests and stress tests, sensitivity analyses on parameters, and a full
revelation on model risk.

Take a CDO as an example. There are several simple models currently used
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such as:

� correlation skew

� binomial diversity score

and yet the full model is done over various stochatic input variables via Monte Carlo
(with recursive algorithm and Fourier Inversion).

7.2 Various VAs

7.2.1 CVA

This is credit value adjustment (or counterparty value adjustment). CVA is intro-
duced in Chatper 16, Section 16.4.

7.2.2 FVA

This is funding value adjustment, which is directly related to liquidity as funding
becomes more difficult when liquidity is bad. FVA is introduced in Chapter 19.

7.2.3 KVA

This is capital value adjustment, which is related of costs of capital.

7.2.4 XVA

This is the sum of all VAs.
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Parameter Estimation

8.1 Introduction

To use a model, we must first obtain parameter values. There are two ways to
estimate parameter values in a model. One is the “reduced-form” (familiar with the
term now?) approach and the other is the econometric approach.

The reduced-form approach is to use current market information to “back out”
parameter values. The most famous example is the implied volatility of the option,
using the Black-Scholes model. One equation (Black-Scholes option pricing formula)
and one unknown (volatility). People use the same method to compute parameter
values of other models. For example, we can solve for four parameters of the Vasicek
term structure model using four bonds.

The second method is the econometric method. Historical data are collected
and the full time series behavior of the model is considered. Hence, theoretically, the
econometric method is definitely superior to the reduced-form method. However,
given that the parameters are estimated by past prices, hence there is no guarantee
that the model can match the current price. This can be a problem for hedging as
the hedge ratios will then be incorrect.

8.2 Regression estimation for the Vasicek model

Recall that the Vasicek model is a one-factor mean reverting Gaussian model with
the following short rate dynamics

dr = α(µ− r)dt+ σdW (8.1)
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under the real measure and the parameters are defined previously. The mean and
variance of r are given as follows:

E[rs|rt] =
(
1− e−α(s−t)

)
µ+ e−α(s−t)rt (8.2)

and

V[rs|rt] = σ21− e−2α(s−t)

2α
(8.3)

for s ≥ t.

We know that r is normally distributed. Hence, we can write an AR(1) process
in discrete time for r:

rt =
(
1− e−αh

)
µ+ e−αhrt−h + et (8.4)

where h is time interval and et has mean 0 and variance 1−e−2αh

2α
σ2. This essentially

an OLS with normally distributed error terms:

rt = a+ brt−h + et (8.5)

with a =
(
1− e−αh

)
µ and b = e−αh. We can then run an OLS to obtain the

parameters. The regression coefficient, b, can be used to estimate α, and then the
constant coefficient, a, can be used for µ. Finally the MSE of the regression model
can be used to estimate σ. The t statistics of α and µ can be derived from the t
statistics of a and b. With Taylor’s series expansion, we have:

{
b ≈ 1− αh

a ≈ αµh
(8.6)

It then follows that:

{
var[b] ≈ h2 var[α]

var[a] ≈ (αh)2 var[µ]
(8.7)

and hence the t statistics can be easily calculated. Finally, the asymptotic standard
error of the SSE of the regression model is 1/(2σ4). Hence, the standard error of
the MSE is 1/(2Nσ4) where N is the sample size.



Regression estimation for the Vasicek model 143

The problem of the above method is that it fails to estimate the market price
of risk. The chosen interest rate series are regarded as instantaneous rate and
hence carries no risk premium. Certainly such a substitution, while convenient and
often times enough to obtain a major intuition of the interest rate dynamics, is
theoretically flawed.

To include the market price of risk into the estimation process, we must realize
that any market interest rates are not the instantaneous rate but ”term rates” that
are usually converted to discount factors Pt,T before they can be used for any pricing.
In the Vasicek model, this discount factor has a closed-form solution as follows:

Pt,T = e−rtFT−t−GT−t (8.8)

where

FT−t =
1− e−α(T−t)

α

GT−t =
(
µ− σλ

α
− σ2

2α2

)
(T − t− FT−t) +

σ2F 2
T−t

4α2

where λ is the market price of risk. Inverting the pricing formula gives the instan-
taneous rate:

rt = − lnPt,T +GT−t

FT−t

(8.9)

Note that the above formula must hold regardless of the choice of t. Also note
that at the next period, t+ h, we can write (8.9) as:

rt+h = − lnPt+h,T+h +GT−t

FT−t

(8.10)

and the functions F and G remain the same as T + h− (t+ h) = T − t. This result
provides tremendous convenience in data collection. We can choose CMT (constant
maturity Treasury) rates for the estimation. A 3-month CMT rate have a constant
rolling maturity of 3 months. Hence T − t = 1/4. We can use daily (i.e. h = 1/365)
CMT rates for estimation.

Substituting (8.9) and (8.10) back into (8.12), we obtain:

− lnPt+h,T+h

T − t
=

(
1− e−αh

T − t

)
(µFT−t +GT−t) + e−αh− lnPt,T

T − t
+

FT−t

T − t
et (8.11)
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An OLS can be performed to arrive at the following estimates:

Slope = e−αh

Intercept =

(
1− e−αh

T − t

)
(µFT−t +GT−t)

SSE =
F 2
T−t

(T−t)2
σ2(1−e−2αh)

2α

(8.12)

where h is data frequency and T − t is the maturity of the bond. Note that (8.12)
has three equations but has four unknowns. The market price of risk contained in
function G cannot be identified. As a result, we must choose another bond series
and run a simultaneous regression as follows:


− lnPt+h,T+h

T − t
=

(
1− e−αh

T − t

)
(µFT−t +GT−t) + e−αh− lnPt,T

T − t
+

FT−t

T − t
et

− lnPt+h,T ′+h

T ′ − t
=

(
1− e−αh

T ′ − t

)
(µFT ′−t +GT ′−t) + e−αh− lnPt,T ′

T ′ − t
+

FT ′−t

T ′ − t
et

(8.13)

where T ′ represents a different maturity. In the simultaneous regression the regres-
sors in the two separate equations must be restricted to have the same coefficient.
This allows us to solve for a unique set of α, µ, and λ. However, there are two SSEs
from separate regressions and the choice of σ is arbitrary.

From this exercise, we know that it is impossible to estimate market price of
risk without crossectional data. A univariate time series data cannot be used to
estimate market price of risk.

Finally, via Taylor’s series expansion, we can derive the standard errors of the
parameters:

var
[
e−αh

]
≈ var[1− αh] = h2 var[α]

var

[(
1− e−αh

T − t

)
(µFT−t +GT−t)

]
≈ var

[(
1− e−αh

T − t

)[
µFT−t +

(
µ− σ2

2α2

)
(T − t− FT−t) +

σ2F 2
T−t

4α

]]
=

(
1− e−αh

T − t

)2

var [µ(T − t)] =
(
1− e−αh

)2
var[µ]

(8.14)
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8.3 The Cox-Ingersoll-Ross Model

The CIR model is a one-factor mean-reverting square-root model with the following
short rate dynamics:

dr = α(µ− r)dt+ σ
√
rdW (8.15)

under the real measure and the parameters are defined previously. This is a complex
distribution for r. The transition density for r is:

f(rs|rt) = ce−c(rs+ξ)

(
rs
ξ

)d/2

Id(2c
√

rsξ) (8.16)

where

c =
2α

σ2 (1− e−α(s−t))

ξ = rte
−α(s−t)

d =
2αµ

σ2
− 1

which after change of variable x = 2cr:

f(xs|xt) =
1

2
e−

1/2(xs+Λ)
(xs

Λ

)d/2
Id(
√

Λxs) (8.17)

is a non-central chi-square distribution with Λ = 2cξ degrees of non-centrality and
υ = 2d + 2 = 4αµ

σ2 degrees of freedom. We know that the mean and variance of a
non-central chi-squared distribution are, respectively, υ + Λ and 2(υ + 2Λ), which
lead to (see Chapter ?? for details):

E[rs|rt] =
(
1− e−α(s−t)

)
µ+ e−α(s−t)rt (8.18)

and

V[rs|rt] =
σ2

2α

[(
1− e−α(s−t)

)2
µ+ rt

(
e−2α(s−t) − e−α(s−t)

)]
(8.19)

It is clear that the mean of r under the CIR model is the same as the mean
under the Vasicek model. However, unlike the Vasicek model, the variance of r is
no longer independent of r. As a result, the instantaneous rate r under the CIR
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model is an AR(1) process but is hetroskedestic. A common econometric procedure
to account for such a hetroskedesticity is a two-step regression as follows.

� Run OLS of (8.12):

rt = a+ brt−h + et where

a =
(
1− e−α(s−t)

)
µ

b = e−α(s−t)

� The variance of the error term must satisfy:

E[e2t ] = σ2

2α

[(
1− e−α(s−t)

)2
µ+ rt

(
e−2α(s−t) − e−α(s−t)

)]
� Run e2t = a′ + b′rt−1 + ut where

a′ =
σ2

2α

(
1− e−α(s−t)

)2
µ

b′ =
σ2

2α

(
e−2α(s−t) − e−α(s−t)

)
� Use the first OLS to solve for α and µ and the use the second OLS to solve
for σ.

Since both a′ and b′ can be used to solve for σ, one can use a more reasonable
estimate. Same as in the Vasicek model estimation, this regression is a convenience
but it does not contain the market price of risk. To include in the market price of
risk, we need to use the closed-form solution of the CIR model for the discount factor
Pt,T . Interested readers can follow the steps as described in the previous sub-section
and use two bonds to estimate all four parameters in the CIR model.

8.4 The Ho-Lee Model

Note that from the Ho-Lee model introduced in Chapter ??, we define the zero-
coupon bond price as P (t, T, j) where t is current time, T is maturity time, and
j represents the state of economy. The pricing formula in a binomial model is as
follows:
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
P (u, s, j) =

P (t, s, j)

P (t, u, j)
d(s− u)

P (u, s, j + 1) =
P (t, s, j)

P (t, u, j)
u(s− u)

(8.20)

where t < u < s and

u(τ) =
1

p+ (1− p)δτ

d(τ) =
δτ

p+ (1− p)δτ

The frequency of the data is u−t and the maturity is τ . Note that P (t, s, j)/P (t, u, j)
is a forward price. If the yield curve is flat, then P (t, s, j)/P (t, u, j) becomes e−r(s−u)

under state j, which is P (t, t+ s− u, j). Note that this bond has the same time to
maturity as P (u, s, j) or P (u, s, j + 1). As a result, we can write (8.20) as:{

P (u, u+ τ, j) = P (t, t+ τ, j)d(τ)

P (u, u+ τ, j + 1) = P (t, t+ τ, j)u(τ)
(8.21)

Hence, we can collect a series of τ -maturity bond prices (CMT series would be
ideal). Write such bond series as Dt(τ). Then,

Dt+1(τ) =


Dt(τ)

δτ

p+ (1− p)δτ
if rate rises

Dt(τ)
1

p+ (1− p)δτ
if rate falls

(8.22)

where Dt(τ) represents the zero-coupon bond price at time t for time to maturity τ
in data series. We can choose a liquid Treasury series, e.g. 3-month T bills, for the
estimation. Equation (8.22) can be written as:

lnDt+1(τ)− lnDt(τ) = − ln[p+ (1− p)δτ ] + τ ln δIt+1 + ut+1 (8.23)

where the indicator function:

It =

{
1 if rate rises

0 if rate falls
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and ut ∼ N(0, 1). In a simple regression as follows:

yt = a+ bxt + ut (8.24)

we can set δ = eb/τ and p = e−a−δτ

1−δτ
.

8.5 More sophisticated econometric methods

We can always use more sophisticated econometric methods such as Maximum Like-
lihood Estimation (MLE) or Generalized Method of Moments (GMM) to estimate
parameters. These methods are more robust and accurate. However, this goes be-
yond the scope of this book. Interested readers are welcomed to study specialized
books.



Chapter 9

Simulation

9.1 Introduction

So far we have been discussing how to calculate VaR’s from historical data. These
VaR numbers are historical and usually do not reflect what the future risk is. As a
result, forecasting VaR is crucial in managing market risk. This is where we need
simulations.

9.2 Random Numbers

9.2.1 Normal/log Normal

Simulating a normal distribution is the most basic. Although many software pack-
ages have such random number generator, it is really easy to do it by oneself.

Inverse normal probability function has an accurate closed form approximation
formula and its code is enclosed at the end of this Chapter. In Excel, simply use
NORMSINV(RAND()) to obtain a normal random variable (as RAND() generates
a uniform random variable).

Log normal random numbers are simply exponential transforms of normal
random numbers.
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9.2.2 Poisson

Assume the intensity parameter to be λ. Then the Poisson density function (i.e.
probability of j events occurring) is:

Pr(X = j) =
(λ∆t)je−λ∆t

j!
(9.1)

The most popular probability used in finance is j = 0 which represents no
default. In that case, the probability is e−λ∆t, which is known as the survival
probability over the time period ∆t.

There are two ways to simulate a Poisson process. One is to simulate directly.
Note that a Poisson process is a collection of Bernoulli events. As a result, we
can simulate a sequence of 0/1 events (0 for event not happening and 1 for event
happening) over the dt period.

This simulation, however, is very time consuming. But it can take care of any
flexible dynamics in the state variable. For example, if the intensity parameter is
random, then it is only possible to do direct simulation.

An alternative simulation is to simulate exponential time. Note that the prob-
ability of no default is identical to the probability that default time τ occurs after
the fixed specified time t.

Pr(τ > t) = e−λt (9.2)

Hence, a uniform random number, say u, can be transformed into an exponen-
tial random number by t = − lnu/λ.

9.2.3 Non-central Chi-square

Non-central Chi-square (nc-χ2) cumulative distribution function is not closed form,
hence an inversion function is not easy to calculate. As a result, simulating nc-χ2

distribution is not easy. Here is how.

The non-central chi-square cumulative density function, CDF, is (e.g. see
Johnson and Kotz):

Fncχ2(x) =
∑∞

j=0

e−
1/2λ(1/2λ)j/j!

2
1/2ν+jΓ(1/2ν + j)

∫ x

0

z
1/2ν+j−1e−

1/2zdz (9.3)

where ν and λ are degrees of freedom and non centrality respectively.
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Note that a chi-square density is:

fχ2(z; k) =
1

2
1/2kΓ(1/2k)

z
1/2k−1e−

1/2zdz (9.4)

where k is the degrees of freedom. Also note that the Poisson density is:

fP (x;h) =
∑∞

j=0

e−hhx

x!
(9.5)

where h is the intensity parameter. Hence, we can write the CDF of the non-central,
chi-square distribution as:

Fncχ2(x) =
∑∞

j=0
fP (j; 1/2λ)

∫ x

0

fχ2(z; ν + 2j)dz (9.6)

This implies that the CDF of a non-central, chi-square distribution is a CDF
of Poisson weighted chi square distribution. Hence, to simulate the non-central,
chi-square random variable, we follow the following steps:

� simulate Poisson random variable, x, with an intensity of 1/2λ

� simulate chi-square random variable, y, with the degrees of freedom as 2x +
4αµ/σ2

� To simulate the short rate in the CIR model, r(t + ∆t), we first set λ =
2cr(t)e−α∆t where c = 2α/σ2

(
1− e−α∆t

)
. Then we note that in the CIR

model, the short term interest rate does not follow non-central, chi-square
distribution but a “scaled” non-central, chi-square distribution. The scaled
amount is r(t+∆t) = y/(2c).

While the above algorithm always works, a simpler algorithm can be employed
if the degrees of freedom is greater than 1. When ν > 1, the following recursive result
holds (see Johnson and Kotz):

Zncχ2(x; ν, λ) = (ZN +
√
λ)2 + Zχ2(x; ν − 1) (9.7)

where Zncχ2(x; ν, λ, ZN , and Zχ2(x; ν− 1) represent the random variables from non-
central, chi-square, normal, and chi square respectively. In this case, we can simulate
the non-central, chi-square variable as follows:

� simulate standard normal
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� simulate chi square with ν − 1

� degrees of freedom

� add them together.

9.2.4 Multi-variate Gaussian

To simulate multiple correlated random variables, it is important to understand
Cholesky decomposition. Cholesky decomposition makes it possible that we first
simulate independent random variables and then correlate them. As a result, simu-
lating many correlated random variables is extremely straightforward.

Given the correlation matrix, R, we perform the Cholesky decomposition as
follows:

CC′ = R (9.8)

where C is the Cholesky matrix. In other words, the Cholesky matrix decomposes
the correlation matrix. This is Cholesky decomposition. Let X (a vector) follow the
diffusion:

dX = Mdt+ ΣCdW (9.9)

where M is the drift and Σ is a diagnal matrix of standard deviations. Then,

Ω = (dX)(dX′)

= (ΣCdW )(ΣCdW )′

= ΣCC′Σ′

= ΣRΣ′

(9.10)

To simulate the joint Gaussian distribution, it is straightforward:



Random Numbers 153


dX1

dX2

...

dXn

 =


µ1

µ2

...

µn

 dt+


σ1

σ2

. . .

σn



×



x1,1 · · · x1,n

0 x2,2 x2,n
...

. . .
...

0 0 0 xn−2,n−2 xn−2,n−1 xn−2,n

0 0 0 0 xn−1,n−1 xn−1,n

0 0 0 0 0 1





dW1

dW2

...

dWn−2

dWn−1

dWn



(9.11)

where

xj,n = ρj,n for all j ⩽ n (note that ρn,n = 1)

xi,j =
ρi,j −

∑n
k=j+1 xi,kxjk

xj,j

for i < j

xj,j =

√
1−

∑n−j

k=1
x2
j,j+k for j < n

Take a 4-variable example and expand it as:


dX1

dX2

dX3

dX4

 =


µ1

µ2

µ3

µ4

 dt+


σ1

σ2

σ3

σ4



×


√
1− x2

12 − x2
13 − x2

14
ρ12−ρ14ρ24−x13x23√

1−x2
23−x2

24

ρ13−ρ14ρ34√
1−ρ234

ρ14

0
√

1− x2
23 − x2

24
ρ23−ρ24ρ34√

1−ρ234
ρ24

0 0
√
1− ρ234 ρ34

0 0 0 1



dW1

dW2

dW3

dW4


(9.12)

The model may not be Gaussian. It could be a different statistical distribution.
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9.3 Examples

9.3.1 Black-Scholes

The most straightforward example to practice Monte Carlo is the Black-Scholes
model, which we shall demonstrate here. The Black-Scholes model employs the
following log normal process for the stock price:

dS = rSdt+ σSdW (9.13)

One way to simulate the stock price is to simulate the following stochastic
Euler equation:

∆S = rS∆t+ σS
√
∆tε (9.14)

where ε ∼ N(0, 1). This equation can be written as:

St+∆t − St = rSt∆t+ σSt

√
∆tε (9.15)

or

St+∆t = St(1 + r∆t) + σSt

√
∆tε (9.16)

where ∆t is the small time step (e.g. 1/252 for one daily simulations). Note that
subscripts here are time indexes. After a number of steps as the option reaches
maturity (e.g. 3 months, or 0.25 year), we can compute the option price as:

max{ST −K, 0}

for call and

max{K − ST , 0}

for put. The option value today is:

C0 = e−rT Êt[max{ST −K, 0}

= e−rT
∑N

j=1

1

N
max{ST,j −K, 0}

(9.17)
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The following table is an Excel exercise of 8 weekly Monte Carlo simulation
result. The basic information of this example is as follows:

Inputs
initial stock price (S0) 100
∆t (week) 1/52
risk-free rate (r) 0.04
volatility (σ) 0.3
strike (K) 98

The simulations of 1 path are done in Excel and shown below:

Outputs 1
week rand num stock price
0 100.0000
1 -0.76519 96.8935
2 -0.70608 94.1218
3 1.41599 99.7388
4 -0.39640 98.1707
5 -0.42778 96.4991
6 -0.24764 95.5792
7 -0.58516 93.3259
8 -0.20290 92.6099

On this path, at the end of the 8th week, the stock price is $92.61 which is out
of the money for the call option. Simulate a different path as follows:

Outputs 2
week rand num stock price
0 100.0000
1 1.59777 106.7241
2 0.24837 107.9089
3 1.45871 114.5405
4 1.47683 121.6660
5 -1.20669 115.6518
6 0.26589 117.0200
7 -0.44651 114.9363
8 0.61087 117.9457

and the stock price at the end of the 8th week is $117.95 which is in the money of
the call option, and the payoff is $17.95. Simulating a number of paths, say 1000, we
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obtain 1000 values for the call option. Following (9.17), we take an average of the
1000 option values and then discount at the risk-free rate to arrive at the estimated
call option premium.

Such simulations have two problems. First, there is a large number of normal
random numbers to generate. Along each path, there need to be n steps and then
there are N paths. Hence, there are a total of n×N random numbers to generate.
This is very numerically costly.

An alternative, and more efficient, method is to solve for the stock value at
the terminal time – ST . For this we need the tool from Chapter 1: lnST = lnSt +(
r − 1

2
σ2
)
(T − t)+σ

√
T − tε. After obtaining lnST , then taking an exponential we

obtain the stock price at time T . Then proceed with the option payoff calculation as
described and compute the option price. This approach only requires N simulations
which is more efficient.

9.3.2 Two stocks

Simulating multiple stocks is very straightforward. We shall use a two-stock example
to exemplify.[

dS1

dS2

]
=

[
rS1

rS2

]
dt+

[
σ1S1 0
0 σ2S2

] [ √
1− ρ2 ρ
0 1

][
dZ1

dZ2

]
(9.18)

The simulation of the second stock follows equations (0-102) through (0-105)
as follows:

S2,t+∆t = S2,t(1 + r∆t) + σ2S2,t

√
∆tε2 (9.19)

The first stock can be simulated via the same method, as follows:

S1,t+∆t = S1,t(1 + r∆t) + σ1S1,t

√
∆t
(√

1− ρ2ε1 + ρε2

)
(9.20)

Use the following parameter values.

Parameter Values
initial stock price S0 100 100

volatility σ 0.3 0.3
week ∆t 1/52

risk-free rate r 0.04
correlation ρ −0.6
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We simulate 8 weeks of correlated stock prices as follows.

Outputs
week rand num norm r.n. stock price rand num norm r.n. stock price

0 100 100
1 0.722067 0.588993 102.5273 0.698352 0.519665 100.3363
2 0.061049 -1.54603 96.01172 0.632405 0.33823 105.415
3 0.435153 -0.16327 95.43343 0.771024 0.742223 108.5298
4 0.357303 -0.36568 94.055 0.853696 1.052417 113.4053
5 0.082638 -1.38754 88.698 0.288043 -0.55911 115.3101
6 0.742822 0.652071 91.17241 0.800278 0.842615 116.7556
7 0.823997 0.930706 94.77272 0.470177 -0.07482 113.8423
8 0.157892 -1.00316 90.89039 0.688519 0.491657 118.6433

9.3.3 Stock with random interest rates

We continue to use the Euler approximation for the stock (Black-Scholes):

dS = rSdt+ σSSdWS

St+∆t = St + rSt∆t+ σSt

√
∆tεS,t+∆t

= St

(
1 + r∆t+ σ

√
∆tεS,t+∆t

) (9.21)

where ∆t = 1
252

= 0.003968254.

But now the interest rates are random and we assume to follow the Vasicek
model:

dr = α(µ− r)dt+ σrdWr

rt+∆t = rt + αµ∆t− αrt∆t+ σr

√
∆tεr,t+∆t

= rt(1− α∆t) + αµ∆t+ σr

√
∆tεr,t+∆t

(9.22)

where the two random processes are correlated with the correlation coefficient ρ :
dWSdWr = ρdt.

Let (known as the Cholesky decomposition)[
dWS

dWr

]
=

[ √
1− ρ2 ρ
0 1

] [
dZS

dZr

]
(9.23)

Then dZSdZr = 0. Then,
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[
dS

dr

]
=

[
rS

α(µ− r)

]
dt+

[
σS 0
0 σr

][
dWS

dWr

]

=

[
rS

α(µ− r)

]
dt+

[
σSS 0
0 σr

] [ √
1− ρ2 ρ
0 1

][
dZS

dZr

] (9.24)

Hence,

St+∆t = St + rSt∆t+ σSSt

√
∆tεS,t+∆t

= St

(
1 + r∆t+

√
∆tσS

(√
1− ρ2εS,t+∆t + ρεr,t+∆t

)) (9.25)

and

rt+∆t = rt(1− α∆t) + αµ∆t+ σr

√
∆tεr,t+∆t (9.26)

Use the following parameter values.

Parameter Values
initial value (S0/r0) 100 0.02
volatility (σS/σr) 0.3 0.1

week ∆t 1/52
correlation ρ −0.6

We simulate 8 weeks of correlated stock price and interest rates as follows.

Outputs
week rand num norm r.n. int. rate rand num norm r.n. stock price

0 0.02 100
1 0.26516 -0.62751 0.01168 0.63801 0.35315 99.98257
2 0.35716 -0.36607 0.00715 0.14230 -1.07005 98.30791
3 0.85302 1.04946 0.02234 0.73532 0.62898 101.11923
4 0.68315 0.47651 0.02928 0.76893 0.73533 102.79198
5 0.38716 -0.28673 0.02551 0.88485 1.19960 107.22825
6 0.50613 0.01535 0.02600 0.34620 -0.39560 108.93629
7 0.87028 1.12771 0.04191 0.25562 -0.65691 100.22972
8 0.22975 -0.73966 0.03162 0.63994 0.35831 99.56878
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9.4 Homework

1. VaR of one stock: Choose a stock and do the same analysis.

2. VaR of one stock and one option: Do the same analysis with the company of
your choice.

9.5 Appendix

Theoretically, the var-cov matrix for the factors should be a diagonal matrix as
factors are orthogonal. However, in reality, we do not obtain orthogonal factors
from data using PCA. As a result, the following matrix is observed:
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Chapter 10

Volatility and Extreme Value
Theorem

10.1 Introduction

As we have learned so far, volatility is the key to risk management. The entire market
risk (i.e. VaR) is based upon volatility. An inaccurate estimate of the volatility, as
a result, can lead to very wrong risk management decisions. Hence, estimating the
right levels of volatility is a very important job. In our analyses before, mostly the
volatility used is based upon historical estimates, which are not good reflections of
future levels of volatility. Consequently, volatility forecast is a key and important
task.

The easiest way to obtain an estimate a future volatility is the implied volatility
from the options markets. As option prices are bets on future payoffs, their implied
volatility estimates reflect what investors’ beliefs of future volatility. Unfortunately,
we only have a very limited number of options contracts traded in the market place
(limited tenors and most tenors are very short term, less than a year). Therefore,
methods of forecasting volatility are adopted in risk management.

Another important risk management concept is to recognize the fact that rare
events are not rare. In other words, large losses are more than likely than what
people think. To over come this problem, probability distributions with fat tails
are proposed to replace the popular normal distribution. t distribution, Cauchy
distribution, and so on are being proposed. Or alternatively, we can adopt the
extreme value theory (EVT) to “fatten” the tails of a normal distribution.
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10.2 Implied Volatility and Risk-Neutral Density

The easiest and best forecast of future volatility is the implied volatility from option
and/or futures prices.1

With enough options and futures contracts we not only can estimate volatility
of any future date, we can also imply out the entire distribution of the underlying
asset. Options and futures can provide a “volatility surface” which can then be used
to imply out the risk-neutral distribution of the underlying asset.

Take the Black-Scholes model as an example. The call option formula is:

C = SN(d1)− e−r(T−t)KN(d2)

where

d1 =
lnS − lnK + (r + 1/2σ2)(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t

Taking partial derivative of the call price with respect to the strike price (i.e.
∂C/∂K), we arrive at:

N(d2)

which is the probability of in the money, or Pr[S > K] for a given maturity. Taking
another partial derivative with respect to the strike, we arrive at the probability
density function of the underlying asset:

p.d.f. =
∂N(d2)

∂K

In the Black-Scholes case, this is just a normal density. Yet this method can
be used with real options and the resulting p.d.f. is not necessarily normal. To
summarize, the risk-neutral density of the stock can be computed as:

p.d.f =
∂2C

∂K2

1Note that forwards and swaps are model-free, they do not embed volatility information (or any
other parameter). Futures and options are model dependent and hence can be used to estimate
the volatility which is one of the model parameters.
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Sometimes we do not have enough option contracts to derive a granular enough
density function and industry often uses smoothing techniques to generate “fake”
option prices. The smoothing techniques vary from bank to bank.

10.3 GARCH

GARCH, or Generalized Auto Regressive and Conditional Heteroskedesticity, is a
methodology to model time series of volatility. A GARCH(p, q) model specifies the
evolution of the volatility as:

σ2
t = ω +

∑p

i=1
αiε

2
t−i +

∑q

j=1
βjσ

2
t−j (10.1)

The estimation of GARCH is left to another chapter.

10.4 EWMA

EWMA (exponentially weight moving average) methodology for calculating the
volatility estimates.

σ2
j,t = (1− λ)r2j,t−1 + λσ2

j,t−1 (10.2)

where λ is the decay factor (which is usually set between 0.99 and 0.97) and j rep-
resents a tenor of choice (e.g. 3-month). EWMA is a special case of a GARCH(1,1)
model as follows:

σ2
t = α0 + α1σ

2
t−1 + β1ε

2
t−1 (10.3)

where α0 = 0, and α1 = 1− β1.

When the β’s are large and the α’s small, the volatility evolves more quickly as
more weight is placed on the most recent change in the underlying random variable,
and less on the previous volatility levels. On the other hand, when the β’s are
small and the α’s large, the volatility evolves more slowing resulting in a low level
of volatility-of-volatility.

RiskMetricsTM estimated 2 the decay (λ) parameter for various regions and

2Technical Document. Document date unclear. Morgan Guaranty Trust Company Risk Man-
agement Advisory Jacques Longerstaey (1-212) 648-4936 riskmetrics@jpmorgan.com Reuters Ltd
International Marketing Martin Spencer (44-171) 542-3260 martin.spencer@reuters.com
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instruments as follows (their page 99, Table 5.8: Optimal decay factors based on
volatility forecasts):

Decay Parameter Estimates
Country Fore Ex 5y Swap 10y Zero Eq Index 1y MM
Austria 0.945 — — — —
Australia 0.980 0.955 0.975 0.975 0.970
Belgium 0.945 0.935 0.935 0.965 0.850
Canada 0.960 0.965 0.960 — 0.990
Switzerland 0.955 0.835 — 0.970 0.980
Germany 0.955 0.940 0.960 0.980 0.970
Denmark 0.950 0.905 0.920 0.985 0.850
Spain 0.920 0.925 0.935 0.980 0.945
France 0.955 0.945 0.945 0.985 —
Finland 0.995 — — — 0.960
Great Britain 0.960 0.950 0.960 0.975 0.990
Hong Kong 0.980 — — — —
Ireland 0.990 — 0.925 — —
Italy 0.940 0.960 0.935 0.970 0.990
Japan 0.965 0.965 0.950 0.955 0.985
Netherlands 0.960 0.945 0.950 0.975 0.970
Norway 0.975 — — — —
New Zealand 0.975 0.980 — — —
Portugal 0.940 — — — 0.895
Sweden 0.985 — 0.980 — 0.885
Singapore 0.950 0.935 — — —
United States — 0.970 0.980 0.980 0.965
ECU — 0.950 — — —

To estimate the parameter, one must use GARCH(1,1) with restrictions. We
leave all the econometric discussions to another chapter.

10.5 Extreme Value Theory (EVT)

The material in this section is taken from the master thesis of Krenar Avdulaj (2010)
at the Charles University in Prague (p.15-19).

The Extreme Value Theory (EVT) is designed to model very large tails. This
is know as black swans or rare events. The basic black swan or rare event story is
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that black swans or rare events are really rare. In other words, tail probabilities
(probabilities for very large losses) are not as small as people think.

There are fatter tail distributions, such as t or Cauchy. Yet, a popular method
is to use EVT to model the tail probabilities. EVT is based upon the generalized
Pareto distribution (cumulative density function) as given below:

Gξ,β,u(x) =

 1−
(
1 + ξ

β
(x− u)

)−1/ξ

ξ ̸= 0

1− exp
{
−x−u

β

}
ξ = 0

(10.4)

where u can be regarded as a high threshold, β > 0, x ≥ 0 and x ≤ −β/ξ. Further-
more, x can be specified as:

x− u ≥ 0 ξ ≥ 0
0 ≤ x− u ≤ −β/ξ ξ < 0

The conditional distribution of excess losses over a high threshold u is defined
to be:

Fu(y) = Pr[X ⩽ y + u|X > u] (10.5)

for 0 ≤ y ≤ v − u and v is the end point of the distribution which could be ∞ in
many cases. Then this conditional distribution of excess losses can be written in
terms of underlying distribution function F as:

Fu(y) =
F (y + u)− F (u)

1− F (u)
(10.6)

From the above expression, it seems that depending on the function shape of
F (u), the excess losses distribution can have infinite ways of asymptotic behaviors.
But according to a key result in EVT, we have the following Theorem. For a
large class of underlying distributions we can find a function F (u) such that (D. V.
Gnedenko 1943):

lim
u→v

sup
0⩽y⩽v−u

|Fu(y)−Gξ,β,u(x)| = 0 (10.7)

where generalized Pareto distribution Gξ,β,u(x) is a two parameter distribution func-
tion as described in equation (10.4).
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10.5.1 Estimating Tails of Distributions

Using equations (10.4), (10.6), and (10.7), we can rewrite distribution function as:

F (x) = (1− F (u))Gξ,β,u(x− u) + F (u) (10.8)

To estimate the EVT tail probability Gξ,β(u)(x − u), we first need to have a
proxy for F (u). For this purpose we take the obvious empirical estimator N−Nu/N
where N is the total number of simulation points and Nu is the number of points
located in the tail.3

Hence, we get the tail probability as (adjusted for the EVT):

1− F (x) =
Nu

N

(
1 + ξ̂

x− u

β̂

)−1/ξ̂

(10.9)

Note that when ξ = 0 (this is when the distribution is degenerated to Gaus-
sian), the tail probability is precisely the sample statistic, which is Nu/N . If ξ ̸= 0,
then the tail probability is higher than Nu/N , basically adding an additional quan-
tity to the tail.

A remark on the left tail estimation

The estimation of tail probability equation apparently gives the right tail. What
we need is the left tail estimation. To do that, we simply flip the tail from left to
right. Note that losses are all negative, and hence by flipping them we satisfy x > 0.
Consequently, equation (10.9) applies.

10.5.2 Estimating VaR

For a given probability α > F (x) the VaR estimate is calculated by inverting the
tail estimation formula to get

∧
V aR = u+

β̂

ξ̂

((
N

Nu

(1− α)

)−ξ̂

− 1

)
(10.10)

Note that u = F−1(α), i.e. inverse function of F . The rationale behind the
VaR equation is quite intuitive. If we adopt normal distribution for our parametric

3This is because, of course, the tail probability has a sampling statistic of Nu/N .
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VaR then the tail probability F (u) will be too small and u will be too small. As a
result, due to the reality of fat tails, we must add value to u. The amount to add is
the second term in equation (10.10). For this term to be positive, given both ξ and
β are positive, it must be that:

(
N

Nu

(1− α)

)−ξ̂

> 1

which means that:

N

Nu

<
1

1− α
or α < 1− Nu

N

This means that the tail probability of a real distribution must be greater
(fatter) than the tail probability of a normal distribution. Otherwise, the tails are
THINNER rather than fatter. Now it is clear that the necessary condition for a
fatter tail using EVT is that the sampling of a real distribution must be fatter
than normal. Then the generalized Pareto distribution helps use its parameters to
properly estimate the accurate VaR.4

10.5.3 Estimating ES

Expected shortfall is related to VaR by

ESα = V aRα + E[X − V aRα|X > V aRα]

It can verified that

FV aRα(y) = Gξ,β+ξ(V aRα−u)(y)

By noting the mean of the above distribution is

(β + ξ(V aRα − u))/(1− ξ)

4For example, supposed there there are a total of 100 observations and α is 95%. Then a fat
tail suggest that Nu (the tail) should be more than 5 observations.
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Chapter 11

Model Risk

11.1 Introduction

Model risk has become one of the major risk management areas post-Lehman crisis.
This is because too many positions (especially illiquid ones) have been marked to
models that were either manipulated or incorrect. One obvious example is the lack
of (il)liquidity discounts.

According toWikipedia, sources of model risk are (https://en.wikipedia.org/wiki/Model-
risk):

� Sources of model risk

� Uncertainty on volatility

� Time inconsistency

� Correlation uncertainty

� Complexity

� Illiquidity and model risk

famous cases in model risk are:

� Natwest – Interest rate options and swaptions—incorrect model specification.

� Bank of Tokyo-Mitsubishi – Interest rate options and swaptions.

� LTCM – lack of stress testing – Crouhy, Galai, and Mark (and over-estimating
market appetites – When Genius Failed by Roger Lowenstein)
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� Barclays de Zoete Wedd (BZW) – Mispriced currency options.

� National Australia Bank $3 Billion AUD loss on Homeside interest rate model.

� 2007-2012 global financial crisis – Over-reliance on David X. Li’s Gaussian
copula model misprices the risk of collateralized debt obligations.

quantitative approaches to model risk

� Model averaging vs worst-case approach

� Quantifying model risk exposure

� Position limits and valuation reserves

mitigating model risk

� Theoretical basis

� Implementation

� Testing

examples of model risk mitigation

� Parsimony

� Model risk premium

http://www.bostonfed.org/economic/neer/neer1997/neer697b.pdf

In March of 1997, NatWest Markets, an investment banking subsidiary of Na-
tional Westminster Bank, announced a loss of £90 million due to mispriced sterling
interest rate options. Shortly thereafter, BZW, an investment banking subsidiary
of Barclays, sustained a £15 million loss on mispriced currency options and Bank
of Tokyo-Mitsubishi announced a loss of $83 million. In April of 1997, Deutsche
Morgan Grenfell lost an undisclosed amount. Model errors have been blamed for all
these losses.
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Chapter 12

Introduction

12.1 Sources of Credit Risk

Simply speaking, credit risk is default risk. However, credit risk can be transferred
in different ways. That is, there are different transactable instruments that can
transfer different parts of credit risk. Typically, there are three types of credit risk:

� bankruptcy

� migration

� spread

Bankruptcy is the ultimate default. The firm no longer operates and liquidates
its assets to pay off its debts. Debt holders lose some of their investment value
(known as loss given default or severity) and stock holders lose all of their investment
value. Credit risk of this sort needs to evaluate the likelihood of bankruptcy (known
as probability of default, or PD) and loss given default (LGD).

Usually bankruptcies do not happen suddenly. Companies lose money and
ultimately lead to bankruptcy. Rating agencies monitor such transition and pro-
vide their assessment of the fundamental financial healthiness of the firm via credit
ratings. Hence, rating migrations (especially from high to low) indicate how poorly
the firm is operating. As a result, when a firm is downgraded by rating agencies,
its bond and stock prices are lowered. Empirical evidence has shown that rating
changes have significant impacts on stock and bond prices.

Last but not least is the spread credit risk. Ratings reflect firms’ financial
health. Yet, rating changes do not occur often. Furthermore, ratings are discrete
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measures. Stocks and bonds are traded continuously in the marketplace. As a result,
we can transfer credit risk much more quickly by trading spreads.

In this chapter, we only discuss the basic math of credit risk modeling. That
is, we only evaluate the bankruptcy credit risk. There are models for just migration
and spread risks but are not covered here. Readers should be aware that many
migration and spread models are ad-hoc and do not relate back to default. Readers
should keep in mind that all three types of credit risk result from default because
without default risk, there are no migration or spread changes.

12.2 Types of Credit

The credit risk is usually modeled by the Jarrow-Turnbull model published in 1995
by the Journal of Finance.

12.2.1 Corporates

Corporations borrow to finance their investment projects. There is a wide variety of
forms of how corporate borrowing – ranging from short term borrowings like lines
of credit, commercial papers (90 days and 180 days typically), and bank term loans
(which themselves take various forms), to medium term corporate notes and bonds,
to long term corporate bonds (some can be as long as 100 years!)

There is a wide variety of forms within corporate bonds – fixed rate bonds,
floating rate bonds (floaters), bonds with sinking funds, bonds with amortizing
principals, convertible bonds, callable and puttable bonds, . . . etc. Corporate bonds
also vary in terms of covenants, collaterals, and seniorities.

Rating agencies rate corporate bonds by their default likelihoods and recovery
values once defaults happen. Hence, ratings provide investors a rough idea of how
risky corporate bonds are in a general way. In other words, ratings summarize all
the information with a single letter to help investors understand the credit risk of
corporate bonds. While ratings are very helpful, due to their simplicity, they are
often criticized to be inaccurate and behind market timing.

Despite many rating agencies that provide different rating systems, in general
we have 9 rating groups:

� AAA

� AA
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� A

� BBB

� BB

� B

� CCC

� CC

� C

� D

where within each rating there could be multiple, usually three, sub-groups (called
notches).

Due to different business characteristics (business risk), we often classify com-
panies into industry sectors. The highest level of classification is to divide companies
into two groups: financial and industrial. Financial companies have high leverage ra-
tios due the nature of the business, hence cannot be compared with other industrial
firms. Industrial companies are further divided into many groups. Different service
companies classify industrial companies differently. For example, Compustat, the
largest financial data source, classifies the companies as follows:

� Division 0: Agriculture, Forestry, And Fishing

� Division 1: Mining, and Construction

� Division 2,3: Manufacturing

� Division 4: Transportation, Communications, Electric, Gas, And Sanitary
Services

� Division 5: Wholesale Trade, Retail Trade

� Division 6: Finance, Insurance, and Real Estate

� Division 7,8: Services

� Division 9: Public Administration

Combining every industry sector and every credit rating, we are able assign
each and every firm into a “cohort”. For example, 9 credit ratings (from AAA to C)
and 9 industry sectors result in 81 cohorts. Within each cohort, companies should
be rather homogenous since they belong the same industry and rating. As a result,
we can compute 81 cohort yield curves.
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12.2.2 Sovereigns ($ denominated)

There are two major types of sovereign bonds traded in the United States (and
denominated in dollars):

� Yankee bonds

� Brady bonds

[www.investopedia.com]A Yankee bond is a bond denominated in U.S. dollars
and is publicly issued in the United States by foreign banks and corporations. Ac-
cording to the Securities Act of 1933, these bonds must first be registered with the
Securities and Exchange Commission (SEC) before they can be sold. Yankee bonds
are often issued in tranches and each offering can be as large as $1 billion.

Due to the high level of stringent regulations and standards that must be
adhered to, it may take up to 14 weeks (or 3.5 months) for a Yankee bond to
be offered to the public. Part of the process involves having debt-rating agencies
evaluate the creditworthiness of the Yankee bond’s underlying issuer.

Foreign issuers tend to prefer issuing Yankee bonds during times when the U.S.
interest rates are low, because this enables the foreign issuer to pay out less money
in interest payments.

[wiki]Brady bonds are dollar-denominated bonds, issued mostly by Latin Amer-
ican countries in the 1980s, named after U.S. Treasury Secretary Nicholas Brady.

Brady bonds were created in March 1989 in order to convert bonds issued by
mostly Latin American countries into a variety or “menu” of new bonds after many
of those countries defaulted on their debt in the 1980’s. At that time, the market for
sovereign debt was small and illiquid, and the standardization of emerging-market
debt facilitated risk-spreading and trading. In exchange for commercial bank loans,
the countries issued new bonds for the principal and, in some cases, unpaid interest.
Because they were tradable and came with some guarantees, in some cases they were
more valuable to the creditors than the original bonds.

The key innovation behind the introduction of Brady Bonds was to allow the
commercial banks to exchange their claims on developing countries into tradable
instruments, allowing them to get the debt off their balance sheets. This reduced
the concentration risk to these banks.

The plan included two rounds. In the first round, creditors bargained with
debtors over the terms of these new claims. Loosely interpreted, the options con-
tained different mixes of “exit” and “new money” options. The exit options were
designed for creditors who wanted to reduce their exposure to a debtor country.
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These options allowed creditors to reduce their exposure to debtor nations, albeit
at a discount. The new money options reflected the belief that those creditors who
chose not to exit would experience a capital gain from the transaction, since the
nominal outstanding debt obligation of the debtor would be reduced, and with it
the probability of future default. These options allowed creditors to retain their
exposure, but required additional credit extension designed to “tax” the expected
capital gains. The principal of many instruments was collateralized, as were “rolling
interest guarantees”, which guaranteed payment for fixed short periods. The first
round negotiations thus involved the determination of the effective magnitude of
discount on the exit options together with the amount of new lending called for
under the new money options.

In the second round, creditors converted their existing claims into their choice
among the “menu” of options agreed upon in the first round. The penalties for
creditors failing to comply with the terms of the deal were never made explicit.
Nevertheless, compliance was not an important problem under the Brady Plan.
Banks wishing to cease their foreign lending activities tended to choose the exit
option under the auspices of the deal.

By offering a “menu” of options, the Brady Plan permitted credit restructur-
ings to be tailored to the heterogeneous preferences of creditors. The terms achieved
under these deals indicate that debtors used the menu approach to reduce the cost of
debt reduction. Furthermore, it reduced the holdout problem where certain share-
holders have an incentive to not participate in the restructuring in hopes of getting
a better deal.

The principal amount is usually but not always collateralized by specially
issued U.S. Treasury 30-year zero-coupon bonds purchased by the debtor country
using a combination of International Monetary Fund, World Bank, and the country’s
own foreign currency reserves. Interest payments on Brady bonds, in some cases,
are guaranteed by securities of at least double-A-rated credit quality held with the
Federal Reserve Bank of New York.

Countries that participated in the initial round of Brady bond issuance were
Argentina, Brazil, Bulgaria, Costa Rica, Dominican Republic, Ecuador, Mexico,
Morocco, Nigeria, Philippines, Poland, Uruguay.

12.2.3 Munis

¡wiki¿In the United States, a municipal bond (or muni) is a bond issued by a state,
city or other local government, or their agencies. Potential issuers of municipal bonds
include cities, counties, redevelopment agencies, school districts, publicly owned
airports and seaports, and any other governmental entity (or group of governments)
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below the state level. Municipal bonds may be general obligations of the issuer
or secured by specified revenues. Interest income received by holders of municipal
bonds is often exempt from the federal income tax and from the income tax of the
state in which they are issued, although municipal bonds issued for certain purposes
may not be tax exempt.

Muni bonds are as risky as corporate bonds. Rating agencies rate muni bonds
as they rate corporate bonds.

12.2.4 Commercial Mortgages

Commercial mortgages have very low LTVs (loan-to-value ratios) and hence suffer
from high default risk. Examples of commercial mortgages are:

� shopping centers

� casinos

� hotels

� rental apartments

� etc.

12.2.5 Retail Credit

The above credit risks are roughly categorized as corporate credits. That is, the
credit risk of an entity. In addition, there are also credit risks from individuals.
Individuals borrow money just like corporations do and they can default on their
loans as well. This is known as retail credit risk. Due to a number of various
reasons, we must model retail credit risk different from corporate credit risk. There
are a number retail loans that are transacted in the secondary market. We have the
following types of retail credit:

� Credit card

� Auto

� Student

� Home equity
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Mortgages The most important one of all is residential home mortgages. Home
owners borrow from banks to purchase their homes and use their homes as collaterals.
These loans are called mortgages. Many mortgage banks lend home owners with
the deposits they receive from their depositors. Many others sell their mortgages to
the secondary market as mortgage-backed securities.

Regardless if a mortgage is lent directly by deposits or selling to the secondary
market, the interest rate charged (called mortgage rate) on the borrower is a function
of the borrower’s credit history, which is categorized as follows:

� prime

� Alt-A

� sub-prime

These mortgage rates reflect the credit quality of the borrowers and hence vary
widely. Prime borrowers are the safest. They must meet many strict criteria such
as low LTV (loan to value ratio, typically less than 80%) and low PI (payment to
income ratio, usually less than 1/3). Alt-A borrowers are less safe. They may not
be high credit-risky but are classified as such due to lack of long credit history or
lack of documentation. Sub-prime borrowers are regarded as unsafe or high risk,
but they do not necessarily have bad credit history. Some may not have steady job
or regular income.

Credit cards Credit card loans are the money owed by card owners by not
paying the full amount each month. It is notoriously well known that credit card
interest rates are extremely high (like 18% on a per annum basis). Credit card
loans, along with other retail lendings are packaged in “asset backed securities”
and transacted in the secondary market. A credit card loan can be short or long
depending on the borrower’s consumption and financing habit. It can range from a
few days to several months.

Auto loans Loans borrowed to purchase automobiles are packaged in asset
backed securities as well. However, unlike credit card loans, these auto loans are
collateralized (by the vehicles). As a result, they are much less risky than credit
card loans. In fact, the asset backed securities backed by auto loans are consider
extremely safe and they often receive AAA ratings.

Student loans Student loans are government subsidized loans which are in
many cases guaranteed by the government. The student loans that are securitized
in the secondary market are performed by SLM Corporation (commonly known as
Sallie Mae; originally the Student Loan Marketing Association).
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12.3 Economic Default and Liquidity Default

Economic defaults are those follow the structural models (e.g. Merton) where firms
lose money over time and deplete the equity (so called “bleed to death”). Liquidity
defaults are those where firms are profitable on the accrued basis but are short of
cash to pay the immediate expenses (such as a large sum of debts due).1 This is
a sudden death situation which is close to the reduced-form models. We shall see
more details in Chapter 17.

12.4 Liquidation Process

A liquidation process is a process of selling a firm’s assets under bankruptcy. Lawyers
and accountants are involved in determining which debt holder should get what.
This is a complex process and will take many years to finish in that all debt contracts
must be reviewed including all covenants and clauses of the debt contracts. Selling
assets can also itself be a lengthy process and many interested parties (usually
competitors) will pick and choose and negotiate prices.

12.5 Recovery (or Severity) and Loss Given De-

fault (LGD)

This is one of the two major building blocks of credit risk. The amount of recovery
(or oppositely loss given default) severely and directly impact the credit risk. In an
extreme case where recovery is 100%, the credit risk is 0 no matter how high the
probability of default (another building block) is. Recovery or LGD is also a major
player in portfolio risk analysis (i.e. portfolio loss function which is the foundation
of all credit risk metrics.)

12.6 Probability of Default (PD)

This is another building block of credit risk. In many situations PD is more im-
portant than LGD, especially when curve construction (because a preferable credit
curve is 0 recovery). There are two major approaches in constructing the credit

1This happened for Excite@Home where a convertible bond issue was due. The firm was
profitable but short of cash. See the Appendix of Chapter 2 for details.
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curve – reduced-form approach and structural approach, to be discussed in details
in Chapters 13 and 14.
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Chapter 13

Reduced-Form Models

13.1 Introduction

There are two general approaches in modeling default – the structural approach and
the reduced-from approach. The reduced-form models for default, like any other
reduced-form models, take market information as given. Analogously, the structural
models, like many others, are built on economic fundamentals.

While details vary, the basic principle of the reduced-form models is that de-
faults occur according to a Poisson process. In other words, a default event is a
Poisson jump event. The representative reduced-form models for default are the
Jarrow-Turnbull and Duffie-Singleton models. When a Poisson jump event hap-
pens, a firm is in default. Once a firm is in default, it is assumed that it will not
become live again. As a result, a default here represent complete bankruptcy. Assets
of the company must be liquidated. The usual notion of default such as Chapter 11
(bankruptcy protection) is not a default event by these models.

13.2 Survival Probability

We compute survival probabilities when we model default. The survival probability
between now and some future time T for defaults is:

Q(t, T ) = e−λ(T−t) (13.1)

where λ is the “intensity” parameter of the Poisson process. This intensity parameter
intuitively represents the likelihood of default. When the recovery is 0, then this
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value is almost identical (exactly identical in continuous time) to the “forward”
probability of default.

As we can see, there is extreme similarity between the result of survival prob-
ability and risk-free discount, which is P (t, T ) = e−r(T−t). In fact, we shall show
that they can be combined linearly if the recovery of a risky bond is 0. Due to this
similarity, we shall proceed without proof (which is difficult in many situations) to
borrow what we have known for the risk-free rate and use it for the intensity. In the
insurance literature, the intensity parameter is called the hazard rate.

If the intensity parameter (hazard rate) is non-constant, then we can express
the survival probability as:

Q(t, T ) = exp

(
−
∫ T

t

λudu

)
(13.2)

Furthermore, if the hazard rate is random, then we simply compute the risk
neutral expectation:

Q(t, T ) = Êt

[
exp

(
−
∫ T

t

λudu

)]
(13.3)

Finally, if the interest rate is random, then we must use the forward measure:

Q(t, T ) = Ẽ(T )
t

[
exp

(
−
∫ T

t

λudu

)]
(13.4)

Equation 13.2 represent the survival probability till a certain future time (T ).
As a result, we can have a whole “curve” of survival probabilities, known as the
survival probability curve.

Taking the derivative with respect to an arbitrary future time T of equation
13.2, we get:

λT = −d lnQ(t, T )

dT
(13.5)

Again, we remind the readers of the similarity between default probabilities
and forward rates in the risk-free world.1

1The risk-free forward rate is ft,T = −d lnP (t, T )/dT .
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13.3 Zero Recovery Risky Bond

A zero recovery risky bond has the same analogy to the risk-free bond as the hazard
rate to the risk-free rate. First we shall look at the risky discount factor.

13.3.1 Risky Discount Factor

A risky discount factor, similar to the risk-free discount factor, discounts $1 paid in
the future. Assuming the same notation for the risk-free discount factor, P (t, T ),
that represents the present value of $1 paid in time T , we can denote the survival
probability as Q(t, T ). A risky discount factor is the present value of $1 paid in T
only if default does not occur. As a result, the present value of $1 paid in time T is
P (t, T )Q(t, T ).

13.3.2 Zero Recovery Risky Bond

A zero recovery risky coupon bond pays a periodic coupon c till maturity Tn. If the
bond has no recovery, then its price must be:

B(t, T ) =
∑n

j=1
cP (t, Tj)Q(t, Tj) + P (t, Tn)Q(t, Tn) (13.6)

where T =< T1 · · ·Tn >.

13.4 Positive Recovery Risky Bond

With recovery, the valuation of the risky bond becomes much more complex. Decid-
ing a recovery value of a defaulted bond is a complex process. When a firm defaults,
its assets are under a liquidation process and when it ends, bond holders know what
they can recover. This process can sometimes take multiple years to finish. For some
bond holders who do not wish to wait, they can sell their bonds to the marketplace
(distressed bond market) to gain cash earlier. This is similar to Account Receivable
factorization.

When such a market exists, then investors estimate a fair present value for the
ultimate recovery. This then represents the fair market value of recovery of the bond.
When such a market does not exist, then the recovery value must be estimated. It
is common for practitioners to use a historical average. Rating agencies provide
historical averages for various categories of bonds. For example, senior unsecured
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bonds recover on average 35% to 45% and junior unsecured bonds recover on average
15% to 25%.

In the literature, there are two major approaches to model positive recovery.
Jarrow and Turnbull (1995) assume recovery to be a fixed percentage of the face
value of the bond and Duffie and Singleton (1997) assume the recovery to be a fixed
percentage of the market value of the bond immediately prior to default. As we shall
show later, the Jarrow-Turnbull model is particularly useful in building the credit
curve (i.e. bootstrapping) and the Duffie-Singleton model is useful in integrating
with the term structure models.

13.4.1 Recovery of Face Value – The Jarrow-Turnbull Model

When the recovery rate is a fixed amount, we can modify the pricing formula of
(13.6) as follows:

B(t, T ) =
∑n

j=1
cP (t, Tj)Q(t, Tj) + P (t, Tn)Q(t, Tn)

+R
∑n

j=1
P (t, Tj)[Q(t, Tj−1)−Q(t, Tj)]

(13.7)

where c is coupon (or cash flow), P (t, T ) is risk-free discount factor between now
and time T , Q(t, T ) is survival probability between now and time T , and R is the
recovery rate that is assumed constant. The last term is added due to recovery.
Note that Q(t, Tj−1)−Q(t, Tj) is the default probability between Tj−1 and Tj. Note
that in continuous time, this is −dQ(t, T ) which is equal to π(t, T )dT . As a result,
the above formula can be written in continuous time as:

B(t, T ) =
∑n

j=1
cP (t, Tj)Q(t, Tj) + P (t, Tn)Q(t, Tn)

+R

∫ Tn

t

P (t, u)[−dQ(t, u)]
(13.8)

The above equation is not a closed-form solution as it requires integration
over the default probability measure. One particularly easy way to keep the closed-
form solution is to assume the recovery to be received at a fixed time (and not
upon default). Then the above equation can be simplified assuming the recovery is
received at Tn:

B(t, T ) =
∑n

j=1
cP (t, Tj)Q(t, Tj) + P (t, Tn)Q(t, Tn) +RP (t, Tn)[1−Q(t, Tn)]

(13.9)
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The last term 1 − Q(t, Tn) is the cumulative default probability. This is the
Jarrow-Turnbull model.

We shall demonstrate numerically how the Jarrow-Turnbull model is used in
practice, which is known as “bootstrapping” or “curve cooking”. The model has
become the industry standard in retrieving survival probability information from
market quotes (such as credit default swaps, or CDS). To do that the model needs
to be slightly adjusted. We shall discuss this in a separate section later.

13.4.2 Recovery of Market Value – The Duffie-Singleton
Model

Another easy way to arrive at a closed-form solution is to let the recovery be pro-
portional to the otherwise undefaulted value. That is, upon default (at default time
u), the recovery value is Rt = δZ(t, T ) where Z(t, T ) is the price of a zero coupon
risky bond as if it has not defaulted.

Under the Poisson process, for a very small time interval ∆t, we can write the
bond equation as:

Z(t, T ) =
Z(t+∆t, T )δλ∆t+ Z(t+∆t, T )(1− λ∆t)

1 + r∆t
(13.10)

which then can be simplified to, assuming n periods between now t and maturity T :

Z(t, T ) =
Z(t+∆t, T )(1− λ∆t(1− δ))

1 + r∆t

= Z(T, T )

[
1− λ∆t(1− δ)

1 + r∆t

]n
∼ Z(T, T )

[
e−λ∆t(1−δ)

er∆t

]n
∼ Z(T, T )e−(r+s)(T−t)

(13.11)

where s = λ(1 − δ) can be viewed as a spread over the risk-free rate. This is the
Duffie-Singleton model. Z(T, T ) is the terminal value of the bond which is usually
the face value.

A nice feature of the Duffie-Singleton model is that a coupon bond can then a
portfolio of such zeros, as each coupon is treated as a zero bond it recovers market
value. That is:
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B(t, T ) =
∑n

j=1
cZ(t, Tj) + Z(t, Tn) (13.12)

This model is practically appealing in that it reflects the usual industry practice
that credit risk is reflected in spreads. This model is also convenient to be combined
with existing term structure models. It simply adds a second state variable.

The drawback of the model is that the recovery parameter and the intensity
parameter always are inseparable. This adds to difficulty in calibration this model
to the market.

Both the Jarrow-Turnbull and the Duffie-Singleton models assume defaults to
be unexpected like Poisson events. Different from the Jarrow-Turnbull model that
assumes fixed amount recovery (or known as recovery of face value), the Duffie-
Singleton model assumes the recovery to be proportional to the market value of the
debt (known as recovery of market value) immediately prior to default.

The Jarrow-Turnbull model is suitable for bootstrapping and the Duffie-Singleton
model is convenient to combine with term structure models. Following the similar
analysis for equations (13.2) ∼ (13.4), we can write (13.11) as:

Z(t, T ) = Êt

[
exp

(
−
∫ T

t

(r(u) + s(u))du

)]
(13.13)

which allows us to directly model “spread” as another state variable. Note that
s(t) = λ(t)(1 − δ) according to (13.11) and hence the spread process is similar to
the intensity process. If the intensity and the risk-free rate are independent, then
the Duffie-Singleton model of (13.12) is similar to (13.6) but with positive recovery.

We can easily conduct a CIR model with the Duffie-Singleton approach. We
can have the following joint square-root process:

dr(t) = α̂r(µ̂r − r(t))dt+ σr

√
r(t)dŴr(t)

ds(t) = α̂s(µ̂s − s(t))dt+ σs

√
s(t)dŴs(t)

(13.14)

where dŴr(t)dŴs(t) = 0. Then (13.13) has a closed-form solution as each expecta-
tion in the following equation is a CIR solution.

Z(t, T ) = Êt

[
exp

(
−
∫ T

t

r(u)du

)]
Êt

[
exp

(
−
∫ T

t

s(u)du

)]
(13.15)

The following example is to demonstrate how the Duffie-Singleton model can
be easily combined with any interest rate model. In the following a simple binomial
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model for the risk-free rate is given. The probabilities of the up and down branches
are 1

2
and 1

2
.

 
 

r=5% 
r+s=7.58% 

$84.79 

$100 

$91.22 

Annual Default Probability =4%
=40% 

r=7% 
r+s=9.63% 

r=6% 
r+s=8.61% 

$100  

$100

$92.95 

 
Figure 13.1: Duffie-Singleton Model

From the input information provided, we can compute the bond prices in the
diagram, as follows:

91.215 =
1

1.07
[(1− 4%)× 100 + 4%× 40]

92.95 =
1

1.05
[(1− 4%)× 100 + 4%× 40]

84.79 =
1

1.06

[
(1− 4%)× 91.215 + 92.95

2
+ 4%× 91.215 + 92.95

2
× 0.4

]
The spreads of these bonds are computed as follows:

100

91.215
− 1− 7% = 9.63%− 7% = 2.63%

100

92.95
− 1− 5% = 7.58%− 5% = 2.58%

92.0825

84.79
− 1− 6% = 8.61%− 6% = 2.61%

where 92.0825 = 1
2
(91.215 + 92.95). Note that these spreads are not (even though

close to) the continuous spread in the Duffie-Singleton model, which is computed as
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follows:
1

Default Prob× Recovery + Survival Prob
− 1

=
1

4%× 0.4 + 96%
− 1

= 2.46%

13.5 Credit Default Swap

A Credit Default Swap, or CDS, is a bilateral contract which allows an investor to
buy protection against the risk of default of a specified reference credit. The fee may
be paid up front, but more often is paid in a ”swapped” form as a regular, accruing
cashflow. A CDS is a negotiated contract and there are a number of important
features that need to be agreed between the counterparties and clearly defined in
the contract documentation.

First and foremost is the definition of the credit event itself. This is obviously
closely linked to the choice of the reference credit and will include such events as
bankruptcy, insolvency, receivership, restructuring of debt and a material change
in the credit spread. This last materiality clause ensures that the triggering event
has indeed affected the price of the reference asset. It is generally defined in spread
terms since a fall in the price of the reference asset could also be due to an increase
in the level of interest rates.

Many CDS contracts define the triggering of a credit event using a reference
asset. However, in many cases the importance of the reference asset is secondary
as the credit event may also be defined with respect to a class of debt issued by
a reference entity. In this case the importance of the reference asset arises solely
from its use in the determination of the recovery price used to calculate the payment
following the credit event.

The contract must specify what happens if the credit event occurs. Typically,
the protection buyer will usually agree to do one of the following:

� Deliver the defaulted security to the protection seller in return for Par in cash.
Note that the contract usually specifies a basket of securities which are ranked
pari passu which may be delivered in place of the reference asset. In effect the
protection seller is long a “cheapest to deliver” option.

� Receive Par minus the default price of the reference asset settled in cash. The
price of the defaulted asset is typically determined via a dealer poll conducted
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within a few weeks to months of the credit event, the purpose of the delay
being to let the recovery price stabilize.

Some CDS have a different payoff from the standard Par minus recovery price.
The main alternative is to have a fixed pre-determined amount which is paid out
immediately after the credit event. This is known as a binary default swap. In other
cases, where the reference asset is trading at a significant premium or discount to
Par, the payoff may be tailored to be the difference between the initial price of the
reference asset and the recovery price.

The protection buyer automatically stops paying the premium once the credit
event has occurred, and this property has to be factored into the cost of the swap
payments. It has the benefit of enabling both parties to close out their positions
soon after the credit event and so eliminates the ongoing administrative costs which
would otherwise occur.

A CDS can be viewed as a form of insurance with one important advantage –
efficiency. Provided the credit event in the default swap documentation is defined
clearly, the payment due from the triggering of the credit event will be made quickly.
Contrast this with the potentially long and drawn out process of investigation and
negotiation which may occur with more traditional insurance.

However it is possible to get a very good idea of the price of the CDS using a
simple “static replication” argument. This involves recognizing that buying a CDS
on a risky par floating rate asset which only defaults on coupon dates is exactly
equivalent to going long a default-free floating rate note and short a risky floating
rate note of the same credit quality. If no default occurs, the holder of the position
makes a net payment equal to the asset swap spread of the asset on each coupon
date until maturity. This spread represents the credit quality of the risky floater at
issuance. If default does occur, and we assume that it can only occur on coupon
payment dates, the position can be closed out by buying back the defaulted asset in
return for the recovery rate and selling the par floater. The net value of the position
is equal to the payoff from the default swap. The following table summarizes.

CDS vs. Floater
Event Riskless FRN Risky FRN CDS
At inception Pay par Pay par 0
No default Receive LIBOR Receive LIBOR + spread Pay spread
Upon default Receive par Receive recovery + par − recovery
Maturity Receive par Receive par 0

From the above table, it is clear that the spread of a CDS must equal to the
spread of the equivalent risky FRN to avoid arbitrage.
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13.6 Restructuring Definitions by ISDA

CDS contracts provide default protection. When a default occurs, CDS buyers
stop paying the premium (spread), deliver the defaulted bond (cheapest if possible),
and collect full face value as payment. However, default is hard to define. It is
extremely rare for a company to file bankruptcy. What is usually happening is
that losses happen over the years and reduce the asset value of the company, to
a point where the company is at the brink of bankruptcy. Then the management
of the company will start looking for alternatives to save the firm. One popular
alternative to save the firm is to ask debt holders to change their debt contracts to
the company – known as debt restructuring. Debt restructuring often means that
debt holders convert parts of their debts into equity and participate in the operation
of the firm. To protect their own interests, debt holders, especially large ones, will
be willing to agree to debt restructuring.

Hence debt restructuring is commonly regarded as a form of default. However,
each restructuring can be very different. Some restructurings are major and equiva-
lent to defaults. But some could be minor as precautionary actions to avoid further
deterioration of the firm, which are not equivalent to default.

To regulate if a CDS is triggered, ISDA (International Swaps and Derivatives
Association) defines various restructuring standards:

� Full restructuring (FR), based on the ISDA 1999 Definition

� Modified restructuring (MR), based on the ISDA 2001 Supplement Definition

� Modified-modified restructuring (MMR), based on the ISDA 2003 Definition,

� No restructuring (NR).

� The definitions are as follows:

FR Any bond of maturity up to 30 years

MR T ⩽ T̄ < T + 30 months

MMR Allow additional 30 months for the restructured bond.

For other obligations, same as MR.

CDS contracts traded in different regions follow different ISDA conventions.
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13.7 Why Has the CDS Market Developed So

Rapidly?

CDS is the most popular credit derivatives contract and has grown rapidly in late
90’s and early 00’s. The following is a direct quote of Rene Stulz’s article on CDS
(2010):2

Back in the mid-1990s, one of the first credit default swaps provided pro-
tection on Exxon by the European Bank for Reconstruction and Development to
JP Morgan (Tett, 2009). It took months to negotiate. By 1998, the total size of
the credit default swap market was a relatively small $180 billion (Acharya, En-
gle, Figlewski, Lynch, and Subrahmanyam, 2009). The credit default swap mar-
ket has grown enormously since then, although there is no definite measure of how
much. Based on survey data from the Bank for International Settlements (BIS) at
http://www.bis.org/statistics/derstats.htm, the total notional amount of the credit
default swap market was $6 trillion in 2004, $57 trillion by June 2008, and $41
trillion by the end of 2008. Credit-default swap contracts that insure default risk
of a single firm are called single-name contracts; in contrast, contracts that provide
protection against the default of many firms are called multi-name contracts.3

In addition to the efficiency in hedging and transferring credit risk, the poten-
tial benefits of CDS include:

� A short positioning vehicle that does not require an initial cash outlay

� Access to maturity exposures not available in the cash market

� Access to credit risk not available in the cash market due to a limited supply
of the underlying bonds

� The ability to effectively “exit” credit positions in periods of low liquidity

� Off-balance sheet instruments which offer flexibility in terms of leverage

� To provide important anonymity when shorting an underlying credit

2“Credit Default Swaps and the Credit Crisis,” Journal of Economic Perspectives, Volume 24,
Number 1, Winter 2010, pp. 73-92.

3Stulz noted that DTCC statics are a lot smaller.
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13.8 Relationship between Default Probabilities

and CDS Spreads – Use of the Jarrow-Turnbull

Model

There is a simple formula (using the Jarrow-Turnbull model) that relates the CDS
spread, the risk-free rate, default/survival probabilities, and the fixed recovery rate.
Due to the swap nature, CDS, similar to IRS (interest rate swap), has two legs –
floating and fixed. The floating leg of a CDS contract is called the protection leg as
it pays only if default occurs. The fixed leg of a CDS contract is called the premium
leg because the fixed payments (i.e. spreads) are like insurance premiums. As in
a standard swap contract, at inception, the values of the two legs must equal each
other. This is how CDS spreads are calculated. Recently affected by the crisis, CDS
premiums have been split into an upfront and a spread (which is the index, such
as CDX, trading convention). As we shall see later, this extra calculation does not
add any complexity to the model. We simply deduct the upfront amount from the
protection value of the CDS. For now, we shall proceed with no upfront.

Using the formulation given earlier, the protection and premium values of a
CDS are as follows:

Vprot(t, T ) = (1−R)
∑n

i=1
P (t, Ti)[Q(t, Ti−1)−Q(t, Ti)]

Vprem(t, T ) = s(t, T )
∑n

i=1
P (t, Ti)Q(t, Ti)

(13.16)

where Tn = T . As a result, the spread (known as par spread) can be computed as:

s(t, T ) =
(1−R)

∑n
i=1 P (t, Ti)[Q(t, Ti−1)−Q(t, Ti)]∑n

i=1 P (t, Ti)Q(t, Ti)
(13.17)

Note that (13.17) (for CDS) and (13.7) (for bond) are very similar. The
numerator of (13.17) is similar to the recovery value in (the second line of ) (13.7)
and the denominator is similar to the (first line of (13.7) coupon value. This should
not be surprising as CDS is a natural hedge to the bond. In other words, buy a bond
and a CDS is equivalent to buying a default-free bond. If we add the protection
value in (13.16) to the coupon bond value in (13.7), recovery disappears and the
bond as a result becomes default-free.

Note that (13.17) assumes no accrued interest if default occurs in between
coupons. In reality there are accrued interests on both legs and they may not be
equal. If default is assumed to happen on cashflow days only, then there is no
accrued interest. Note that if there is an upfront, we simply deduct it from the
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protection value, Vprot.

13.9 Back-of-the-envelope Formula

In a one-period model where default is a Bernulli event, as the following picture
demonstrates,

 

 
p  

1 p− pay spread (s)  

if survive 

receive 1 - R 

if default 

 Figure 13.2: One-period Default Diagram

We know that for the CDS to have 0 value it must be true that:

p(1−R) = (1− p)s (13.18)

Note that risk-free discount cancel from both sides. Hence, we arrive at the
famous back-of-the-envelope formula for the default probability (by ignoring the
term p× s which is small):

p =
s

1−R
(13.19)

This formula, while simple, provides a powerful intuition of spreads and default
probabilities. If the recovery is 0, then spread is (forward) default probability. This
is not only true in (13.19) but also true in continuous time. Spreads are not equal to
(i.e. smaller) forward default probabilities in that they are compensated by recovery.
Note that CDS buyers acquire default protection by paying spreads as an insurance
premium. If recovery is high, the protection value is low, and so should be the
spread. In an extreme case where the recovery is 100%, the spread should be 0,
which is suggested by (13.19).
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13.10 Bootstrapping (Curve Cooking)

We need credit curves to price credit derivatives. Credit curves are obtained from
liquid “cash” products such as CDS or corporate bonds. Due to the liquidity concern,
CDS is a better choice for curve cooking.

The basic bootstrapping idea of constructing a risky curve is the same as the
risk-free curve. We use a pricing formula to back out the parameter(s). In the
traditional fixed income world (Treasuries and IRS), we back out spot and forward
rates from the market prices of bonds and swap rates. Here, we back out survival
probabilities from a series of CDS contracts. As in the world of traditional fixed
income, we need a term structure of CDS spreads in order to back out the entire
survival probability curve. A popular smoothing technique in LIBOR curves is
piece-wise flat.

The CDS market has been standardized over the years to have the following
on-the-run maturities: 1, 2, 3, 5, 7, and 10 years to maturities. As in the IRS
market, these contracts are “on-the-run” which are issued periodically. In the early
years, only 5-year CDS contracts were issued. A few years ago, the market started to
trade 10-year CDS contracts. The other maturities have gradually been introduced
to the market but their liquidity is still a concern. Assume for now that we observe
market prices of these CDS spreads.

13.11 Poisson Assumption

From (13.2) ∼ (13.4), we know that if we assume piece-wise flat intensity values,
then the survival probability can be approximated as follows:

Q(t, Tn) = exp
{
−
∑n

i=1
λi(Ti − Ti−1)

}
(13.20)

where t = T0.

13.12 Simple Demonstration (annual frequency)

To make matters simple, we assume CDS spreads are paid annually. There are 6
CDS spreads observed in the market (1, 2, 3, 5, 7, 10). Take Disney as an example.
On 12/23/2005, we observe the following spreads (in basis points):
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CDS quotes
term sprd
1 9
2 13
3 20
5 33
7 47
10 61

Continue to assume fixed 0.4 recovery ratio under MR for Disney. The follow-
ing binomial chart presents possible cash flows. Let’s assume 5% risk-free rate.

 

 

1
p  

1 1
1Q p= − spread = 0.0009 

if survive 

1 - recovery rate = 0.6 

if default 

 

Figure 13.3: First period

CDS is a swap contract so there is no cash changed hands on day 1. Hence,
it must be the case that the expected payment (9 basis points) equals the expected
compensation (60%). In a single period, since both payment and compensation are
discounted, the risk-free does not matter. Note that the survival probability for one
year is Q1 = 1− p1 (which is also equal to e−λ1 if we assume the Poisson process for
defaults). Hence, using 5% interest rate, we have:

0.6× (1−Q1)− 0.0009×Q1

1.05
= 0

which is solved as:
0.6× (1−Q1) = 0.0009×Q1

and Q1 = 0.9985. λ1 can be solved for as − lnQ1 to be 0.001499, or 14.99 basis
points. Hence, the survival and default probabilities are 99.85% and 0.15% respec-
tively.

Now we proceed to bootstrap the second period.
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Figure 13.4: Two-period Default Diagram

There are three scenarios. Either Disney defaults in period 1, or default in
period 2, or survive in period 2 (note that to survive till period 2, Disney must first
survive period 1). We know the first default probability, which is p1 = 0.0015. But
we do not know the other two probabilities. Using the same Poisson algorithm, we
can compute the second year present value as:

0.6× p2 − 0.0013× (1− p2)

1.05

Note that this quantity itself is not 0; but combining it with the first year cash
flows is:

0.6× 0.0015 + 0.9985
(
−0.0013 + 0.6×p2−0.0013×(1−p2)

1.05

)
1.05

= 0

Solve for p2 to get 28.62 basis points. Under the Poisson assumption, e−λ2 =
1 − p2 and as a result, λ2 = − ln(1 − p2) = 0.002865 or 28.65 basis points. The
conditional survival probability is 1 − p2 = 99.7138%. The unconditional survival
probability, Q2, equals (1−p1)(1−p2) which is 99.5645%. The unconditional default
probability is 1− 99.5645% = 0.4355%.

Similar process applies to all periods as the following figure depicts. Due to
the limitation of the space in the table, Q(t, v) is replaced with Q(τ) where τ = v−t.

The results are given as follows. The first three columns are taken from the
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Figure 13.5: Multi-period Default Diagram

market. Columns A and B are the same spread input given earlier. Column C is
the risk-free discount factors that are computed using 5% flat in the example.

CDS Bootstrapping
A B C D E F
Term Market Risk-free Fwd. Surv.Pr. Def.Pr.
τ Spread P (τ) λ(τ) Q(τ) −dQ(τ)
1 0.0009 0.9512 0.0015 0.9985 0.0015
2 0.0013 0.9048 0.0029 0.9956 0.0029
3 0.0020 0.8607 0.0059 0.9898 0.0058
4 0.8187 0.0092 0.9808 0.0091
5 0.0033 0.7788 0.0092 0.9718 0.0090
6 0.7408 0.0150 0.9573 0.0144
7 0.0047 0.7047 0.0150 0.9431 0.0142
8 0.6703 0.0176 0.9267 0.0164
9 0.6376 0.0176 0.9106 0.0161
10 0.0061 0.6065 0.0176 0.8948 0.0158
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CDS Bootstrapping (cont’ed)
G H I J K L

P (τ)× Prem. Prot. Model Cond.
P (τ)Q(τ) [−dQ(τ)] Leg Leg Spread Def.Pr.
0.9498 0.0014 0.9498 0.0009 0.0009 0.0015
0.9009 0.0026 1.8507 0.0024 0.0013 0.0029
0.8520 0.0050 2.7027 0.0054 0.0020 0.0058
0.8030 0.0074 3.5056 0.0099 0.0028 0.0092
0.7568 0.0070 4.2625 0.0141 0.0033 0.0092
0.7092 0.0107 4.9717 0.0205 0.0041 0.0148
0.6646 0.0100 5.6363 0.0265 0.0047 0.0148
0.6212 0.0110 6.2575 0.0331 0.0053 0.0174
0.5806 0.0103 6.8381 0.0393 0.0057 0.0174
0.5427 0.0096 7.3808 0.0450 0.0061 0.0174

Column E presents the survival probabilities that are computed sequentially
as in equation (13.20):

Q(t, Tn) = exp
{
−
∑n

i=1
λi(Ti − Ti−1)

}
= Q(t, Tn−1) exp {−λn(Tn − Tn−1)}

(13.21)

For example, Q(0, 2) = 0.9956 = 0.9985 × e−0.0029×(2−1). Column F is the
unconditional default probabilities which is the differences are two consecutive sur-
vival probabilities. For example, 0.0029 = 0.9985 − 0.9956. Column G is known
as the risky discount factor (introduecd earlier), or $1 present value with default
risk. These values are needed in order to compute the default swap spread, i.e. the
denominator of (13.17). Similarly, column H provides the values for the numerator
of (13.17). Columns I and J are accumulations of columns G and H respectively.
Column K is the division of column J by column I, which is the spread of CDS.
The values of this column must match the market quotes in column B. In fact, we
solve for column D so that values in column K are identical to values in column B.
Finally, column L contains conditional default probabilities, each of which equals
1−Q(t, Tj)/Q(t, Tj−1). We note that the conditional default probabilities are close to
the intensity values (λ), as they should, in that they are exactly equal in continuous
time.

The table presented here provides a nice algorithm for further automate the
calculations for more complex situations in reality, which we shall demonstrate later.
Once all the λj values are “bootstrapped” out, we can then compute any survival
probability of any future time, as follows:
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Q(t, v) = Q(t, Tn−1) exp {−λn(v − Tn−1)} (13.22)

where Tn−1 < v < Tn. For example, the survival probability of 6.25 years is 0.9769×
e−0.0098×(6.5−5) = 0.9627.

13.13 In Reality (quarterly frequency)

In the above example, we assume spreads are paid annually. As a result, the calcu-
lation is quite simple. In reality, this is not the case. Spreads are paid by the swap
market convention which is quarterly. In this case, default can occur at any quarter.
We then need to alter the one period calculation shown above.

Note that within a year (for the first few spreads), all per-quarter default
probabilities are equal. This is because we have only one spread (e.g. 0.0009 in year
1) to cover four quarters. The basic formula is still the same. Mainly we solve the
following equation for p (note that at each period, the interest rate is 1.25%):

xi = x0 + 0.6p1 + (1− p1)xi−1

xn = x0

(13.23)

where n represents the number of periods that shares the probability. For the first
year, n = 4 and x0 = 0.000225. We then solve for p1 = 0.000375 or 3.75 basis points
and λ1 = 0.0015. The full expansion of this equation is shown in the Appendix.

Note that while this equation is solvable by hand if proper re-arrangement of
terms is performed, it is much faster if we set up the equation and use the Solver
in Excel. This equation can be set up recursively as the discounting and expected
values are nested. We can set up an Excel sheet to compute all the results. As a
demonstration, we provide the results up the 3 years.

The layout of the table is the same as before. The frequency of the CDS
premium payments is now quarterly (see column A). Column B is still market CDS
spreads that are available every four quarters. Column C is quarterly risk-free
discount factors (at 5%). Columns E ∼ H are computed similarly to the previous
section, only with quarterly frequency.

Columns, I, J, and K are computed similarly to the previous section but only
every year. Note that column K is column J ÷ column I × 4 in order to annualize
to match annual CDS market quotes in column B.

Readers should complete the table for the full 10 years.
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CDS Bootstrapping
A B C D E F

Market Risk-free Fwd. Surv.Pr. Fwd.Def.Pr.
Term Spread P (τ) λ(τ) Q(τ) −dQ(τ)
0.25 0.9876 0.0015 0.9996 0.000375
0.5 0.9753 0.0015 0.9993 0.000375
0.75 0.9632 0.0015 0.9989 0.000375
1 0.0009 0.9512 0.0015 0.9985 0.000374
1.25 0.9394 0.002868 0.9978 0.000716
1.5 0.9277 0.002868 0.9971 0.000715
1.75 0.9162 0.002868 0.9964 0.000715
2 0.0013 0.9048 0.002868 0.9956 0.000714
2.25 0.8936 0.00586 0.9942 0.001457
2.5 0.8825 0.00586 0.9927 0.001455
2.75 0.8715 0.00586 0.9913 0.001453
3 0.002 0.8607 0.00586 0.9898 0.001451

CDS Bootstrapping
G H I J K L

premium protection computed cond.
P (τ)Q(t) P (τ)[−dQ(τ)] leg leg spread surv.prob.
0.9872 0.0004
0.9746 0.0004 0.9996
0.9621 0.0004 0.9996
0.9498 0.0004 3.8737 0.0009 0.0009 0.9996
0.9373 0.0007 0.9993
0.925 0.0007 0.9993
0.9129 0.0007 0.9993
0.9009 0.0006 7.5498 0.0025 0.0013 0.9993
0.8884 0.0013 0.9985
0.8761 0.0013 0.9985
0.8639 0.0013 0.9985
0.8519 0.0012 11.0302 0.0055 0.002 0.9985



Chapter 14

Corporate Finance Approach of
Modeling Default

14.1 Merton Model

This approach of modeling default is called structural approach. It does not assume
defaults as an unexpected event but rather a firm’s failure to pay its debts. The
earliest model is Black-Scholes (1973) and Merton (1974) who regard the equity of
the firm as a call option. This is because the equity of the firm has a residual claim
of the firm’s assets. In a simple example where the firm has only one zero coupon
debt, the face value of the debt is the strike of the call option. When the asset value
at the maturity of the debt is above the face value, the firm is able to pay off its
debt and the equity receives the residual value of A(T ) − K where A is the asset
value of the firm at the maturity date, T , of the debt and K is the face value of
the debt. Otherwise (the asset value is smaller than the face value), the equity is
worthless.

Figure 14.1 describes the payoffs graphically. The vertical axis is value of the
assets of the firm. The horizontal axis is time. The horizontal line represents the face
value of the debt, which is flat over time. In the example, a one-year horizon, weekly
intervals are used. In Figure 14.1, two samples of the asset value are presented – one
good and one bad. The good sample is a profitable sample where the firm does well
and the asset value increases (and is higher than the debt face value at time T ). The
bad sample is where the firm loses money and the asset value ends up lower than the
debt face value. In the good sample, the debt is paid in full and the equity receives
the residual amount A(T )−K. In the bad sample, the firm defaults anfd the debt
holder receives a recovery value of A(T ) and the equity holder receives nothing. On
the very right of the diagram is the log normal distribution that describes the asset
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 Figure 14.1: Merton Model

price. The area below the default barrier is the probability of default (commonly
abbreviated as PD). As a result, the equity value and equity volatility in this simple
case can be priced by the Black-Scholes model:E(t) = A(t)N(d1)− e−r(T−t)KN(d2)

σE = σN(d1)
A

E

(14.1)

where σE is the equity volatility and:

d2 =
lnA(t)−lnK+(r−σ2/2)(T−t)

σ
√
T−t

d1 = d2 + σ
√
T − t

r is the risk-free rate, and σ is the asset return volatility. The debt value which is
the difference between asset and equity is then equal to:

D(t, T ) = A(t)− E(t)

= A(t)[1−N(d1)]︸ ︷︷ ︸
Recovery value

+ e−r(T−t)KN(d2)︸ ︷︷ ︸
Survival value

(14.2)

On the right hand side of the equation, the debt value is decomposed into two
parts – surivial value and recovery value. The survival value is the amount received
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by the debt holders if the firm survives. In this case it is the face value weighted by
the survival (in-the-money) probability N(d2) and discounted at the risk-free rate.
The recovery value is the amount received by the debt holders if the firm defaults.
In this case it is the asset value weighted by the default probability and discounted
at the risk-free rate. But since the asset value is random, we must compute the
following expected value: e−r(T−t)Êt [A(T )IA<K ] which is equal to the recovery value
given above.

 

Asset Value 

Risk-free Debt 

Value 
Risky Debt 

Value 

Loss Given 

Default 

Asset Value 

Asset Value  

Figure 14.2: Risky Debt

Figure 14.2 describes the equation graphically. The upper-left panel is the risk-
free debt whose payoff is fixed regardless of the value of the firm. The upper-right
panel is the payoff of the risky debt. When the firm is doing well (i.e. survival), the
payment is full (i.e. face value) but when the firm is not doing well (i.e. default), the
payment is the recovery value (i.e. asset value). The bottom panel is the difference
between the risk-free debt and the risky debt, which gives the result of the loss given
default. The convolution of the area and the probabilities is the expected loss (EL).

Note that D(t, T ) < e−r(T−t)K which is the risk-free debt value. The (risk-
neutral) default probability is p = 1 − N(d2). The following diagram is usually
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used to visualize how the Black-Scholes-Merton model works. The plotted are two
possible sample paths of the asset value, one drifts upward and the other drifts
downward. The asset value starts at 100 with the default barrier at 50. One sample
path stays above the default barrier and is a survival path and one crosses the barrier
and is a default path. To be explored fully later, the log difference between the asset
value and the default barrier is known as the distance to default, or DD.

14.2 KMV Model

In 1989 Stephen Kealhofer, John McQuown and Oldrich Vasicek founded company
KMV. They commercialize the Merton (Black-Scholes) model to provide quanti-
tative credit ratings of companies. They coined the term EDF (expected default
frequency) using DD. They use equation (14.1) to compute the distance to default
(DD) which is d2, because:

d2 =
E[lnA(T )]− lnK√

V[lnA(T )]
(14.3)

Given that A(T ) follows a log normal process, this DD makes sense. And
naturally the probability of default (PD) is 1 − N(d2), or N(−d2). The expected
recovery (since actual recovery A(T ) is random) is A(t)[1−N(d1)].

The Merton model allows for only one single debt. To accommodate the multi-
debt problem, KMV empirically estimated the “one-year equivalent” debt value to
be:

One Year Equivalent Debt = Short Term Debt +
Long Term Debt

2

=
Short Term Debt + Total Debt

2

EDF is similar to PD (i.e. 1 − N(d2), or N(−d2)) (but the translation is a
KMV secret) and used to decide a rating for the company. KMV also use the model
to predict defaults. See Stein (2002).

Recently, KMV also uses barrier option models (details later) to better capture
multiple debts and complex volatility forecast methods (such as GARCH) to improve
the historical equity volatility estimates that are not very reliable.
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14.3 The Geske Model

Although the Black-Scholes-Merton model reflects the reality that the only reason
firms default is due to failure to pay, it is a one period model which is too limited
to be used for a regular firm that has multiple debts.

Geske extended the model to include multiple debts. Take a two-period ex-
ample and assume the firm issues two zero coupon bonds, expiring at T1 and T2,
with face values K1 and K2 respectively. Default at T1 is defined by Geske (1984)
as the firm value less than the face value of the first debt plus the market value of
the second debt, that is V1 < K1 +D(T1, T2) where D(T1, T2) is the market value of
K2 at time T1.

The solution to the equity value and equity volatility can be derived from
Geske’s compound call option (call on call) model:1

E(t) = A(t)M(h1+, h2+; ρ)− e−r(T2−t)K2M(h1−, h2−; ρ)− e−r(T1−t)K1N(h1−)

σE = σM(h1+, h2+; ρ)
A

E
(14.4)

where N(·) is the uni-variate standard normal probability and M(·, ·; ρ) is the bi-
variate standard normal probability, and:

ρ =

√
T1 − t

T2 − t

hj± =
lnA(t)− ln Āj + (r ± σ2/2)(Tj − t)

σ
√
Tj − t

(14.5)

Note that Ā2 = K2 is the critical value for the assets to trigger default at T2

and Ā1 is the solution to K1 = E(T1), as follows:

K1 = Ā(T1)N(x+)− e−r(T2−T1)K2N(x−)

x± =
ln Ā(T1)− lnK2 + (r ± σ2/2)(T2 − T1)

σ
√
T2 − T1

which is the critical value for default at time T1; and . Recall that E(T1) is the
Black-Scholes value (due to the fact that in the last period, the equity is just a

1Note that the equation indicates that the survival probabilities are N(h1−) and M(h1−, h2−; ρ)
for one year and two years respectively.
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simple call option). The two debt values are a bit complex to solve, but the closed-
form solutions are given as follows:

D(t, T1) = A(t)[1−N(y1+)] + e−r(T1−t)K1N(y1−)

D(t, T2) = A(t)[N(y1+)−M(h1+, h2+; ρ)]− e−r(T1−t)K1[N(y1−)−N(h1−)]

+e−r(T2−t)K2M(h1−, h2−; ρ)

(14.6)

where

yj± =
lnAj−1 − lnKj + (r ± σ2/2)(Tj − Tj−1)

σ
√
Tj − Tj−1

It is clear that the expected recover value is A(t)[1 − M(h1+, h2+; ρ)] for
the entire firm; A0[1 − N(y1+)] for debt K1; and A(t)[N(y1+) − M(h1+, h2+; ρ)] −
e−r(T1−t)K1[N(y1−)−N(h1−)] for debt K2.

Note that Geske assumes each time the firm pays off its maturing debt with
new equity. As a result, the default condition becomes:

A1 < K1 +D(T1, T2)

A1 −D(T1, T2) < K1

E
(a)
1 < K1

(14.7)

which is, the equity value after paying off debt K1 must be greater than K1. In
other words, the equity value after paying off debt includes the new equity that
equals K1. Hence, this value must be equal to at least K1. If not, then it indicates
that the firm cannot issue new equity, which implies obvious default. Table 14.1
demonstrates the balance sheet before and after paying off K1.

At time 1T  

Before 1K  is paid off  After 1K  is paid off (with equity) 

1A  or 1( )AT  1K  

1,2 1( )D A  

( )
1
b
E  

 1A  or 1( )AT   

1,2 1( )D A  

( ) ( )
11 1

a b
E E K= +  

 

Table 14.1: Balance Sheet at Time T1
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The default barrier can be calculated Ā1 = K1+D1,2(Ā1) as D1,2 is a function
of A1. Note that Ā2 = K2 as this is a two period model and the firm liquidates at
T2.

Suppose a company has two zero coupon debts, one and two years to maturity
and each has $100 face value. Also suppose the assets are currently worth $400
and the debts are together worth $170 on present value basis. This is graphically
represented by the following balance sheet:2

Balance Sheet 
as of year 0 

assets 400 Maturity 1t =  debt 90

  Maturity 2t =  debt 80

  Equity 130

total 400 Total 400
note: both debts have face values of $100 

 

Table 14.2: Balance Sheet at Year 0

First, assume that one year later, the asset grows to $450 and the firm faces
the first debt payment of $100. The firm at this time should raise equity to pay for
the first debt so that the asset value will not have to be decreased. The asset value
after paying off the first debt is still $450. Assume that at this time (t = 1), the
second debt, now only a year from maturity, has a value of $90. As a result, the
equity should be $360 (= $450 − $90) that includes $100 new equity and $260 old
equity. The balance sheet becomes:

Now, instead of the assets being worth $450, suppose that the firm made some
bad investment decisions and the asset’s value drops to $150. A bad economy and
lower asset value imposes a higher default risk on the second debt so it is priced
lower at $75 due to its higher risk. Hence, the resulting equity value of old equity
and of the “should be raised” equity, or debt due plus net equity, drops to $75 (150
− $75 = $100 − $25) . The firm, as in the previous case, would like to raise equity
to pay off the first debt. But the new equity value needs to be $100 to retire the
debt due which creates a clear contradiction. This means that the new equity owner
pays $100 in cash but in return receives a portion of $75. No rational investor would
invest equity in this firm.

Since the firm cannot raise equity capital to continue its operation, it should
not be considered a going concern. There is point where the potential new equity

2We assume the risk free rate to be about 10%. Since the company is extremely solvent, both
debts are roughly priced at the risk free rate.
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Balance Sheet 

as of year 1 before payment of first debt 

assets 450 Maturity 1t =  debt 100

  Maturity 2t =  debt 90

  Equity 260

total 450 Total 450

 

Balance Sheet 

at year 1 after payment of first debt 

assets 450 maturity 2t =  debt 90

  old equity 260

  new equity 100

total 450 Total 450

note: issue new equity to pay for the first debt 

 

Table 14.3: Balance Sheet at Year 1

owner is indifferent and this is the going concern breakeven point for the company.
Suppose the (break-even) asset value in one year is falls to $186.01. At this asset
value, the second debt is worth $86. Consequently, the new equity owner has $100
and the old equity has $0.01. And we know that the default point is $186.3

Table 14.4 shows the relationships between the market value of debt (two-year
debt at year 1) and market value of equity in previous examples.

We can clearly see that any asset value lower than $186 will cause default and
should require other than a going concern opinion. However, with $186 of assets, the
company can pay the first debt due and continue to operate. One could also consider
selling assets to pay off the first debt without raising any new equity. However, this
approach to claim dilution would cause the second debt to drop significantly in value
as in Table 14.5.

The reason is that the equity immediately has an option value at the cost of
the remaining debt. In the above hypothetical tables, we assume $10 is transferred
from debt to equity. At t = 0, the debt holders know about this even when there is
no information asymmetry. As a result, they will pay less for the debt.

Usually, the company will roll over old debt to new debt instead of issuing

3This value is precisely the “implied strike price” in the Geske model. We should notice that
$186.01 ∼ $186 in this example. We leave a minor amount, $0.01, to old equity holders in order
to make this example more reasonable.
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Balance Sheet 

as of year 1 before payment of first debt 

assets 186.01 one-year debt 100

  two-year debt 86

  Equity 0.01

total 186.01 Total 186.01

 

Balance Sheet 

as of year 1 after payment of first debt 

assets 186.01 two-year debt 86

  old equity 0.01

  new equity 100

total 186.01 Total 186.01

note: issue new equity to pay for the first debt 

 

Table 14.4: Balance Sheet at Year 1

Balance Sheet 

as of year 1 before payment of first debt 

Assets 186 one-year debt 100

  two-year debt 86

  Equity 0

total 186 Total 186

 

Balance Sheet 

as of year 1 after payment of first debt 

assets 86 two-year debt 76

  old equity 10

   

total 86 Total 86

note: selling asset to pay for the first debt 

 

Table 14.5: Balance Sheet at Year 1



212 Chapter 14: Corporate Finance Approach of Modeling Default

equity. In the case of extreme solvency, this is not a problem. But in the case of
near default, as described above, we have Table 14.6.

Balance Sheet 

as of year 1 before payment of first debt 

assets 186.01 one-year debt 100

  two-year debt 86

  Equity 0.01

total 186.01 Total 186.01

 

Balance Sheet 

as of year 1 after payment of first debt 

assets 186.01 two-year debt 86

  new debt 100

  old equity 0.01

total 186.01 Total 186.01

note: issue new debt to pay for the first debt 

 

Table 14.6: Balance Sheet at Year 1

The principal of the new debt can be extremely high to reflect the very risky
situation in order to get a $100 to retire the first issue. Because the existing debt
matures earlier (and hence has a higher seniority) its value should be the same
whether there is new equity or debt. The equity will give a different claim whether
new equity is raised or new debt is issued. With new equity the original equity will
return a small portion after the second debt issue is repaid. With new debt, the
original equity will get the entire return if the asset value increases after both debt
issues are repaid. In the equilibrium, the original equity value should return to 0.01.
It should not matter if the funds come from new equity or new debt at just over
break-even point. Either way, the result holds and the old equity holders have a
$0.01 value.

Under the current measurement for going concern status, companies will usu-
ally receive a going concern opinion at $186 and probably at $150. The company
continues to survive and operate. Now at $150 value, the company is not able to
raise capital, but it is certainly able to pay the debt with its assets and leave the
second debt with $50. Under this condition, the junior debt will be worth less than
$50, possibly very little since debt holders do not have the safe covenant to prevent
managers/shareholders from selling assets to pay the senior debt. The transferring
of wealth from debt owner to equity owner is what we define as the agency problem.
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As long as the company spends assets to pay the earlier maturing debt, the later
maturing debt holders will be hurt and shareholders will benefit.

We note that at the due date of the first debt, the company faces a decision
whether to pay the debt obligation. This is a compound option question in that if
the company decides to pay, the company continues to survive much like exercising
the compound option to keep the option alive. The company’s survival criterion
relies upon whether the company can raise new equity capital. In this analysis, the
technical condition of staying solvent (paying the coupon) is that the company must
use new equity to pay for the coupon. If such new equity conceptually cannot be
raised, then the company should go bankrupt. Interestingly, this condition translates
into another equivalent condition that the market value of the assets of the company
must stay above the market value of the liabilities at the moment of the coupon.
This condition is regarded as the no-arbitrage condition and should be the breakeven
point in value for receiving a clean going concern audit.

14.4 The Leland-Toft Model

The Leland-Toft model (which is an extension of the Leland model) is another
structural model that extended the Black-Scholes-Merton model to include multiple
debts. Different from the Geske model, the Leland-Toft model assumes continuous
coupons and continuous issuance and redemption of the debts. As a result, the firm
has a steady-state debt level that will not change, as the amount of debt issued
exactly cancels the amount of debt redeemed.

Note that in the Leland-Toft model, we remove tax shield and dead-weight cost
from the model to make it a fair comparison to other models. The model without
tax shield and deadweight cost is given as:

D =
C

r
+

(
K − C

r

)(
1− e−rT

rT
− I

)
+

(
H − C

r

)
J (14.8)

where C is the continuous coupon, K is the face value of debt that expires in time
T and:

I =
1

rT

(
G− e−rTF

)
J =

1

zσA

√
T

(
−(b−a+z)N [q−]q− + b−a−zN [q+]q+

)
F = N [h−] + b−2aN [h+]

G = b−a+zN [q−] + b−a−zN [q+]

(14.9)
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q± =
−b± zσ2

AT

σA

√
T

h± =
−b± aσ2

AT

σA

√
T

a =
r − δ − 1/2σ2

A

σ2
A

b = ln

(
A

H

)

z =

√
(aσ2

A)
2
+ 2rσ2

A

σ2
A

(14.10)

H =
(C/r)[X/(rT )− Y ]−XK/(rT )

1− Y

X = 2ae−rTN [aσA

√
T ]− 2zN [zσA

√
T − 2

σA

√
T
n[zσA

√
T ] +

2e−rT

σA

√
T
n[aσA

√
T ] + (z − a)

Y = −
(
2z +

2

zσ2
AT

N [zσA

√
T ]− 2

σA

√
T
n[zσA

√
T ] + (z − a) +

1

zσ2
AT

)
(14.11)

In the model, H is known as the default barrier. In the model, the firm
constantly issues and retires the same amount of debt.

14.5 Hybrid Models

The Geske model is difficult to use in reality due to its computational difficulties.
Hence, a number of hybrid models emerged to bridge the gap between the true
structural model such as Geske’s (where the meaning of default is “failure to pay”)
and the reduced form models (that focus on calibration ease). These hybrid models
assume a default barrier that is exogenously specified. The default barrier is then
calibrated to the market.

A number of hybrid models emerged to bridge the gap between the true struc-
tural model such as Geske’s (where the meaning of default is “failure to pay”) and
the reduced form models (that focus on calibration ease). These hybrid models
assume a default barrier that is exogenously specified. The default barrier is then
calibrated to the market.

Once there is an external barrier, the modeling complexity drops substantially.
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We can the use the First Passage Time mathematics. There are several barrier option
models that are popular. The first one is the flat barrier option model introduced
first by Rubinstein and Reiner (1991).

A barrier option is an option whose payoff is activated (knocked in) and ter-
minated (knocked out) when a barrier is reached by the stock price before maturity.
Due the barrier can be higher or lower than the current stock price, barrier options
are classified as down-and-in and down-and-out barrier options whose barrier lies
below the current stock price; and up-and-in, and up-and-out barrier options whose
barrier lies above the current stock price.

Down-and-in and up-and-in barrier options become call or put options when
the barrier is reached. Similarly, down-and-out and up-and-out barrier options be-
come worthless when the barrier is reached.

The barrier option problem is the first passage time problem. Assume the
standard Black-Scholes model that the stock price follows the log normal process.
Let the barrier be H and the strike be K. If the barrier is below the current stock
price, i.e. St > H, then the risk neutral probability that the stock price stays above
both H and K is either:
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if H < K or
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if H > K. Note that the first part of equation (13-102) is just the probability of
ST > K. The second part of equation (13-102) is the joint probability that ST > K
and Sτ < H. As a result, the difference is the joint probability that ST > K and
Sτ > H. When H > K, then staying above the barrier automatically guarantees in
the money for the option and we simply replace K by H.

As a result, the down-and-out barrier call option model (i.e. St > H) can be
derived as:
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Cdo = e−r(T−t)Êt[(ST −K)1ST>K∩Sτ>H ]

= e−r(T−t)Êt[ST1ST>K∩Sτ>H ]− e−r(T−t)KÊt[1ST>K∩Sτ>H ]

= StΠ+ − e−r(T−t)KΠ−

(14.14)

where

Π± = N

(
lnS − lnK + (r ± 1/2σ2)(T − t)

σ
√
T − t

)
−
(
S

H

)1− 2r
σ2

N

(
2 lnH − lnV − lnK + (r ± 1/2σ2)(T − t)

σ
√
T − t

)
(14.15)

if H < K or

Π± = N

(
lnSt − lnH + (r ± 1/2σ2)(T − t)

σ
√
T − t

)
−
(
St

H

)1− 2r
σ2

N

(
lnH − lnSt + (r ± 1/2σ2)(T − t)

σ
√
T − t

)
(14.16)

if H > K. Note that the two results for Π− are just probability of first passage
time. The results for Π+ can be obtained via the change of measure.

The down-and-in barrier call option model can be derived by subtracting the
down-and-out option model from the Black-Scholes model: Cdi = CBS − Cdo.

If the barrier is above the current stock price, i.e. St < H, then the risk neutral
probability that the stock price stays above both H and K is either:
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N

(
lnSt − lnH + (r − 1/2σ2)(T − t)

σ
√
T − t

)

−
(
St

H

)1− 2r
σ2
{
N

(
lnH − lnSt + (r − 1/2σ2)(T − t)

σ
√
T − t

)
−N

(
lnSt − lnH + (r − 1/2σ2)(T − t)

σ
√
T − t

)}
(14.18)



Hybrid Models 217

if H > K. Note that the first part of equation (13-105) is just the probability of
ST > K. The second part of equation (13-105) is the joint probability that ST > K
and Sτ < H. As a result, the difference is the joint probability that ST > K and
Sτ > H. When H > K, then staying above the barrier automatically guarantees in
the money for the option and we simply replace K by H.

The second one is by Black and Cox (1976) where the barrier is not flat but
exponentially decayed. The first passage time (survival probability) by Black and
Cox is given as follows:
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(14.19)

where K is the barrier amount, γ is the decay rate of the barrier (in other words,
the barrier is smaller currently than close to maturity), τ is the default time (i.e.,
the first passage time to the boundary), and V is the asset value. To put it plainly,
if t∗ is the first passage time to the boundary, then the probability that t∗ ≥ τ is
given by the above equation.

The last one is the CreditGrades model (2002) that was developed by Goldman
Sachs, JP Morgan, Deutsche Bank, and RiskMetrics. This is essentially a random
barrier model. The technical document can be downloaded from creditgrades.com.
The main equation is its approximation formula for the survival probability, as
follows:
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where
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and λ is the volatility parameter for the stochastic barrier, E is the equity value
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and D is the “target” debt value. Hence, it is logical to view ξ as the leverage ratio.
With the survival probability function, we can proceed with CDS valuation.



Chapter 15

Credit Portfolio and Credit
Correlation

15.1 Introduction

So far we have been assessing single-name credit risk and how to model it. The
key risk management factor – correlation has not been discussed. As in market risk
management, correlation is the key driving factor to lower the risk. Little or even
negative correlation among assets can dramatically reduce the risk of a portfolio.
However, correlation in credit is much complex than it is in market risk. In market
risk, especially in parametric VaR, correlation is used among normally distributed
asset returns, and as a result a simple covariance matrix can describe very well how
diversification works and then VaR is easily inferred.

The reason why correlation in market risk so easily used is of course a result
of normally distributed asset returns. In market risk, although there are various
criticisms on normally distributed asset returns, it is not a bad first order approxi-
mation to regard asset returns as normal. Unfortunately, such an approximation is
totally unsuitable in credit risk.

First of all, credit losses are only negative. That is, there is no gain in defaults
– everyone suffers. Hence, symmetry in normality is out of question. Secondly, both
PD (probability of default) and LGD (loss given default) are both random and inter-
related (see Introduction). These two variable add extra complexity to modeling the
credit risk, unlike in market risk there is only one variable – returns of assets.

Hence, here we first introduce the concept of credit correlation. We start with
default correlation. We use a simple and yet powerful credit derivative contract –
credit default basket to introduce the concept credit correlation. Briefly, we demon-
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strate, via default basket, how correlation in credit risk can be misleading. Then, via
the example, we show that why industry moves to “copula” to replace credit corre-
lation. Finally, a full example of CDO (collateralized debt obligation) is introduced
to utilize copula in its entirety.

15.2 Basics

The following Venn diagram helps explain the basic setup of portfolio credit risk
valuation.

 

A B

A&B 

 

Figure 15.1: Venn Diagram for Default

where A and B represent the two default events for company A and company B
respectively. The area in the middle represents joint default.

In order to properly correlate default events, maintain the flexibility of freely
specifying individual default probabilities, and be able to uniquely define a joint
distribution, we use conditional default probabilities to describe the dependency
of two default events (rather than specifying the correlation). In other words, we
specify the default probability of the second bond given that the first bond has
already defaulted.

For a single period, the default event should follow a Bernoulli distribution
where 0 represents no default and 1 represents default. Under the Bernoulli distri-
bution, the specification of the conditional probability (given the marginal proba-
bilities) uniquely defines the joint default probability. The joint default probability
can be formally delineated as:

p(A ∩B) =

{
p(A|B)p(B) or
p(B|A)p(A) (15.1)
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where A and B represent default events, i.e. a short hand notation for A = 1 and B
= 1.

This specification of the joint distribution is desirable in that it is realistic in
defining the default relationship between two bonds. If two bonds have different
default probabilities (marginals) but they are extremely highly correlated, it means
(in our model) that if the less risky one defaults, the riskier one will surely default
but not the other way around. Imagine a small auto part supplier whose sole client
is a large automobile manufacturer. If the manufacturer defaults, it is highly likely
that the small part supplier will eventually default as well. The small part sup-
plier may also default on its own, independent of what happens to the automobile
manufacturer.

For example, we let A be default on the part of the manufacturer and B
be the default on the part of the small supplier. Each has 10% and 20% default
probability for the period, respectively. The part supplier is completely dependent
upon the manufacturer, i.e. the conditional default probability of the supplier on
the manufacturer is one. Then the joint probability of both firms defaulting is:

p(A ∩B) = p(B|A)p(A)
= p(A)

= 10%

(15.2)

Hence, we obtain the following joint distribution for the two companies:

Bivariate Bernulli Distribution
0 1 A

0 80% 0% 80%
1 10% 10% 20%
B 90% 10% 100%

The survival of the small supplier depends completely on the large auto man-
ufacturer:

p(B|A) = p(A ∩B)

p(A)
= 100% (15.3)

The dependency of the manufacturer on the supplier can be calculated to be:

p(A|B) =
p(A ∩B)

p(B)
=

10%

20%
= 50% (15.4)



222 Chapter 15: Credit Portfolio and Credit Correlation

which is equal to the ratio of the two individual default probabilities. The uncondi-
tional correlation of the two companies is 0.6667. The two companies can also have
perfectly negative dependency: default of one company implies the survival of the
other. In this case, the conditional probability is:

p(BC |A) = 1

or

p(B|A) = 0

(15.5)

Using the numbers in the previous example yields the following joint distribu-
tion:

Bivariate Bernulli Distribution
0 1 A

0 70% 10% 80%
1 20% 0% 20%
B 90% 10% 100%

Notice that, even though there is perfect negative dependency, the uncondi-
tional correlation is only −0.1667.

The examples here show that perfect dependency does not translate to perfect
correlation. This is because dependency is directional but correlation is not. In the
first case, A defaults causes B defaults but not vice versa. Hence the dependency
of B on A is 100% but A on B is only 50%. The correlation is in between, 67%. In
the second case, A can survive only if B defaults and vice versa. This is perfectly
negative dependency but the correlation is only −17%. The unconditional default
correlation is calculated as follows:

ρ(A,B)
either
=

p(B|A)p(A)− p(A)p(B)√
p(A)(1− p(A))p(B)(1− p(B))

or
=

p(A|B)p(B)− p(A)p(B)√
p(A)(1− p(A))p(B)(1− p(B))

(15.6)

So it is seen that it is not possible to reach 100% or -100% correlation unless
the following conditions are satisfied:

� p(A) = p(B) for 100% correlation

� p(A) + p(B) = 1 for -100% correlation
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When there is perfect dependency (i.e. p(B|A) = p(A|B) = 1), for ρ(A,B) =
1, it must be true that:

1 =
p(A)(1− p(B))√

p(A)(1− p(A))p(B)(1− p(B))

=

√
p(A)(1− p(B))√
(1− p(A))p(B)

(15.7)

in which the only solution is p(A) = p(B). When there is perfect negative de-
pendency (i.e. p(BC |A) = 1, or equivalently p(B|A) = 0, and vice versa), for
ρ(A,B) = −1, it must be true that:

−1 =
−p(A)p(B)√

p(A)(1− p(A))p(B)(1− p(B))

1 =

√
p(A)p(B)√

(1− p(A))(1− p(B))

(15.8)

in which the only solution is p(A) + p(B) = 1.

15.3 Default Baskets (First to default)

Default baskets usually contain only a few credit names (individual bonds). The
first-to-default basket pays principal and accrued interest minus the recovery value
of the first defaulted bond in the basket.

For the sake of easy exposition, we examine a two-asset basket with no coun-
terparty risk. The model can easily be extended to a multi-asset basket, but the
value must be solved numerically. Following the previous discussion, the probability
of the first-to-default in a two-asset case is p(A ∪ B). To find the value of such a
probability, we first need to find values of CDS spreads for A and B. Given that this
is a single period model, we can use 13.19 with 40% recovery rate. Then, we have
the CDS spread for A as 20%× (1− 40%) = 12% (or 1200 basis points) and for B
as 10% × (1 − 40%) = 6% (or 600 basis points). As a result, we can compute the
spread for the first-to-default (FTD) as:

p(A ∪B) = p(A) + p(B)− p(A ∩B) = 10% + 20%− 10% = 20%

s(A ∪B) = p(A ∪B)× (1− 40%) = 12%
(15.9)

We can also calculate the second-to-default (STD) as follows:
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p(A) + p(B)− p(A ∪B) = p(A ∩B) = 10%

s(A ∩B) = 6%
(15.10)

It is easy to demonstrate that the basket value is a (negatively) linear function
of the default correlation. When the default correlation is small (or even negative),
the issuers tend to default alternately: this increases the basket risk. When the
correlation is large, the issuers tend to default together: this decreases the basket
risk. As will be demonstrated below, the value of the default basket will vary between
that of a single default swap (when there is perfect dependency) and the sum of the
two individual default swaps (when there is zero dependency).

Note that in the event of perfect dependency, i.e. p(B|A) = 1, then p(A∩B) =
p(B|A)p(A) = p(A) and then p(A ∪ B) = p(B). As a natural result, the spread for
the FTD equals the spread for B (same can be said if p(A|B) = 1), which implies
that the value of the basket is equal to the value of a single name default swap.

On the other hand, if the dependency is perfectly negative, i.e. p(BC |A) = 1
or p(B|A) = 0, then p(A ∪ B) = p(A) + p(B). Then the spread of the FTD equals
the sum of the spread for A and the spread for B, which implies that the value of
the basket is equal to the sum of the two individual swaps. (Note that in this case
the value of the STD is 0, as one of the two must survive.)

Note that if there is no dependency and the two companies were to have default
probabilities that sum to exactly 100%, then the joint distribution would degenerate
and result in an unconditional correlation of −1.

The results can be extended to multiple assets, though the calculations of
the probabilities become multi-dimensional. We can use Monte-Carlo methods to
calculate the joint normal probabilities in high dimensions. We can write down the
valuation equation as follows:

V = Êt

[
P (t,min{uj})Imin{uj}<T (1−Rj(uj))Nj

]
(15.11)

where I is the indicator function, uj is the default time of the j-th bond, Rj is
recovery rate of the j-th bond, and Nj is the notional amount of the j-th bond. The
basket pays when it experiences the first default, i.e. min{uj}.

Obviously, the above equation has no easy solution when the default events (or
default times, uj) are correlated. Hence, in the following, we only solve the model
under indepedent defaults. Under independence, we can write (15.11) as:

V =

∫ T

t

∑n

i=1
P (t, u)

[
−dΠi

j=1Qj(t, u) + dΠi−1
j=0Qj(t, u)

]
(1−Ri(u)) (15.12)
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where Q0(t, u) = 1 and hence dQ0(t, u) = 0. The above formula assumes that the
last bond (i.e. bond n) has the highest priority in compensation, i.e. if the last bond
jointly defaults with any other bond, the payoff is determined by the last bond. The
second to last bond has the next highest priority in a sense that if it jointly defaults
with any other bond but the last, the payoff is determined by the second to last
bond. This priority prevails recursively to the first bond in the basket.

15.4 Copula and CDO Pricing

15.4.1 Background

A Collateral Debt Obligation, or CDO, is a set of securities known as “tranches”
that are backed by a pool (portfolio) of default-risky fixed income securities (e.g.
corporate bonds, loans, default swaps, and asset backed securities). These obliga-
tions, or tranches, are then sold to investors. Commonly it is set up as a SPV
(special purpose vehicle) as depicted in Figure 15.2.
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Figure 15.2: CDO Structure

These SPVs are “paper companies” set up by various financial institutions
(most likely investment banks) and the assets are also acquired from these financial
institutions. During the crisis, it had become apparent that many banks dumped
their bad assets to these SPVs and then issued very opaque tranches so that investors
would not find out how bad the quality of the assets is in the pool.

While frauds had been committed and lawsuits had been filed (e.g. JP Mor-
gan’s $13 billion settlement with the U.S. Justice Department), efforts have been
made to resume the securitization market and try to make the market more healthy
and transparent.
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15.4.2 Basics

A CDO is a collection of bonds (or loans and in that case it is called CLO) that are
resold to the secondary market in tranches. The actual tranche structure is highly
flexible and takes no definite form but in general, it has a waterfall structure where
tranches are paid off in a sequential order. This structure is known as the n-th loss
tranche structure. For example, a CDX CDO is a CDO with 125 credit default swaps
with US$ 10 million notional. The CDO is sliced up into the following tranches:
0-3%, 3-7%, 7-10%, 10-15%, and 15-30%. Losses over 30% are extremely unlikely
(due to collaterals ) and hence are not analyzed. The structure is the standard
waterfall structure that the first tranche (equity tranche) takes upon loss of default
up to 3%, or $300,000, Then the following mezzanine tranche will take over the next
4% loss (from 3 to 7%), or $400,000, and so on.

As we see above, the basic structure of a CDO is similar to that of a CMO
(Collateral Mortgage Obligations) in that the waterfall defines the sequence of the
payoff to each tranche. The difference lies in tranche payoffs. A typical CMO uses all
its revenues (mortgage payments) to pay its senior tranche. After the senior tranche
is completely paid, the mezzanine tranche can take over. A CDO structure is to pay
every tranche if there is enough revenue (coupons from bonds). Any reduction in
revenue due to defaults is taken from the junior tranche, and then the mezzanine
tranche, and then the senior tranche.

The primary pricing objective of pricing CDO’s is to compute the spreads of the
tranches. However, an equally important objective is to study the loss distributions
of the tranches. As it will be clear later, even though spreads can be computed
for the investors to trade, risk managing these tranches require much more than
just the spreads. Due to the extremely exotic loss distributions, without the whole
distribution, it is nearly impossible to do a good job in risk management.

A typical number of a CDO’s constituents is in hundreds. And all constituents
are highly correlated. As a result, to understand the loss distribution of a CDO is
difficult. Monte Carlo simulation is the usual technique to accomplish such a goal.
However, for 125 bonds in a CDO, there will be 125×124

2
= 7750 correlations to

estimate and simulations themselves take a large amount of time. As a result, a
fast approximation method is developed. The use of FI quickly reduces the multi-
dimensional problem to uni-dimensional. However, some simplifications must be
made. While details are to be seen later, the major intuition is as follows. First, we
must assume a factor model (single factor to begin with) through which all bonds
are correlated. This limits the flexibility of how assets are correlated and yet it
provides consistency (of correlation estimates) over time and a parametric structure
that makes FI possible. Secondly, we must assume a barrier structural model that
explain how defaults occur.
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Tranches are regarded as a series of unsecured debts from senior to junior.
The equity tranche of a CDO is like the regular equity of a company, which is a call
option. The problem here is to model the underlying asset which is portfolio loss.
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Figure 15.3: CDO Waterfall

In Figure 15.3, K0 = 0 and Kj − Kj−1 is the size of the jth tranche. For
example, K1 (or K1 − K0) is the notional of the equity tranche, K2 − K1 is the
notional of the mezzanine tranche, and K3−K2 is the notional of the senior tranche.

Note that the total loss of the pool cannot exceed the total size of the pool
as long as there is recovery. In a simple case where all bonds are equal size (e.g. $
100,000 notional for each bond) and equal recovery (e.g. 40%), a pool of 100 bonds
has a total size of $10 million and the total loss will not exceed $4 million. One can
size up the pool to three tranches as given in the above diagram to be $2 million
equity, $5 million mezzanine, and $3 million senior tranches. Identically, this implies
K1 = 2 million, K2 = 7 million, and K3 = 10 million. Note that the maximum loss
in this example is $6 million (recovery rate is 40% for all bonds) and therefore the
senior tranche will never suffer any loss. As a result, the senior tranche is risk-free.

A typical contract of a CDO tranche is a swap. That is, the protection buyer
pays a series of spreads and in return receives payments identical to default losses.
In other words, a CDO tranche is itself a CDS. However, different from a simple
corporate CDS where default can happen only once and the contract stops, a CDO
pool will have multiple defaults (up to the total number of bonds in the pool, which
is 100 in the above example). Upon each default, a payment is made to a proper
tranche investor. According to the loss payoff diagram above, for the first few
defaults experienced by the pool, the loss amounts are paid to equity investors up
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to K1 ($2 million in the example). Then losses of the next defaults are paid to
mezzanine investors up to K2. The process continues until the either all bonds in
the pool default or the CDO contract expires, whichever earlier.

As a result, as long as we can model the total loss, we can easily compute the
cumulative tranche loss and in turn the value of the protection leg and the value of
the premium leg of each tranche. The valuation of a CDO (i.e. its tranches) is a
very technical matter and hence beyond the scope of this book. Interested readers
can refer to, for example, Chen’s Mathematical Finance for full details.

15.4.3 Factor Copula

In the standard factor copula model used now as the industry standard, we write
the following:

xi =
√
ρŴM +

√
1− ρŴi (15.13)

where xi is the factor that computes the default probability for firm i and ρ is the
base correlation. Both WM and Wi are normally distributed with 0 mean. Hence
xi is normally distributed. For any given period (say a year), we can write the
conditional default probability as follows:

p̂i|f = P̂r (xi < Ki|WM = f) = P̂r
(√

ρf +
√

1− ρWi < Ki

)
= P̂r

(
Wi <

Ki−
√
ρf√

1−ρ

)
= N

(
Ki−

√
ρf√

1−ρ

)
= N

(
N−1(p̂i)−

√
ρf√

1−ρ

)
(15.14)

where P̂r(xi < Ki) = N(Ki) = p̂i is the unconditional default probability.1

For a numerical demonstration, assume two companies whose CDS spreads
are 60 and 120 basis points respectively. From the back of the evenlope formula
and recovery rate of 40%, we can obtain the default probabilities as 1% and 2%
respectively. Hence,

1Naturally, ∫
Ω(f)

p̂i|fϕ(f)df = p̂i (15.15)

where ϕ(f) is the standard normal distribution for the common factor, f .
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K1 = N−1(.01) = −2.326

K2 = N−1(.02) = −2.054

Now we sample f from the uni-normal (WM follows a Brownian motion with
one year time horizon) and, for example, obtain the following numbers:

path f
1 0.2333
2 0.0535
3 -0.3116
4 -1.0545
5 -0.4097

Assuming ρ = 0.5, we can solve for the conditional default probabilities for
the two companies as:

path p̂1|f p̂2|f
1 0.000213152 0.000851208
2 0.000413725 0.001548394
3 0.001449355 0.004760093
4 0.012694577 0.032162290
5 0.001986716 0.006301989

Apparently we have to simulate a lot of f values which in turn yield results
of conditional probabilities of many companies (imagine the above matrix is 10,000
(paths) by 125 (companies)).

Conditional on the market factor, f , firms default independently. This is ad-
vantageous in building the portfolio loss distribution. Otherwise, given that defaults
are inter-dependent, there is no possibility that we can construct the portfolio loss
distribution directly.

There are several methods to build the portfolio loss distribution that takes ad-
vantage of the conditional loss distribution. Here we introduce the Vasicek method,
the Fourier inversion method, and the recursive algorithm.

The Vasicek method is a special case of the Fourier inversion method and the
recursive algorithm. It assumes that the bond notionals and recoveries in the CDO
pool are the same. The Fourier inversion method and the recursive algorithm have
relative advantages and disadvantages. Recursive algorithm is faster but it works
best when the recoveries of the bonds are the same. Fourier inversion method is more
general but it is generally slower and it gives continuous loss distribution where the
true loss distribution is discrete.
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15.4.4 The Vasicek Model

If the exposures (notionals) are identical, then the percentage loss can be found by
carrying out the following equation,

Pr( L = i/m ) =

(
m

i

)
Pr(A1 < K1, · · · , Ai < Ki, Ai+1 > Ki+1, · · · , Am > Km)

=

(
m

i

)∫ ∞

−∞
Pr(A1 < K1, · · · , Ai < Ki, Ai+1 > Ki+1, · · · , Am

> Km|WM = f)dF (WM < f)
(15.16)

Independence conditional on WM = f gives:

Pr(L = i/m) =

(
m

i

)∫ ∞

−∞
Pr(A1 < K1|WM = f) · · ·Pr(Ai < Ki|WM = f)

Pr(Ai+1 > Ki+1|WM = f) · · ·Pr(An > Kn|WM = f)dF (WM < f)

=

(
m

i

)∫ ∞

−∞

∏i

j=1
N
(

N−1(pj)−
√
ρf√

1−ρ

)∏m

j=i+1
N
(
−N−1(pj)−

√
ρf√

1−ρ

)
dF (WM < f)

(15.17)

Note that “m choose i” or (m i)′, is only symbolic and not a real combination
function. Vasicek further simplifies by setting all probabilities equal, i.e. pj = p:

Pr(L = i/m) =

(
m

i

)∫ ∞

−∞
N
(

N−1(p)−√
ρf√

1−ρ

)i
N
(
−N−1(p)−√

ρf√
1−ρ

)m−i

dF (WM < f)

(15.18)

Here (m i)′ is the combination function. The integral can be implemented
either via Riemman sum or Monte Carlo simulations. Cumulative loss is:

Pr(L ⩽ i/m) =
∑i

ℓ=0
Pr(L = ℓ/m) (15.19)

This can be very computationally expensive if probabilities are not equal, and
still quite expensive if probabilities are equal (sum over m-choose-i terms). Vasicek
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(Limiting Loan Loss Probability Distribution) proposes an asymptotic formula and
Schonbucher presents the FFT method. The FFT method is more plausible because
it is computationally possible and less limitation than the Vasicek method.

15.4.5 Fourier Inversion and Recursive Algorithm

To evaluate CDOs correctly, two alternative (competing) methods are commonly
used – Fourier Inversion and Recursive Algorithm. These methods can accurately
calculate tranche values of a CDO. The Fourier Inversion method is more flexible
and the Recursive Algorithm method is faster. For the details of the these methods
and examples, see for example Chen’s Financial Mathematics.

15.4.6 An Example

In the following, we show an example where there are 100 bonds in the pool. This
probability is exaggerated so to magnify the behavior of the loss distribution. The
recovery rate is 40% for all bonds. Hence, the maximum loss of the pool is 60% of
the total pool size.

The shape of the loss distribution is very sensitive to the correlation. In the
following several diagrams, we shall see how the loss distribution changes as the
correlation increases. On the left is plotted the loss distribution for various correla-
tion numbers when the default probability is 6%. On the right is plotted the same
correlation scenarios when the default probability is 2%.

As we can see obviously, the lower is the default probability; the more right-
skewed is the loss distribution, which implies the safer is the pool. Also we see
that distribution is multi-modal when the correlation is high. The multi-modal
phenomenon is more pronounced when the default probability is high. This can be
easily seen from the two graphs when the correlation is 0.5. Figure 15.4 depicts the
loss functions under various assumptions.

Once we obtain the loss distribution, we can then proceed to price various
CDO tranches. Figure 15.5 provides the pricing results under 2% and 6% (for
better visual) default probability of each name in the CDO with various correlation
levels. As we can see the equity tranche is negatively correlated with correlation.
That is, the more clustering the defaults, the more risk associated with the equity
tranche. This is because high correlation bring the risks of various tranches closer.
In an extreme case where one defaults, all default (perfect correlation), then senior
tranches suffer losses the same time as junior tranches. On the other hand, when
defaults are independent, the equity tranche is wiped out first and hence the risk is
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Figure 15.4: Fourier Inversion Results
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high.

 
Figure 15.5: Tranche Prices

The expected losses are then translated to spreads because often these tranches
are sold in a form of swap. In other words, there is no cash payment at inception.
Over time investors receive fixed spreads and yet in the event of default the investor
must replenish the loss.

One significant drawback of the copula model is that it is a single period model.
It successfully incorporates multiple bonds and generates the loss distribution but
it is not able to take into account defaults and losses over time. For this, we need to
combine the Merton model with the copula model. Also, in the factor copula model,
is the correlation everybody has with the market. However, this is not necessarily
the case.

15.5 Monte Carlo Simulations

15.5.1 Default Basket

Default basket contracts (i.e. FTD (first to default) to NTD (nth to default)) have
no closed-form solutions. Hence, Monte Carlo simulations are the only method to
evaluate these deals. We want to simulate correlated defaults. Steps are as follows:

1. Get CDS spreads (for at least 4 names). Compute PDs (1y) using the back-of-
envelope formula (i.e. one period model, equation 13.19 on page 175). Com-
pute survival probabilities (1y), that is Q, for each of the four companies.

2. Compute lambdas from Q by λ = − lnQ (equation 13.1 on page 163).



234 Chapter 15: Credit Portfolio and Credit Correlation

3. Get a random number, u (i.e. u = RAND()), for each of the companies.

4. Compute z (normal random number) by z by inversing the uniform random
variable u (i.e. z = NORMSINV(u)) for each of the companies.

5. Correlate z’s by Cholesky matrix (and get X’s) by doing the following calcu-
lation (correlation numbers below can be arbitrary):

X1

X2

X3

X4

 =


√

1− x2
12 − x2

13 − x2
14

ρ12−ρ14ρ24−x13x23√
1−x2

23−x2
24

ρ13−ρ14ρ34√
1−ρ234

ρ14

0
√

1− x2
23 − x2

24
ρ23−ρ24ρ34√

1−ρ234
ρ24

0 0
√

1− ρ234 ρ34
0 0 0 1



z1

z2

z3

z4


6. Compute u∗ by N(x) (i.e. u∗ = NORMSDIST(x))

7. Compute τ with the formula τ = − lnu∗/λ for each of the companies. Now
these τ ’s (default time) are correlated.

8. Compute default (0 or 1) by comparing τ with 1

Ii =

{
0 τi > 1
1 τi < 1

9. FTD contracts pays if there is at least one default, that is: q1 =
∑4

i=1 Ii ⩾ 1.
2TD are those q2 =

∑4
i=1 Ii ⩾ 2− q1.

10. Repeat 3∼9 N times.

11. Count the number of those that ΣIi ⩾ 1 and then divide it by N .

15.5.2 CDO

In the simulation, we simulate a market factor plus idiosyncratic factors, all normals.
The simulation for each reference entity is a bivariate normal (or multi-variate nor-
mal for multiple factors) and we run this normal for each reference entity through
the normal probability function to transform the simulations for each normally dis-
tributed xi into 0-1 random variables, which will be correlated. Then the 0-1 random
variables are applied to the survival probability functions to determine default times.



Chapter 16

Risk Management for Credit Risk

16.1 Introduction

While there has been more a long history in VaR, the risk management technology
in credit risk management is very limited. People often are confused between market
credit risk and default credit risk. Market credit risk refers to spread changes over
time. Spreads reflect how default probabilities and expected recoveries are priced.
Hence changes in spreads reflect how default probabilities and expected recoveries
change over time. As default probabilities and expected recoveries are expectations,
changes in spreads hence have nothing to do with actual defaults. As a result, spread
changes are similar to any price changes of any financial securities.

Default credit risk is different. It measures losses caused by actual defaults.
Banks have been computing “counterparty risk exposures” for a long time. This
is usually understood as a call option. That is, if the counterparty defaults, then
all its debts to the bank will vanish (assuming no recovery). As a result, the loss
is identical to the postive net exposure to the counterparty. If the net exposure
is negative (i.e. the bank owes to its counterpary), then there is no risk. Hence,
the loss mimics a call option. Banks usually simulate all possible scenarios of net
exposures and sum those that have positive net exposure paths.

16.2 Unexpected Loss

Recovery of a debt is a lengthy process and the amount is highly unpredictable.
For those distressed debts that are traded in the secondary market, recovery is
often assumed to be the fair market price of the debt. But for those who do not
have secondary market prices, rough estimates are applied. Rating agencies such as
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Moody’s and S & P provide rough statistics for senior unsecured and subordinated
debts. Often these constant statistics are used as the recoveries for these debts.
Under constant recovery, we may compute the expected loss and unexpected loss
for a reduced form Bernoulli model:

 
Default => 1 R−  

No default => 0  

p  

1 p−
 

 
Figure 16.1: Expected Loss and Unexpected Loss

Hence, we compute the expected loss as,

EL = p(1−R) (16.1)

and unexpected loss as,

UL =
√
p(1− p)(1−R) (16.2)

Note that the unexpected loss is the standard deviation of loss under the
Bernoulli distribution. Also note that the quantity of UL is at the maximum when
p = 1

2
. Clearly this is when the uncertainty is the highest. When p is either high

(extremely likely to default) or low (extremely unlikely to default), the uncertainty
is low. Hence, there is little unexpected loss.

16.3 Term Structure of Credit VaR

ISDA in March 1998 published a manuscript entitled “Credit Risk and Regulatory
Capital” in which it calls for a term structure of Credit VaR. Returns that embed
credit risk are highly skewed. The standard nomality assumption for returns cannot
apply. As a result, Credit VaR is not scalable by the square root of time. Credit-
risky returns are affected by three major sources of risk:

� Market risk – over a short horizon where migration and defaults are not likely
to occur,
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� Migration risk – for medium horizon where actual defaults are not likely to
occur but the perception of default likelihood has changed (binned into the
transition matrix, Moody’s 2001 one year average default rate for a BBB rating
is 15 basis points but the likelihood to be downgraded is 13%)

� Default loss risk – loss due to actual default over the long run.

which is described in the following diagram:

Term Structure of Credit Risk
Short horizon Medium horizon Long horizon
(< 1/4 year) (between 1/4 and 1 year) (over 1 year)
Market risk Migration risk Default risk

Hence, Credit VaR is expressed as:

credit VaR = market risk weight×market risk VaR

+migration risk weight×migration risk metrics

+ default loss weight× unexpected loss

+ idiosyncratic risk

(16.3)

As a result, a full term structure of Credit VaR must be considered. Recall
in Lesson 1 where a loss distribution is presented, which is now used to compute
CVaR. In this diagram, Credit VaR (CVaR) is the highest 5th percentile (or the 1st
percentile) of the loss distribution. We notice that the loss distribution is skewed
and hence unlike normal distribution, it cannot be scaled. That is, a 5-day CVaR
is not

√
5 times of the 1-day CVaR. Hence, a CVaR must be separately calculated

for each time horizon.

16.4 CVA – Credit Value Adjustment

CVA, or credit value adjustment, is a method to compute proper value if a trade
takes on subtantial counterparty risk. If the trade has subsequent net cash inflows
(so called “in-the-money”) from the counterparty but the counterparty is in default,
then there is loss of unrealized gains. Under the requirement of marking to market
(as investment banks), such unrealized gains have already been recognized at the
time of the trade (so called day-1 P&L). As a result, the loss of the unrealized
gains that have been recognized must be credited back and show in the current
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Expected Loss = 

PD * LGD
CVaR Expected Shortfall

Unexpected Loss

Economic Capital

Stress Loss

 

Figure 16.2: Credit Value at Risk

financial statements as a loss. In order not to show lumpy P&L fluctuations due
to counterparty defaults, it has been a recent Wall Street trend that trading desks
must put up “reserves” over time to accomondate losses due to counterparty defaults.
This is called Credit Value Adjustment, or CVA.

To operationalize such a reserve-charging process, investment banks start to
establish a CVA trading desk that sells protection on counterparty defaults. As
opposed to burdening each and every trading desk to compute its counterparty
default reserve, the CVA trading desk computes the fair price of the protection and
sell CDS on each counterparty. CVA traders are then responsible for their own P&L
trading CDS on counterparties. This is another successful securitization move on
Wall Street that it securitizes default charges. Trading with CVA desk, each and
every other trading desk gains protection on its counterparties. As the protection
is provided in a form of swap, it is like an installment plan that requires a small
payment periodically that is exactly like a reserve-charging system.

In a way, CVA is a mechanism of internal transfer pricing used widely in regular
corporations. Yet through securitization, it lets market decide what the correct
transfer price should be. This is consistent with the strong belief by Wall Streeters
that the free economy, via the Invisible Hand, will set the right equilibrium. While
CDS and CDO have been widely studied (See Chapter ??) and powerful models have
been developed, the modeling of CVA so far is still completely dependent on Monte
Carlo, as no closed-form solutions exist and the correlation between counterparty
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default risk and the risk of the deal is hard to capture.

16.4.1 Exposure

The easiest way to understand the nature of counterparty risk is a concept of “ex-
posure”. An exposure is a potential loss upon a counterparty’s default. Usually this
happens when our counterparty owes us money (i.e. our unrealized gain). Note that
if we owe our counterparty money, then the default of our counterparty is a good
news for us as we do no longer need to pay our debt.

The concept of exposure is often described as a call option, as in Figure 16.3.
The dotted line represents the “moneyness of the deal”. If the deal is in-the-money
(i.e. our counterparty owes us money), then there is a positive exposure dollar-for-
dollar. Otherwise, i.e. out-of-the-money, the exposure is 0. The solid line is the PV
of such exposure. As we can see, the exposure is a call option and we can apply the
Black-Scholes model for it.

Exposure

Moneyness of Deal

 

Figure 16.3: Counterparty Credit Exposure

If a deal has multiple cash flows, then the exposure is a collection (sum) of
many such call options. Certainly, the simple sum of call options is incorrect as these
exposures are inter-dependent. More precisely, later call options are dependent on
earlier call options in that if a counterparty defaults at time t then there will be no
exposure after t. A rough approximation is the probability-weigh each exposure but
such an approximation still ignores inter-dependence. Furthermore, this exposure
method ignores the correlation of the counterparty default risk and the underlying
risks of the deal.
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Lets now turn to CVA calculation. CVA is defined as:

Present Value of Expected [exposure × PD × LGD]

Before we write down the formal formula, lets take a look at a numerical
example. Often the typical example is an Interest Rate Swap (IRS). The swap rate
of an IRS deal can be set using the yield curve (arbitrate-free valuation). Formally, a
swap rate can be calculated as the weighted average of the forward rates (on coupon
dates). Lets have a four-year yield curve as follows (which has been used in the
demonstration of the Ho-Lee model):

Yield Curve
term yield
1 5.0%
2 6.0%
3 6.5%
4 6.8%

The discount factors and forward rates can then be calculated as follows:

Yield Curve
disc. forward weighted

term yield fact. rate fwd rate
1 5.0% 0.9512 5.0% 1.39%
2 6.0% 0.8869 7.0% 1.81%
3 6.5% 0.8228 7.5% 1.80%
4 6.8% 0.7619 7.7% 1.71%

PV01 3.4228 swp rate 6.72%

where the numbers are calculated using the formulas as follows.

f(0, i, j) =
y(0, j)j − y(0, i)i

j − i

w(0, k) =

∑k
i=1 f(0, i− 1, i)P (0, i)∑k

i=1 P (0, i)

P (0, i) = exp{−y(0, i)× i}
In two years, the swap deal has two years remaining and hence the market

swap rate is determined by the current yield curve up to two years:
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Yield Curve
disc. forward weighted

term yield fact. rate fwd rate
1 6.0% 0.9418 6.0% 3.12%
2 7.0% 0.8694 8.0% 3.84%
3 7.5% - - -
4 7.8% - - -

PV01 1.8111 swp rate 6.96%

The swap rate has gone up in two years, from 6.72% (four-year swap rate)
to 6.96% (two-year swap rate). In other words, the same deal (two-year swap)
now investors have to pay a higher fixed rate to exchange for LIBOR. The exist-
ing contract is thought of as “in-the-money”. Equivalently speaking, the existing
contract can be sold for a profit. Imagine that the holder of the existing contract
can do a reverse swap to receive 6.96% and pay LIBOR. As a result, the existing
investor has no more LIBOR revenue but 6.96% (because LIBOR is netted out).
Hence, the investor of the existing swap can pocket the difference between 6.96%
and 6.72% for the next two years. Multiplying by the annuity factor (PV01), it is
(6.96%− 6.72%)× 1.8111 = 43.44 basis points (per dollar notional). If the notional
is $10 million, then the existing swap is $43,436.34 in the money. When the coun-
terparty defaults at this time, the investor will lose this profit. Hence, this is the
exposure of the swap in two years. If the counterparty defaults but is able to pay
some of this amount (i.e. recovery), then the lost is not the entire exposure but
exposure times 1−R.

While this above simple example gives a concrete exposure number, the reality
is that we never know what the yield curve is in two years. As a result, we do not
know the swap in two years, and hence we do not know the exposure amount in two
years. To estimate future yield curves, we then must use Monte Carlo simulations.

To write down the exact valuation formula:

CVA = E
[∑n

j=1
exp

(
−
∫ tj

t

rudu

)
XjItj−1<τ<tj(1−Rj)

]
=
∑n

j=1
Pt,tjpj(1−Rj)E [Xj]

=
∑n

j=1
Pt,tj(Qtj−1

−Qtj)(1−Rj)E [Xj]

=
∑n

j=1
ξjE [Xj]

where pj is the default probability between time tj−1 and tj, which is equal to
Qtj−1

− Qtj (the difference of two survival probabilities), Xj is the exposure lost
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during tj−1 and tj, R is the recovery (assumed fixed), and I· is the indicator function.

In a single period setting (n = 1), the above equation can be simplified as
loss rate ξ times expected exposure E[X] and the loss rate is composed of risk-free
discount, default probability, and LGD. Such an interpretation (often times we gain
most of the intuition through a single period model) is very easy to understand the
complex CVA calculation.

Due to the inter-connections among exposure, default probability, recovery
and discounting, CVA can only be computed via Monte Carlo simulations. Figure
16.4 explains the process of the Monte Carlo simulations.

 Figure 16.4: Process of Monte Carlo Simulations

In general (a generic deal) the exposure X(t) can be affected by a number of
risk factors, yi(t). Say

yi(t) = ai +
∑K

k=1
bi,kFk(t) + ei(t)

where Fk(t) is a risk factor (see discussions on market risk (PCA) for this), ei(t)
is idiosyncratic, and i represents various risk factors. Under this framework, all
assets can be priced within a consistent framework. yi(t) is a state variable used to
determine asset prices. If equity, then it is the return (or price change) of the i-th
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asset as described in Chapter 4. If interest rates, then it could be one of several
factors such as: r(t) = ym(t)+ym+1(t)+· · ·+ym+h(t) assuming h factors that explain
the interest rate. Then a bond valuation model can be used to price risk-free bonds
(such as Vasicek in Chapter 4) or risky bonds (such as the Jarrow-Turnbull model
in Chapter 13).1 This is step 2.

Step 3 is to aggregate all positions into a portfolio. Apparently the exposure at
any time t, X(t), is a result of valuations of all assets owned and owed (netting). Step
4 is related to risky funding, which is to incorporate liquidity risk (to be discussed
later). Step 5 is simulations and step 6 is taking the average.

Take the above swap as an example. Say the interest rates are results of a
two-factor model (see market risk). Then we evaluate fixed leg and floating leg
(evaluation) to get exposure.

16.4.2 CCDS (contingent credit default swap)

Given that CVA is now formally incorporated in valuation, it is proposed that CVA
to be securitized. This is CCDS. It is IRS + CVA. That is, the floating leg of a
CCDS is the loss due to default of the IRS counterparty. As a result, CCDS is a
perfect hedge to CVA.

WWR (wrong way risk) In general, the exposure with a counterparty is not
independent of the counterparty’s credit quality. Wrong Way Risk is cases where
the exposure increases when the credit quality of the counterparty deteriorates – i.e.
exposure tends to be high when PDs are high.

There are two types of WWR:

� General WWR: the counterparty’s credit quality is for non-specific reasons cor-
related with macroeconomic factors which also affect the value of the deriva-
tives (e.g. correlation between declining corporate credit quality and high (or
low) interest rates causing higher exposures

� Specific WWR: future exposure to a specific counterparty is highly correlated
with counterparty’s PD. (e.g. a company writing put options on its own stock,
derivatives collateralized by own shares)

WWR quantification is still an open challenge other than the self referencing
specific WWR due to:

� Difficulty to separate statistical noise from systematic correlation

1Jump intensities can also be functions of the factors.
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� Challenge of dynamic forward looking adjustment to historical calibration

16.4.3 CVA Hedging

As CVA having become a real cost to trading desks, the hedging of CVA has become
an important task as the value of CVA is now part of the P&L of the trading desk.
The hedges of the CVA incorporate hedges of the market risk factors driving the
exposures and hedges of the credit spreads of the counterparties. As in any hedging,
correlation among different risk factors is usually the most important feature eval-
uating CVA. Empirical evidence has suggested that convexity and cross-convexity
(gamma and cross-gamma) plays an important role in evaluating CVA, especially
when the changes in spreads and exposures are large.

If the bank marks to market its CVA and the bank does not hedge it, it will
experience P&L (and earnings) volatility. More importantly, in a trending or dete-
riorating credit market environment, the bank could suffer a substantial cumulative
loss. The risk management of CVA requires dynamic rebalancing of the hedges.
When counterparty exposures and credit spreads of the counterparties are large and
volatile, rebalancing requirements can be intense and costly.

In general, changes in the exposure can be hedged by taking positions on the
market risk factors that drive the exposure, but the hedging for its own credit spread
is more challenging to hedge. The systematic risk component can be hedged. The
bank-specific, idiosyncratic risk component is more difficult to hedge.

The ISDA Master Agreement lists two different tools to reduce exposure:

� Collateralization, the right of recourse to some asset of value that can be sold
or the value that can be applied in the event of default on the transaction

� Close-out Netting rules, which state that if a default occurs, multiple obliga-
tions between two parties are consolidated into a single net obligation

16.4.4 CSA (credit support annex)

Counterparty credit risk can also be mitigated by margining practice through incor-
porating Credit Support Annex (CSA agreements). A CSA provides credit protec-
tion by setting forth the rules governing the mutual posting of collateral.

CSAs are used in documenting collateral arrangements between two parties
that trade privately negotiated (over-the-counter) derivative securities. The trade
is documented under a standard contract called a master agreement, developed by
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the International Swaps and Derivatives Association (ISDA). The two parties must
sign the ISDA master agreement and execute a credit support annex before they
trade derivatives with each other.

In addition to executing the ISDA master agreement and credit support annex,
issuers must implement proper resolutions that give authorization to execute any
derivative transactions. Each issuer must also obtain an opinion from its respective
legal counsel about whether both parties can enter into swap transactions. Issuers
must also ensure that such contracts are binding and enforceable, and obtain final
credit approval from a bank.

ISDA Credit Support Annex (CSA)

� Permits posting one or several types of collateral with periodic rebalancing
and interest paid by the receiving party based on collateral currency and type

� Permits thresholds, minimum transfer amounts, and rounding (to reduce op-
erational costs)

� A new standard form of CSA (SCSA) is in development which will reduce the
complexity due to the collateral type switch options embedded in traditional
CSA

� Fully collateralized counterparty is counterparty with a “perfect” CSA – all
thresholds, minimum transfer amounts, and rounding are zero, with daily re-
balancing

� If the market moves against the trade and CSA is in place, massive additional
funding will be required immediately to post collateral

� In the absence of CSA, expected future losses may cause immediate crisis of
confidence causing creditors to pull funding from the firm

Key exposure / CVA affecting CSA terms include:

� Margin call frequency

� Threshold and Minimal Transfer Amount (MTA)

– At the end of period (day, week, etc.), if trade MTM value exceeds a
threshold, collateral must be posted.

– Exposure is to the threshold plus the market moves between default and
liquidation

– Symmetry and currency (one-way-in, one-way-out, two way)
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� Initial Margin (IM): only affects claims at default and close-out

Clearing houses mitigate risk via netting, collateralization and reassignment
of contracts. Clearing houses charge initial and variation margins to make needed
cash available in the event of a default. Furthermore,

� If that proves insufficient, coverage comes from backers of clearing house and
equity of the firm itself

� Reassignment of contracts prevents losses due to market impact. But in a
real crisis, reassignment might fail Another approach to risk mitigation is to
include break clause (a.k.a, additional termination events)

� Contract can be close-out at replacement value if the counterparty’s rating
drops

� Contract can be closed out at market value prior to maturity

� Issues

– What exactly is “replacement value”?

– How is closing out of a swap early any different from entering into the
reversing swap?

– By forcing a closeout upon a rating change, are you decreasing counter-
party risk while increasing systemic risk?

– What if the market is illiquid?

16.4.5 Counterparty Credit Risk (CCR) as Market Risk

If CCR is actively managed and hedged, it is appropriate to treat CCR as part of
market risk. CCR can be incorporated in the trading book by adding to the trading
book one defaultable exotic virtual trade per counterparty. For each counterparty,
the virtual trade is defined according to:

� if the counterparty has not defaulted by time t , the virtual trade’s value at
time t is equal to −CV A(t)

� no cash flows occur unless the counterparty defaults

� at the time of the counterparty’s default at time τ , the bank pays a single cash
flow equal to LGD multiplied by exposure, and the trade terminates
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16.4.6 Counterparty Credit Risk (CCR) as Credit Risk

Many banks do not actively manage CCR, but hold this risk to the portfolio matu-
rity. For such banks, joint treatment of market risk and CCR may not be appropri-
ate. Note that the time horizon used for market risk calculations is usually short,
which can be justified only if the risk is actively managed. Hence, treating CCR as
credit risk (jointly with the banking book) may be more appropriate for such banks.

A primary challenge in treating CCR as credit risk is uncertain nature of
counterparty credit exposure. Very often, this challenge is overcome by using loan
portfolio models with deterministic loan equivalent exposures that are calculated
from counterparty exposure distributions.

16.4.7 Counterparty Credit Risk (CCR) Capital under Basel
II & III

CCR capital under Basel II (BCBS, 2006) is treated as credit risk

� For default scenarios, asymptotic single risk factor (ASRF) model is used (see
Gordy, 2003).

� Capitalization of no-default scenarios (credit migration risk) is done via cali-
brating a maturity adjustment (MA) factor to a MTM credit risk model, sim-
ilar to KMV Portfolio Manager and consistent with the ASRF model (BCBS,
2004).

Basel III (BCBS, 2010) treats CCR in a mixed way:

� Default capital charge treats CCR as credit risk via ASRF framework (similar
to Basel II, with minor changes).

� MA factor (same as in Basel II – i.e., credit risk treatment) is still used for
capitalization against credit migration losses.

� A new CVA capital charge is used to capitalize against CVA losses due to
credit spread changes (EE is assumed to be fixed). CVA capital charge treats
CCR as stand-alone market risk

16.4.8 CVA Capital Charge and Basel III

Counterparty Credit Risk (CCR) is one of the primary focus points of Basel III
(BCBS, 2010). Credit Valuation Adjustment (CVA) is part of the regulatory capital
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calculations for CCR under Basel III. In addition to default capital charge, banks
will be required to calculate a CVA capital charge.

Default charge capitalizes against losses from counterparties’ defaults. CVA
charge capitalizes against losses from CVA increases for surviving counterparties.

Basel III motivation of CVA capital charge.

“Roughly two-thirds of CCR losses were due to CVA losses and only about one third
were due to actual defaults. The current framework addresses CCR as a default and
credit migration risk, but does not fully account for market value losses short of
default.”

Basel III CVA Capital Charge

CVA capital charge is calculated for the entire portfolio of OTC derivatives and
allowable CVA hedges (securities financing transactions (SFT) are not included).
Allowable CVA hedges include single-name and index credit default swaps (CDS)
contracts (allowable hedges are removed from market risk calculations).

Two methods are available: advanced (based on simulations) and standardized
(based on formula)

� Banks with Internal Models Method (IMM) approval for CCR and approval
to use the market risk internal models approach for the specific interest-rate
risk of bonds must use advanced method

� All other banks must use the standardized method

16.4.9 Advanced CVA Capital Charge

Advanced CVA charge is based on stand-alone CVA VaR which is a VaR charge
resulted from CVA. Usually Monte Carlo simulations are used to compute this quan-
tity. This is similar to the calculation of credit exposures that can only be simulated.
In simulations, changes of credit spreads for all counterparties and of credit indexes
are simulated for a 10-day horizon using internal models on a stand-alone basis. For
each scenario, changes of CVA for each counterparty and those of MTM values of
allowable hedges are calculated. For each scenario, changes of counterparty CVAs
and those of hedge MTMs are aggregated across counterparties and hedges, result-
ing in a distribution of changes in portfolio-level hedged CVA. Then 99% VaR is
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calculated from the simulated distribution of changes in the portfolio-level hedged
CVA.

Next, CVA capital charge is obtained from CVA VaR according to market
risk rules (BCBS, 2009). The calculation must include Stress VaR, but exclude
Incremental Risk Charge (IRC).

Standardized CVA Capital Charge

Standardized CVA charge under Basel III, K, is calculated according to a formula:

K = β
√
TN−1(q)

where

β2 =

[
1

2

∑N

i=1
wi

(
XiMi −B∗

iM
(h)
i

)
− w̄B̄∗M̄ (h)

]2
+
3

4

∑N

i=1
w2

i

(
XiMi −B∗

iM
(h)
i

)2
,

T = 1 year is the time horizon and q = 99.9% is the confidence level, wi is standard-
ized “weight” based on credit rating of counterparty i, Xi and Mi are the exposure
at default (EAD) and is effective maturity respectively for counterparty i, B∗

i and

M
(h)
i are the discounted notional and the maturity of single-name CDS hedge re-

spectively on counterparty i, and B̄∗ and M̄ (h) are the discounted notional and the
maturity of index CDS hedge.

16.5 Risky Funding

The recent 2007-8 crisis has revolutionized what financial modeling has long believed
in – the law of one price, a result achieved by no-arbitrage. No-arbitrage was the
basic principle Black and Scholes used to derive their option formula. No-arbitrage
gave birth to risk-neutral pricing that has dominated the quant finance area for half
of a decade. No-arbitrage guarantees the law of one price.

We should recall how Black and Scholes derived the pricing equation (i.e.
the partical differential quation). This is known as “price by replication”. In other
words, Black and Scholes taught us that the price of any security is equal to its cost of
hedging (or replicating). Later on, this was shown as the Martingale Representation
Theorem (a.k.a. self-financing, which is the base of no-arbitrage). However, to
achieve this result, one must have the same borrowing and lending rate. Well, this
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is not a problem under no-arbitrage, since the only rate relavent under no-arbitrage
(or risk-neutral pricing) is the risk-free rate.

Until the 2007-8 crisis, the paradigm seemed to work just fine. Everything
is calibrated to LIBOR which is regarded as the risk-free rate by the investment
community. The crisis changed everything. During the crisis, deals that were safely
collaterized were priced very differently (at much higher prices) from those that were
not safely collaterized (either under-collaterized or un-callaterized). Buyers did not
have faith in their counterparties’s ability to fund the transactions (if the deals were
under- or un-collaterized) and consequently demanded for lower prices. LIBOR and
OIS rates started to diverge and LIBOR was no longer the risk-free rate anymore.
This is the issue called Risky Funding.

There has not been any solution yet for this problem. Proposals have been
provided but no conclusion has been drawn. This is a still very live and challenging
problem.

16.6 Appendix

16.6.1 Poisson Process of Defaults

A Poisson process, named after the French mathematician Siméon-Denis Poisson
(1781 - 1840), is the stochastic process in which events occur continuously and
independently of one another. The Poisson process is a continuous-time process: its
discrete-time counterpart is the Bernoulli process.

A homogeneous Poisson process is characterized by a rate parameter λ, also
known as intensity, such that the number of events in time interval (t, t+ τ ] follows
a Poisson distribution with the associated parameter λτ . This relation is given as:

Pr[N(t+ τ)−N(t) = j] =
(λτ)je−λτ

j!
(16.4)

Hence,

Pr[N(t+ τ)−N(t) = 0] = e−λτ (16.5)

The Poisson process is an ideal way to model unexpected defaults as an event
occurs with no prior memory. (16.5) describes the probability of no default between
(t, t+ τ ]. The mean and variance of a Poisson distribution are:
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E[j] = V[j] = λτ (16.6)

Exponential Distribution

If an event occurs with a Poisson distribution, then it can be shown that the time of
the event occurring follows an exponential distribution. The exponential distribution
is (with parameter λ):

f(x) = λe−λx (16.7)

Hence, its cumulative density function is:

Pr[x < τ ] = F (τ)

=

∫ t

0

f(x)dx

= 1− e−λτ

(16.8)

or

Pr[x > τ ] = 1− F (τ)

= e−λτ
(16.9)

which is the survival probability when t represents the default time. When the time
interval is small, we can use Taylor’s series expansion to approximate the survival
probability as:

Pr[x > τ ] = e−λτ ≈ 1− λτ (16.10)

or the default probability λτ . The mean and variance of the exponential distribution
are:


E[x] =

1

λ

V[x] =
1

λ2

(16.11)

Note that the Poisson process has no memory. Hence, the exponential distri-
bution has the following property:
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Pr[x > s+ t|x > s] =
e−λ(s+t)

e−λs

= e−λt

= Pr[x > t]

(16.12)

In plain words, what this means is that the expected wait time (till the event)
has nothing to do with how long one has waited. The event is not expected to
happen sooner even though you have already waited for a long time.

We compute survival probabilities when we model default. The survival prob-
ability between now and some future time T if we adopt the Poisson process (i.e.
default time τ) for defaults is:

Q(t, T ) = Pr[τ > T ] = Êt[I{τ>T}] = e−λ(T−t) (16.13)

where I is an indicator function.
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Part IV

Liquidity Risk





Chapter 17

Introduction

17.1 What is Liquidity?

Everybody seems know what liquidity is and yet nobody can seem to explain what
it is. Everything in finance seems to have something to do with liquidity, in one way
or the other. To give a few examples. Liquidity can be related to:

� transactions

� survival

� information

� valuation

� . . . etc.

As we can see, liquidity in these areas can be drastically different. And yet, we also
know that the fundamental concept of liquidity does underlie these areas.

17.2 Accounting Liquidity

Accounting has a long history of issuing a “going concern” (GC hereafter) opinion
to companies. The GC opinion relates to if a company has enough cash to pay for
its coming expenses in the following year. As a result, in accounting, there is a long
history of calculating liquidity ratios for its GC use.

Accounting liquidity ratios are:
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� current ratio

� quick ratio

� cash ratio

� turnover ratios (reciprocal of)

– accounts receivable

– inventory

– total asset

– fixed asset

– working capital

17.3 Basel III Liquidity

Basel III concerns about liquidity-driven defaults and put forth two liquidity ratios
of their own. Given that these liquidity ratios (although quite accounting) concern
only about defaults, they are called solvency ratios (as opposed to liquidity ratios).

� LCR

� NSFR

Although these ratios are more related to solvency (default), they are still accounting
ratios nevertheless. They reflect only current conditions of liquidity (which is just
the same accounting ratios that are for going concern).

Furthermore, these ratios cannot reflect future lacks of liquidity (liquidity risk).
As in credit analysis, to manage liquidity risk well, we must estimate expected loss
due to lack of liquidity.

17.4 Liquidity Risk

As we can see now, Basel III is not only concerned with current liquidity (static)
but also future liquidity (liquidity risk). To estimate potential losses of the future
due to liquidity, we must have a way to quantify liquidity risk. In other words, we
need a liquidity quantification model.

Price-Waterhouse-Coopers has come up with an liquidity gap idea to quantify
liquidity risk. They compute a “liquidity value” version of the balance-sheet.
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17.5 Understanding Liquidity and Liquidity Risk

Liquidity standards aim to ensure that a bank is able pay its liabilities on time by
holding enough “highly liquid assets” that could be quickly converted to cash.

Ever since the recent financial crisis, liquidity has been the centerpiece in
many regulations. Basel III explicitly calls for liquidity regulations (LCR or Liq-
uidity Coverage Ratio, and NSFR or Net Stable Funding Ratio). Dodd-Frank Sec-
tion 165 directs the Federal Reserve Board (FRB) to establish heightened liquid-
ity standards for both bank holding companies with over $50 billion in assets and
FSOC-designated non-bank systemically important financial institutions (covered
companies).

17.6 How to Measure Liquidity (taken from old

chapter 17)

Liquidity is generally understood in the following three areas:

� market microstructure liquidity

– volume

– bid-offer spread

– price movement

� banking liquidity

– Basel III – LCR and NSFR

– Dodd-Frank – to be determined

� accounting going concern liquidity (whether or not a firm has enough cash (or
liquid assets that can turn into cash quickly) to pay of its expenses)

Accountants for centuries have played an essential in diagnosing the liquidity
healthiness of a firm. The so-called “going concern audit” is an audit opinion to tell
the stock holders if a firm is likely to survive through the next year (going concern
is an annual audit).

In five accounting ratio groups – productivity (e.g. ROE), profitability (e.g.
profit margin), market (e.g. PE ratio), efficiency (e.g. turnover ratios), and liquidity
(acid ratio), liquidity measures take into account of if the firm has enough cash for
the coming year to pay for its short-term liabilities.
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This is the most conservative measure of liquidity as only cash (or the ex-
tremely marketables) is considered. Other assets that can be liquidated to pay for
the liabilities are not considered. However, if each asset can be measured with a
liquidity discount, then the firm can remain liquid as long as the total asset value
is enough to cover the short-term liabilities. However, doing so requires a model to
evaluate each asset with a liquidity discount.

17.7 Liquidity and Liquidity Risk

Liquidity is a static measure of how much should there be enough liquid assets (such
as cash) for a firm to survive in a specified period (usually a year). Liquidity risk,
on the other hand, refers to future liquidity needs and the likelihood that the firm
may not be able to meet the needs. In other words, liquidity risk is about future
liquidity shortfalls. The following summarizes the difference between liquidity and
liquidity risk:

� liquidity is static and liquidity risk is dynamic (probabilistic)

� liquidity is single period and liquidity risk is multiple periods

� liquidity risk requires models and liquidity does not

The diagram below depicts liquidity shortfalls (a.k.a. liquidity gaps). In the
diagram the demand for liquidity on the asset side exceeds the supply of liquidity on
the liabilities side. Hence there is a liquidity gap. Liquidity risk is to study future
such gaps and compute the impact of these gaps.

17.8 Liquidity and Credit Risks are Highly Con-

nected
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Figure 17.1: Liquidity Risk Gap
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Chapter 18

Liquidity Quantification

18.1 Introduction

The default of Lehman Brothers Inc on September 15, 2008 marked the unprece-
dented crisis in the global history. This crisis differed from the previous ones in
that:

� it caused the largest bankruptcy in the U.S. history (over $600 billion)

� it caused a global recession

� it recorded the longest recession in the U.S. history

� it started global awareness on regulation

And the trigger of Lehman default is liquidity. While the cause of the crisis, just
line any other, is a bubble burst in the real estate market, and frauds committed in
making unjust mortgage loans (so called subprime loans), the snowball of one default
of Bear Sterns has been unprecedented and liquidity driven. As a result, liquidity
risk management has been the focal point of regulation reform in EU (Basel) and
the U.S. (Dodd-Frank).

During the last financial crisis (known as the liquidity crisis), a large number
of liquidity-squeezed events had occurred. These incredible events had caused Wall
Street to consider abandoning its long proud tradition – marking to market. For
as long as Wall Street has existed, it has prided itself in respecting the market
prices. Wall Street had always regarded market prices to be a reflection of collective
wisdom of the entire investment community. The fact that there is a price reflects
an equilibrium. Wall Street is proud to be able to take the full advantage of such
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equilibriums and develop tools that are consistent with market prices. But during
the crisis, such a belief had been put under a strong test. Here are some famous
examples.

18.1.1 Some Liquidity Squeeze Examples

Lone Starr-Merrill Lynch Deal

On July 28, 2008, a Monday, as the crisis of subprime gradually unfolded, Merrill
Lynch, in realizing huge toxic portfolios it owned, would like to sell a particular
subprime portfolio that had a face value of $31 billion to a private equity fund
owned by Mr. Lone Star. The purchase price was rumored to be 22 cents on the
dollar – a 78% discount. On top of that, Merrill Lynch needed to buy back any
defaulted asset in the portfolio. In other words, Merrill Lynch was implicitly sold a
CDS (for free) to Star, which was worth about 15 cents on the dollar. As a result,
Merrill Lynch sold Lone Star a portfolio of financial assets at a discount of 93%!

According to Reuters, the deal had prompted Merrill Lynch to write down all
of its toxic assets by at least 75%, an unprecedented price discount seen on Wall
Street.

Bear Stearn-JP Morgan Deal

On June 22, 2007, the problems of the two subprime portfolios managed by Bear
Stearns Asset Management (BSAM) – Bear Stearns High-Grade Structured Credit
Enhanced Leveraged Fund and Bear Stearns High-Grade Structured Credit Fund,
started to surface. Its CEO James Cayne initially wanted to keep the two funds
separate from the main Bear Stearn bank (as how deals are usually done on Wall
Street – so called special purpose vehicle, or SPV). Yet the pressure from the in-
vestors and the government forced Bear Stearns to take over. As losses gradually
unfolded, Richard A. Marin, a senior executive at Bear Stearns Asset Management
responsible for the two hedge funds, was replaced on June 29 by Jeffrey B. Lane, a
former Vice Chairman of rival investment bank, Lehman Brothers.

On March 14, 2008, Bear Stearns finally reached to a point where it could no
longer operate. Either someone would have to buy it or else it would face liquidation.
The Fed called in JP Morgan for the bail out. The price was at $30 per share on
March 14, a Friday. After a weekend-long investigation and evaluation of Bear’s
assets, JP Morgan offered $2 per share. Bear rejected and accused JP Morgan of
exploiting the liquidity situation. In fear of a bank run that Bear’s bankruptcy could
have caused, the Fed yielded to JP Morgan for liquidity concern by agreeing a $30
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billion loan to J.P. Morgan. The final deal was $10 per share.

It is a consensus that Bear’s default would have been an economic consequence
(that is, they lost money in their investments). Yet the bailout amount (from $2 per
share to $10 per share) is undoubtedly a consequence of a liquidity squeeze. The
liquidity discount here is 80%!

Other Examples

In addition to these two unprecedented liquidity events, there have been numerous
examples during the crisis period where asset prices were largely compressed due to
urgent needs to unwind those positions (clear evidence of liquidity squeeze).

18.2 How to Measure Liquidity Risk

18.2.1 Liquidity Discount as a Put Option

Liquidity discount occurs as supply reacts more sensitively to economy than demand
does in a non-linear fashion. Liquidity discount reaches the extreme as demand
reaches its maximum capacity. Figure 1 depicts this general idea. In Figure 1, we
assume that demand and supply of a financial asset jointly determine the equilibrium
price of the asset at any given time. The economy is represented by a single state
variable (say wealth) symbolized by V . As the economy grows, the supply curve
moves to the right and so does the demand curve. To derive the liquidity discount
model, we must assume that supply grows faster than demand does in that less
elastic demand function is the main reason to cause price discount.

As a result, the growth of economy results in an increased equilibrium quantity
and a lower price. In the diagram, we assume that the demand is totally insensitive to
economy growth and it has a maximum capacity at Q∗. Clearly, our model requires
only demand be less sensitive to supply and such an exaggerated demonstration is
just for the purpose of easy exposition. At the maximum capacity of the demand
function, the quantity can no longer increase and equilibrium can only draw the
price down.

In the diagram, the vertical axis represents price (by S) and the horizontal axis
represents quantity (by Q). We let the liquidity-constrained price be S∗. In a usual
situation, S = S∗. In a liquidity-squeezed situation (represented by the situation
where demand reaches its maximum capacity Q∗), S > S∗. Liquidity discount in
this setting is defined as the impact of the slower demand reaction (than supply) and
becomes dramatic as the maximum is approached. Based upon the above diagram,
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S = S*

S ↓ S*

S ↓ S*

Q* ← Q 

Q = Q*

V ↑ 

 

Figure 18.1: Demand-Supply Analysis of Liquidity Discount

we can draw the following conclusion depicted in Figure 2.

On the left of Figure 18.2, we depict the relationship between the economy
(represented by, say wealth V ) and perfectly liquidity price S. As shown in Figue
18.1, this is a downward sloping curve. To be shown later, the curvature of S in V
must be convex in order to obtain liquidity discount. If the relationship is linear
(under which Q∗ cannot exist), then there can be no liquidity discount. ,

On the right, we depict the relationship between the perfectly liquidity price S
and the liquidity-constrained price S∗. The line ABC is a 45-degree line on which the
illiquid price is equal to the liquid price. At point B where the quantity reaches its
maximum capacity Q∗ the illiquid price starts to decrease rapidly due to problems
in liquidity and bends over toward point D. Again, the linear result (by BD line)
is just a demonstration. In the next section where we derive the formal model, the
graph between points B and D is not linear and has a reflection point.

From the diagram where discount is depicted linearly, it can be seen that
liquidity can be explained by a put option. That is,

S∗ = S − put (18.1)

In the next section, we demonstrate that this is not a simple put due to con-
vexity requirements. But intuitively, the simple put explanation serves the purpose
well and can even be used as an approximation, which has already been discussed in
the industry. What is offered in this paper is an equilibrium model that is consistent
with the Merton model widely used in modeling credit risk. While we do not link
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Figure 18.2: Liquidity Discount as a Put

our liquidity model yet to credit risk in this paper, it is quite straightforward to do
so.

Take the Black-Schole put formula as an example:

put = e−rTK[1−N(d2)]− S[1−N(d1)] (18.2)

where

d1 =
lnS − lnK + (r + 0.5σ2)T

σ
√
T

d2 = d1 − σ
√
T

Assuming S = 100, K = 120, r = 0.04, σ = 0.3, T = 1, the discount for
liquidity is $21.88, which means that the illiquid price is 100−21.88 = $78.12. Note
that K is a parameter in the model that decides critically the value of the discount.
The larger is K, the more severe is the discount. When K is 0, then there is no
discount. As K approaches infinity, the value of discount is approaching $100 and
the illiquid price becomes 0.

In this section, the demonstration is intuitive but not realistic. In reality, the
left and the right panels are related. In other words, how the liquidity price reacts
to the economy affects the magnitude of liquidity discount. Furthermore, it is not
likely to know the exact amount of Q∗. In the next section, we endogenize the
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relationships amount the economy V , the perfect liquid price S, and the liquidity-
constrained price S∗. We let the liquid price be a convex function of the economy
and derive the illiquid price directly. In doing so, we arrive an equilibrium without
the specification of Q∗.

18.2.2 The Model

In this section, we develop a formal pricing model for “illiquidity” which is defined as
inability to transact. Inability to transact is the exact description of Figure 18.1 in
which lack of demand leads to no transactions. In a perfect world where the Black-
Scholes model holds, transactions can take place at any time and hence investors
can trade securities and rebalance their portfolios continuously. When transactions
are not permitted to be continuous, it presents an extra risk born by the buyer and
hence the buyer, in return, should ask for compensation and lower the price of the
security.

Once continuous trading is not allowed, market is not (dynamically) complete
in the Duffie-Huang sense (1985) and the resulting model is not preference-free. As a
result, one must adopt a utility function to gauge the magnitude of the risk premium.
We first present a model with the quadratic utility so the standard CAPM can be
used. It is straightforward to extend the model to a broader class of utility functions.
Using a more complex utility function is certainly better in terms of explaining the
reality and providing model flexibility but it loses the closed-form CAPM formula.

The price of an arbitrary security at current time t when no trading is allowed
until a future time T can be priced by the most fundamental discounted cash flow
method:

X(t) = e−ξ(T−t)Et[X(T )] (18.3)

where X(t) is the cash flow of an arbitrary security at time t, Et[·] is the conditional
expectation taken at time t, and ξ is the (continuously compounded) risk-adjusted
return for the security. Such a discounted cash flow method requires further model-
ing substances in order to be operational.

To build an explicit model for (18.3), we first assume the Black-Scholes/CAPM
model where the underlying economy (represented by a single state variable, say
wealth) obeys the following log normal process:

dV

V
= µdt+ σdW (18.4)
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where W (t) is the standard Wiener process and µ and σ are (continuous time) mean
and standard deviation of the return of the state variable V .

A perfectly liquid price, S, is a contingent claim on the state variable. The
assumption of liquidity discount we make in this paper indicates that S must be a
monotonic function in wealth V . In a theorem we shall prove later, the function
must be convex in order to arrive at liquidity discount. There are a number of
ways to construct such an explicit function. For simplicity, we choose a function
that imitates a put option (as opposed to an arbitrary polynomial function) for the
following reasons. First, the maturity parameter in the put option can be made
equal to the liquidity discount horizon. This provides an extreme convenience in
modeling liquidity discount. Secondly, there is a closed form solution for the price
of a perfectly liquid asset, which allows us to compare with the price of an equal asset
but constrained by liquidity. Lastly, the “strike price” in the put function ideally
characterizes the strength of the liquidity squeeze. The higher is the strike price,
the stronger is the liquidity discount and the zero strike price ideally represents
perfect liquidity. However, the use of put function does suffer from one drawback.
It exists a maximum value for the liquid stock price (at the strike level), which
could be unrealistic as economy contracts the price of the security could become
unboundedly high. Fortunately, this is the situation where the liquidity discount is
small and hence the impact would be small.

Given that S is the price of a security that can be continuously traded, it can
be easily computed with the Black-Scholes model when its payoff for a fixed time
horizon (time to maturity) mimics a put:

S(t) = e−r(T−t)Êt[S(T )]

= e−r(T−t)Êt[max{K − V (T ), 0}]
= e−r(T−t)KN(−d−)− V (t)N(−d+)

(18.5)

where K is the “strike” price that reflects the strength of the liquidity squeeze, Êt[·]
is the risk-neutral expectation, and

d± =
lnV (t)− lnK + (r ± 1/2σ2)(T − t)

σ
√
T − t

Note that the adoption of the put payoff is just a convenience to incorporate
convexity. Due to the fact that the liquidity-constrained price does not have a
closed-form solution (except for the extreme cases), we implement a binomial model
to approximate this Black-Scholes result. For the remainder of the paper, when we
refer to the Black-Scholes model, it is actually the binomial approximation.
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We also note that although the liquidity discount model has no closed form
solution, the binomial implementation is actually better in that the model can then
be easily augmented to include credit risk proposed by Chen (2002), and Chen,
Fabozzi, Pan, and Sverdlove (2008). In this broader model, interactions between
liquidity and credit risks can be studied.

Let S∗ be the liquidity-constrained price where trading of the security is not
permitted until time T . Equation (18.3), as a result, can be replaced with the
following equation:

X(t) = e−ξ(T−t)Et[f(V (T ),Θ), 0}] (18.6)

where Θ represents other parameters needed for the model, X(t) is either S or S∗

depending if the equation is used for an instantaneous period or a longer time period,
respectively. Note that in an instantaneous period, the physical expectation as in
(18.6) is identical to the risk-neutral expectation (details to be explored later in
Theorem 1) and hence (18.6) provides the solution to the liquid price. The expected
return, ξ, must follow the Capital Asset Pricing Model (CAPM).

Note that S and S∗ are identical securities with just one difference: S∗ cannot
be transacted (or hedged) until time T . The purpose of the paper is to derive the
price difference between S and S∗. We shall prove that S∗ < S and this is the model
of liquidity discount. As we shall demonstrate in an analysis that such discount can
be substantial, even under very reasonable assumptions.

We begin our modeling of liquidity discount with the standard CAPM. Note
that the Black-Scholes model is consistent with the standard CAPM as follows:

ξ = E
[
dX

X

]
= rdt+ η

[
E
[
dV

V

]
− rdt

]
(18.7)

where r is the risk-free rate and

η =
∂X

∂V

V

X
(18.8)

is the elasticity of the state contingent claim with respect to the underlying economic
state variable (similar to an option on its underlying stock). Note that this result
is exact only in continuous time. Black and Scholes (1973) prove that the option
price is a CAPM result with the underlying stock as the market. Note that η = β
as shown in the following:
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β = K
[
dX

X
,
dV

V

]/
V
[
dV

V

]
=

V

X

K[XV dV, dV ]

dV

=
V

X
XV

= η

(18.9)

where XV = ∂X/∂V . Re-writing (18.7) in discrete time for a small interval h, we
have:

E[X(t+ h)]

X(t)
= (1 + rh) + β

[
E[V (t+ h)]

V (t)
− (1 + rh)

]
(18.10)

As a result, we can derive a pricing model for the security as:

X(t) =
1

R(t, t+ h)
(E[X(t+ h)]−XV {E[V (t+ h)]−RV (t)}) (18.11)

where R(t, T ) = 1 + r(T − t) ≈ er(T−t). This result provides an alternative proof of
the CAPM argument by Black and Scholes. Note that

XV =
K[X(t+ h), V (t+ h)]

V[V (t+ h)]

= β$

(18.12)

is the “dollar beta” (that is, delta is dollar beta). Hence, (18.11) is also an alternative
derivation to Jensen’s model (1972).

It is important to note that CAPM holds only under one of the two assump-
tions: quadratic utility for the representative agent in the economy or normality
for the returns of the risky assets. Consequently, the above CAPM result holds in
the Black-Scholes model without any utility assumption must be due to the fact
that option returns and stock returns are both normally distributed. It is clear
that the stock return is normally distributed, as equation (18.4) postulates. The
option return is normally distributed only under continuous time. This is because
in continuous time, the option value is linear in stock and must follow the same
distribution of that of the stock and hence its return is normally distributed.

In a discrete time where h is large, the option return is no longer normally
distributed and the equation (18.11) can no longer hold without the assumption
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of quadratic utility that guarantees the validity of the CAPM – quadratic utility
function. The quadratic utility function is a bad assumption in that it has the wrong
sign for the relative risk aversion. However, fortunately, the liquidity discount model
we derive in this paper suffers very little from the second order effect of the utility
function. All the model requires is that investors are risk adverse.

Under quadratic utility, CAPM holds for all securities. Hence, equation (18.11)
holds for an h that is not infinitesimally small as follows:

X(t) =
1

R(t, T )
(E[X(T )]− β${E[V (T )]−R(t, T )V (t)}) (18.13)

where R(t, T ) = er(T−t) and the dollar beta is computed, for any T , as:

β$ =
K[X(T ), V (T )]

V[V (T )]
(18.14)

Equation (18.13) is the main result of our model. It states that under quadratic
utility, all assets must follow CAPM in determining their values. What we shall
demonstrate is that when liquidity discount is present, the value computed by equa-
tion (18.13) is less than the perfectly liquid price computed by the Black-Scholes
model.

To derive our liquidity discount model, we shall show first that if the rela-
tionship between the economy (represented by the state variable V ) and the liquid
price (S) is linear, then the liquidity discount is nil. Then we show that liquidity
discount can exist only if the relationship between the economy and the liquid price
is convex.

Theorem 1 When the payoff is linear, then liquidity discount is nil.

In continuous time, there are only two states in every infinitesimal time step
(as described in Duffie and Huang (1985)) and hence no liquidity discount can exist.
This indicates that if trading is continuous then at each infinitesimal step the payoff
is linear and as a result Theorem 1 holds. In other words, continuous trading
breaks up a fixed time horizon into small infinitesimal time steps, each of which is
a linear payoff and hence liquidity discount does not exist. In the next section, we
shall demonstrate this property in a numerical example and Theorem 1 is explicitly
demonstrated.

Theorem 2 in the following proves that if the payoff is not linear and is convex,
then the equilibrium price is always less than the linear price which, by Theorem 1,
is the risk-neutral price where continuous rebalancing is possible.

Although a general proof with any form of convexity is not available, a proof
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based upon the binomial model that is consistent with our formulation of (18.4)
is provided. In particular, as any three points define the convexity, we use a two
period binomial model for the proof. It can be referred that with more points (more
periods) in the binomial model, the proof stays valid.

Theorem 2 If the payoff is not linear and convex, then Xcvx(t) < X lnr(t) where
X lnr(t) is defined in [Theorem 1] and identical to S(t) which is the perfectly liquid
price and Xcvx(t) is the same as S∗(t) which is the liquidity-constrained price.

From Theorem 1, we know that X lnr
0 = S(t) as the liquid price. Here, Xcvx

0 =
S∗(t) represents the illiquid price. Hence, in summary, S∗(t) < S(t) for all values of
finite R(0, 2) and the theorem is proved.

Note that under linearity (between wealth and liquid price), there exists no
liquidity discount, which is the same result as continuous trading. As a consequence,
the price under linearity X lnr

0 is identical to the price under continuous trading S(t).
Similarly, when the relationship between wealth and liquidity price is convex, there
exists liquidity discount. And the price Xcvx

0 represents the price under liquidity
squeeze, S∗(t).

18.3 Some Analysis

In this section, we provide a numerical example to demonstrate the enormity of
liquidity discount. The main model is equation (18.13). While the analysis in
this section is based upon an arbitrarily chosen set of parameter values, the result
holds in general. While equation (18.13) is closed-form, (13) needs to be computed
numerically as:

β =

∑n
j=1

(
n
j

)
pj(1− p)(n−j){Vi(T )− V̄ (T )}{Xj(T )− X̄(T )}

∑n
j=1

(
n
j

)
pj(1− p)(n−j)[Vj(T )− V̄ (T )]2

(18.15)

where

V̄ (T ) =
∑n

j=1

(
n
j

)
pj(1− p)(n−j)Vi(T )

X̄(T ) =
∑n

j=1

(
n
j

)
pj(1− p)(n−j)Xi(T )
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are the means of the economic state variable (wealth) and the state contingent
claim respectively. In order to demonstrate convergence to the Black-Scholes model
in continuous trading, we adopt the binomial framework of Cox, Ross and Rubin-
stein (1979) with n periods. Given that the binomial model will converge to the
Black-Scholes model as n gets large, we shall use a sufficiently large n to represent
the limiting Black-Scholes case. In other words, we shall demonstrate that under
continuous trading, there is no discount for illiquid trading.

For the sake of easy exposition, we set up the following base case for the
binomial model:

Paremeters
n 100
T − t 1 year
σ 0.5
µ 10%
r 5%
V $80

To carry out a numerical example, we need to have an explicit functional form
for the relationship between the state variable and the state contingent claim that
represents either the liquid price (linear payoff) and illiquid price (convex payoff),
in the context of the Cox, Ingersoll, and Ross model (1985). As a convenience, we
choose a put payoff for the task. The put payoff is convex and negatively monotonic
in the underlying economy, and hence can serve the purpose well. We choose an
arbitrary strike of 100 to characterize convexity. We shall note that higher is the
strike, higher is the convexity.

We first compute the price of the perfect liquid contingent claim, i.e. X(t) =
S(t). Note that the liquid price is such that trading takes place continuously and is
represented by the Black-Scholes model. In the binomial model where n = 100 the
value of the put (representing the perfectly liquid asset price) is almost identical to
the Black-Scholes price of $25.85. We feel that for the sake of computational time,
this is minor enough difference for us to demonstrate the value of liquidity discount.
This provides us the comfort that n = 100 is a good enough proxy for continuous
trading. In the rest of the paper, we shall use the binomial model with n = 100 as
the benchmark to examine the properties of the liquidity discount model.

Next we turn to computing the illiquid price, i.e. X(t) = S∗(t). We start our
analysis with n = 1 where we demonstrate that in this case, the liquid price (which
is computed by the binomial model based upon the risk-neutral probabilities) is
identical to the illiquid price (which is computed by the CAPM based upon the
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physical probabilities). In other words, when rebalancing is permitted at every node
in the binomial model, the illiquid price is identical to the liquid price.

In a one period model (i.e. n = 1), it is clear that the up and down movements

in the binomial model are u = eσ
√
∆t = e0.5×1 = 1.6487 and d = 1/u = 0.6065. The

state variable lattice and the stock payoff are given below (left and right respec-
tively):

State Variable V State Contingent Claim Payoff S 

  131.90
80  

  48.52 

0 
28.07

51.48  
 

The risk-neutral probabilities are p̂ = exp(r∆t)−d
u−d

= exp(5%×1)−0.6065
1.6487−0.6065

= 0.4267

and 1− p̂ = 0.5733. The liquid price is (call): 0.5733× 51.48÷ e−5% = 28.07, as in
the above binomial tree.

The physical probabilities are p = exp(µ∆t)−d
u−d

= exp(10%×1)−0.6065
1.6487−0.6065

= 0.4785 and
1−p = 0.5215. Following (18.13), we arrive at the same exact price of $28.07 where
the expected level of the state variable is $88.41; the dollar beta β$ is –0.6174; the
expected value of the illiquid price is $26.84; and the risk-free discount is 0.9512.

The fact that the price of the illiquid asset equals the price of the liquid
asset suggests that the illiquid price is independent of the physical probability p
(and also independent of µ). The reason is that in a single period binomial model,
the option payoff is linear in the underlying asset and Theorem 1 applies. This
result is extremely crucial in our model in that once we approach continuous trad-
ing/rebalancing, the binomial model suggests that the option price within a period
is linear in the underlying asset and as a result, the illiquid price must equal the
liquid price – the boundary condition it must satisfy by definition.

As n becomes large, liquidity discount becomes large. As in the base case
where n = 100, the discount is substantial. The binomial value is $25.86 and the
liquidity-constrained price, i.e. (18.13), is $24.47 representing a 5% discount.

To demonstrate the binomial implementation of our model, we let i be the
time index and j be the state index. At the end of the binomial lattice i = n. At
each time i, the state j is labeled as 0 ⩽ j ⩽ i. The level of the state variable, the
price of the liquid security, and the price of the illiquid security for the economy are
then labeled as Vij, Sij, and S∗

ij respectively. The risk-neutral probability and the
physical probability are defined as usual and given above.
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Volatility and u and d
σ 0.8 0.6 0.4 0.2
u 1.083287 1.061837 1.040811 1.020201
d 0.923116 0.941765 0.960789 0.980199

In the following, we present results when the risk preference represented by
the Sharpe ratio ranges from 0 (risk free case) to 1.6. Rebalancing frequency is
represented by k. And k = n − 1 represents perfect rebalancing or continuous
trading (that is, for 100 periods, rebalancing 99 times in between is identical to
continuous trading).

In the binomial model, the number of periods n must be divisible by one plus
the rebalancing frequency, i.e. k + 1, to avoid unnecessary numerical errors. In the
base case where n = 100, k can be 0, 1, 3, 4, 9, ..., 99. Take k = 3 as an example,
rebalancing is allowed at i = 25, 50, and 75. At each of these times, equation (18.13)
is used to compute the illiquid price at every node at the given time. Specifically, at
i = 75, equation (18.13) is used to compute values at the nodes that are represented
by j = 0 ∼ 75 (i.e. S∗

75,0 till S∗
75,75). Then at i = 50, equation (18.13) is again used

to compute values where j = 0 ∼ 50 (i.e. S∗
50,0 till S

∗
50,50) using the prices from S∗

75,0

till S∗
75,75. This process repeats backwards until we reach today’s price which is S∗

0 .

We compute a number of liquid and illiquid prices under various scenarios.
Unless otherwise mentioned, the values of the input variables are taken from the
base case. Note that liquidity discount is more severe as investors are more risk
averse. To measure the magnitude of risk aversion, we adopt the Sharpe ratio on
the underlying state variable, which is excess return scaled by the volatility. We
simulate various degrees of Sharpe ratio from 0 (risk free case) to 1.6 with the
volatility scenarios from 0.2 to 0.8. At the risk-free rate of 5%, we obtain the
required rate of return (µ = r+λσ where λ is Sharpe ratio) from 5% (risk-free case)
to 133% (λ = 1.6).

The results are summarized in Table 18.1. The top panel are binomial pa-
rameter values where u = exp(σ

√
∆t) and d = 1/u under n = 100. The middle

panel contains different expected returns) under different volatility scenarios for
each Sharpe ratio. The bottom panel presents physical probability values using
the binomial formula p = [exp(µ∆t) − d]/[u − d]. Interestingly, each Sharpe ratio
corresponds to a physical probability value roughly.

Combine the information of the physical probabilities and other input values,
we can then compute liquid and illiquid prices using equation (18.13). Note that
when the Sharpe ratio is 0, there is no liquidity discount and the liquid value equals
the illiquid value, as proved by Theorem 1. This allows us to examine the magnitude
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µ (drift)
0 0.05 0.05 0.05 0.05

0.4 0.37 0.29 0.21 0.13
0.8 0.69 0.53 0.37 0.21
1.2 1.01 0.77 0.53 0.29
1.6 1.33 1.01 0.69 0.37

p (physical probability)
0 0.4831 0.4892 0.4963 0.5075

0.4 0.5032 0.5092 0.5163 0.5275
0.8 0.5232 0.5293 0.5363 0.5476
1.2 0.5434 0.5494 0.5564 0.5676
1.6 0.5636 0.5695 0.5765 0.5877

Table 18.1: Shapre Ratio and µ and p

of the liquidity discount as a function of risk preference. Table 2 provides all the
liquid (Sharpe ratio is 0) and illiquid prices. The “strike price” for the result is set
at 100 and the state variable is set at 80.

Reported in Table 18.2 are simulated liquid (Sharpe ratio is 0) and illiquid
prices (Sharpe ratio is greater than 0). Note that by construction, our model for
illiquid prices degenerates to liquid prices as the Sharpe ratio approaches 0. Also
as required by the model, when continuous trading is reached (k = 99), we obtain
liquid prices and risk preference does not matter (bottom panel). Liquidity discount
is at maximum when no trading/rebalancing is allowed (k = 0).

To visualize the effect, we translate the values in Table 2 from dollar terms to
percentage terms. In each case, the liquid price serves as the benchmark (named
Black-Scholes value). This is the value consistent with continuous trading. Various
comparisons are provided in Figure 18.3 and Figure 4 as follows.
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σ (volatility)
k = 0 0.8 0.6 0.4 0.2

0 35.4303 29.0305 22.7066 16.9860
0.4 29.7751 25.1990 20.5670 16.2768
0.8 21.9833 19.2094 16.5282 14.3871
1.2 14.1540 12.734 11.6111 11.4428
1.6 7.8894 7.2781 7.0476 8.0259

k = 9 0.8 0.6 0.4 0.2
0 35.4303 29.0305 22.7066 16.9860

0.4 34.8789 28.6789 22.5240 16.9334
0.8 33.9291 28.0265 22.1478 16.8068
1.2 32.5311 27.0385 21.5570 16.5993
1.6 30.6061 25.6581 20.7160 16.2998

k = 19 0.8 0.6 0.4 0.2
0 35.4303 29.0305 22.7066 16.9860

0.4 35.1880 28.8759 22.6264 16.9630
0.8 34.7790 28.5946 22.4642 16.9087
1.2 34.1950 28.1806 22.2166 16.8222
1.6 33.4223 27.6247 21.8784 16.7021

k = 49 0.8 0.6 0.4 0.2
0 35.4303 29.0305 22.7066 16.9860

0.4 35.3702 28.9921 22.6867 16.9803
0.8 35.2700 28.9231 22.6469 16.9670
1.2 35.1297 28.8233 22.5871 16.9461
1.6 34.9489 28.6925 22.5073 16.9176

k = 99 0.8 0.6 0.4 0.2
0 35.4303 29.0305 22.7066 16.9860

0.4 35.4303 29.0305 22.7066 16.9860
0.8 35.4303 29.0305 22.7066 16.9860
1.2 35.4303 29.0305 22.7066 16.9860
1.6 35.4303 29.0305 22.7066 16.9860

Table 18.2: Liquidity Discount Results
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Figure 18.3: A Liquidity Discount Under Various Rebalancing Frequencies

In the upper panel of Figure 18.3, we present the result of liquidity discount
under various trading frequencies. The binomial model of n = 100 is used as the
benchmark and regard as the perfectly liquid price which, in the limiting case,
converges to the Black-Scholes model. As a result, in the perfectly liquid case where
n = 100, the number of rebalancing times is k = 99. Under no rebalancing, k = 0
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and this represents the case of extreme illiquidity where investors hold their securities
to maturity. Panel A of Figure 18.3 plots the result using σ = 0.2. The horizontal
axis is the expected rate of return of the stock, used to represent risk preference.

It is clear that as the model allows for “continuous” rebalancing (represented
by k = 99 in the case of n = 100), the price should be the same as the “Black-Scholes
price” where continuous rebalancing is part of the assumption. In Figure 18.3, we
do see that the price ratio (of equilibrium over Black-Scholes) is 1 through out the
whole range of risk preference. When k = 0, the discount because of illiquidity can
be severe. We can see from Figure 18.3 that the discount is as bad as 40% as the
Sharpe ratio reaches 1.6 and no rebalancing is permitted.

The lower panel of Figure 18.3 is similar to Panel A with a higher volatility
value (0.8). As we can see, the liquidity discount is more severe as the volatility is
higher. We recall that during the 2007-8 crisis, the volatility was high. For example,
in the case of Lehman (see Chen, Chiddi, Imerman, and Soprazetti (2010)) the
volatility in many months of 2008 exceeded 100%.
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Figure 18.4: A Liquidity Discount Under Various Volatility Levels

Figure 18.4 presents the same result as Figure 18.3 but examines how vari-
ous volatility levels affect the liquidity discount. Figure 18.4 sets k to be 0 for the
maximum amount of liquidity discount. As we can see from the diagram, the deteri-
oration of the asset price is rather fast. As the volatility is higher, the deterioration
is faster.

The next necessary step is to test the model against liquid prices. In other
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Convergence Result
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Figure 18.5: A Liquidity Discount Under Various Rebalancing Frequencies

words, when we permit perfect liquidity, i.e. k = n − 1, At this situation the
equilibrium price must equal to the Black-Scholes (or binomial) price. Figure 18.5
presents the result of convergence under various volatility levels. As we can see,
convergence is faster when the volatility is smaller.

In Figure 18.6, we provide the result of our model on the relationship between
liquid and illiquid prices. This is the main result of our model which describes
the illiquid price (S∗) as a function of the liquid price S. Figure 18.6 is similar to
Figure 18.2 but presented with our model. The physical probability is set at 0.6 to
exaggerate the result for the visual presentation.

We see in Figure 18.6 that as the liquid price decreases, the illiquid price
decreases but at a much faster rate. This is consistent with the description in
Figure 18.2 where B-D line bends over to touch the vertical axis.

When the liquid price is high, liquidity discount is small and the two prices
are equal to each other. In the numerical example plotted in Figure 18.6, toward
the right where the prices are both high, liquidity discount disappears and the curve
approaches the 45-degree line asymptotically.

Note that in our model, there is no explicit put option as in Figure 18.2. Our
liquidity discount model is derived by limiting trading/rebalancing in a binomial
model. Our liquidity discount is computed by assuming a quadratic utility function
so that pricing can be achieved via the Capital Asset Pricing Model. Nevertheless,
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Figure 18.6: Relationship between Liquid and Illiquid Prices
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the result of our model describes liquidity discount as a put option.

We also note that the liquidity discount model derived in this paper is closely
connected how the relationship between the economy (represented by a single state
variable: wealth) and the perfectly liquid price. As a result, the convexity of the
relationship determines the severity of the liquidity discount.

18.4 Liquidity Premium

One immediate extension to our model is that we can analyze assets with liquidity
premiums. While there are a number of financial assets that suffer from liquidity
discount (i.e. lower prices due to limited trading), other assets, not necessarily
financial, enjoy liquidity premium. Gold, oil, and even real estate are good examples
of assets of such kind.

Symmetrical to the cause of liquidity discount, the cause of liquidity premium
is the limited capacity of supply. Parallel to the model of liquidity discount, when
an agent is risk adverse and the payoff of a security is concave, limited supply shall
cause such an asset to enjoy liquidity premium. The analysis is straightforward as
follows.

 

S = S* 

S ↑ S* 

Q*←Q Q = Q* 

V ↑ 

 
Figure 18.7: Demand-Supply Analysis of Liquidity Premium

Similar to Figure 18.1, Figure 18.7 depicts a situation where demand is more
sensitive to economic changes than supply is and supply is bounded by a fixed
quantity Q∗. As economy grows, it approaches the maximum capacity and liquidity
squeeze (supply-driven) takes place. Contrary to the demand-driven squeeze, now
the price under liquidity squeeze is higher with squeeze than without squeeze. In
this situation, equilibrium price rises but quantity falls.
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A counterpart of Figure 18.2 is shown in Figure 18.8. The left panel of Figure
18.8 describes the relationship between the economy V and perfectly liquid price S.
The right panel describes the relationship between liquid price S and illiquid price
S∗.

 S 

V S* 

 

Figure 18.8: Liquidity Premium as a Call

From Figure 18.8, it is clear that liquidity premium can be described as a call
option:

S∗ = S + call (18.16)

As in the liquidity discount case, in our model, there is no need to explicitly
model the call option. As long as the liquid price is concave in the state variable of
economy, the call-option-like result will be naturally derived.

The following theorem shows that in such a case, the liquidity-squeezed price
S∗, is higher than the perfectly liquid price S when the liquid price is a concave
function of the economy.

Theorem 3 If the payoff concave, then Slnr(t) < Scav(t) where Slnr(t) is defined
in Theorem 1 as S(t) which is the perfectly liquid price and Scav(t) is the same as
S∗(t) which is the liquidity-constrained price.

Proof Repeat the same procedure of the proof of Theorem 2 and the result follows.

□
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The model for liquidity premium is a result that represents the case where
supply of the asset is less sensitive than demand to the underlying economy. This
is useful in explaining prices of several commodities in the current situation such
as gold and oil. These commodities are assets with very limited supply. As the
demand of such assets grow stronger, prices rise dis-proportionally to the rest of the
economy, resulting in liquidity premiums. Our model argues that if the liquid price
is linear in the state variable, then the price of the asset will rise, but there is no
liquidity premium. If the liquid price is concave in the state variable, then there is
liquidity premium. Similar to liquidity discount, such a liquidity premium can be
substantial even the fundamental economy does not change materially.
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Figure 18.9: A Liquidity Premium Under Various Volatility Levels

A counterpart of Figure 18.4 is plotted in Figure 18.9. As the expected return
becomes lower, the impact of liquidity premium is more profound. This diagram is
generated with the same inputs as the base case with the relationship between the
liquid price and the economic state variable as S = min{V,K}.

Remark

There are a number of applications of the liquidity premium model. Any asset that
is under supply squeeze will enjoy a liquidity premium. Obvious recent examples
include oil, precious metals like gold, silver and platinum, and agriculture products.
In a squeeze situation, these commodity prices deviate from their “fundamental”
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values and highly inflated prices. As in the analysis for the liquidity discount cases,
these situations disappear once the liquidity pressure disappears.



Chapter 19

Funding Value Adjustment (and
XVA)

19.1 FVA in a Netshell

19.1.1 What is FVA?

Fair value of a derivative portfolio is related to the discounting of the derivative
portfolio which depends on

� Counterparty default – CVA

� Own default – DVA

� The collateral posted for this transaction – FVA

FVA is Funding Valuation Adjustment, which is similar concept to CVA but
reflects the market value of the cost to fund a derivative instrument. FVA can be
positive or negative depending on whether there is a net funding cost or benefit.

Collateral posted to a bank has 2 main benefits:

� Mitigates counterparty credit risk (CVA)

� Reduce funding requirement (FVA)
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19.1.2 FVA for Collateralized Trades

For uncollateralized trades, any future positive cash flow is equivalent to investors
are purchasing a bond issued by the counterparty, hence its value should simply be
given by

TV = max{Z, 0}e−(r+sc)(T−t)

For uncollateralized trades, any future negative cash flow is equivalent to in-
vestors are issuing a bond to the counterparty, hence its value should simply be
given by

TV = min{Z, 0}e−(r+su)(T−t)

When netting is allowed, then

TV

= max{Z, 0}e−(r+sc)(T−t) +min{Z, 0}e−(r+su)(T−t)

= Ze−r(T−t) −max{Z, 0}e−r(T−t)
(
1− e−sc(T−t)

)
+min{Z, 0}e−r(T−t)

(
1− e−su(T−t)

)
= RV − CV A+DV A− FV A+ e

where
FV A = Ze−r(T−t)

(
1− e−b(T−t)

)
and b is cash-synthetic basis (assumed to be same for both counterparty and in-
vestor).

In general, FVA can be approximated through:

CV A =

∫
VC(t)Pc(t)cc(t)dt

DV A =

∫
VDPu(t)cu(t)dt

FV A =

∫
VF b(t)dt

where

VC(t) = N0E

[
max{Vt − Ct, 0}

Nt

]
VD(t) = N0E

[
min{Vt − Ct, 0}

Nt

]
VF (t) = N0E

[
Vt − Ct

Nt

]
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19.1.3 FVA for Collateralized Trades

For collateralized trades, the formula remains the same, but with collateral put into
consideration for VC(t) EEPV, VD(t) RevEEPV and VF (t) MEPV:

TV = RV − CV A+DV A− FV A+ e

where

FV A =

∫
VF (t)b(t)dt−

∫
V ∗
F (t)α(t)dt

V ∗
F (t) = N0E

[
Ct

Nt

]
where α is collateral basis (collateral difference between collateral investor posted
and collateral counterparty posted)

For fully collateralized trades (V = C), the fair value would reduced to

TV = RV +

∫
V ∗
F (t)α(t)dt

One-way-in CSA

TV = RV +DV A+

∫
VD(t)b(t)dt+

∫
VC(t)α(t)dt > RV

One-way-out CSA

TV = RV − CV A−
∫

VC(t)b(t)dt−
∫

VD(t)α(t)dt < RV

19.1.4 Conclusion

CVA and counterparty risk is a challenging hybrid. This is probably the most
complex “instrument” we have ever priced!

CVA and counterparty risk is an enormous challenge, it has the most combined
and extended modeling challenge

� Compared to Market risk, MTM, and traditional credit risk

� Wrong-way risk
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CVA can be evaluated through CCDS

CVA can be mitigated through collateralization, netting, CSA, break clause
etc.

CVA capital charge is the main focus of latest Basel regulatory capital require-
ment

FVA is the latest development of fair value for derivatives to consider funding
cost besides credit risk

19.2 Modeling Risky Funding

Risky funding has become a significant problem since the 2007-08 financial crisis.
Not only has it posed a challenge on the long-time Wall Street golden rule of “law
of one price” but also has brought out an important academic problem in economic
costs of capital.

Various funding costs in different banks pose a significant problem in deciding
what the true cost of a financial security is. If a bank is asked to incorporate its own
funding costs into pricing the securities it buys and sells, then these prices will likely
deviate from its competitors’ and the market prices cannot be determined without
a clearing (market microstructure) mechanism and a general equilibrium theory.
In a classical microeconomic theory, in equilibrium, those banks who benefit from
superior funding costs will enjoy consumer (buyer) or production (seller) surplus.

The justification of adopting funding costs can come rightfully from the con-
sideration of the bank’s costs of capital. Banks need to allocate its cost of equity and
cost of debt (two broad types of cost of funding) across its assets in order to mea-
sure profitability and if an asset can generate a positive net present value. Without
consideration of cost of funding, banks may purchase assets that are not profitable
even though the “prices are right”.

While these problems are profoundly important, in this article we simply ad-
dress a small issue which is how various funding costs can be used in pricing. In
particular, we extend the Morini–Prampolini model [12] when the funding cost is
explicitly considered.1

To our knowledge, to date, the literature has assumed exogenous funding costs.
This “reduced-form” approach is convenient to derive models that can be easily
implemented. More importantly, such an approach is consistent with the current

1We note that in an equilibrium framework, funding costs must be endogenously determined
and cannot be exogeneously given. Funding costs must be a function of credit and liquidity risks
that are in turn results of various capital structures.
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curve methodology already widely adopted by the industry and hence adoption of
such as approach seems natural.2

Morini and Prampolini [12] argue that in order to properly model risky funding,
each trade should be decomposed into two legs – a funding leg and a deal leg. We
follow the same strategy in this paper. Yet we want to price general derivative
contracts. In order to do so, we first evaluate the simple bullet loan assuming a
specific close-out convention that is common in the OTC market. We derive a
number of closed-form solutions for bullet loans under some simplifying assumptions
and semi-closed-form solutions for the general derivative contracts. In doing so, we
pave the way to evaluating generic derivative contracts. Furthermore, we propose a
general equilibrium framework in which funding costs are incorporated into pricing
endogenously.

19.3 Notation and basic layout

In general we consider a derivative contract between two counterparties B and L
with maturity T . We let CFX(s) denote the cash-flow, possibly stochastic, where
X ∈ {B,L} received at time s.

Let r be the spot interest rate, and define the risk-free discount factor D as3

D(t, s) = exp

(
−
∫ s

t

r(u)du

)
. (19.1)

If t ≤ t′ ≤ t′′, then we denote by VX(t; t
′, t′′) the risk-free value at time t of all

cash-flows between time t′ and t′′ from X’s perspective as agreed in the contract,
i.e.

VX(t; t
′, t′′) =

∫ t′′

t′
Et (D(t, s)CFX(s)) ds, (19.2)

where Et denotes the expectation under the risk-neutral measure conditional on all
the information available at time t.

Finally we denote by τX the default time of X and we make the following
assumptions:

2The literature includes, for example, Piterbarg [13], Fries [6], and Burgard and Kjaer [2] and
[3].

3The spot interest rate can be stochastic and the main results will remain the same.
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Following the Jarrow-Turnbull model [9] where the recovery rate RX is assumed
to be fixed4 (so-called “recovery of face”), we assume that if X defaults, then a
fraction RX of the risk-free value of the contract at time τX can be recovered by X’s
counterparty, i.e. the recovered amount at time τX is equal to −RXVX(τX ; τX , T ),
provided VX(τX ; τX , T ) is negative. Following the ISDA Close-Out Protocol [8] we
assume that if X defaults during the duration of the contract and VX(τX ; τX , T ) is
positive, then X’s counterparty has to pay X the full risk-free value of the contract
at time t = τX . Combining this with assumption i) we have for instance from B’s
perspective that:

CFB(τB) = RBVB(τB; τB, T )
− + VB(τB; τB, T )

+, (19.3)

CFB(τL) = RLVB(τL; τL, T )
+ + VB(τL; τL, T )

−, (19.4)

where x+ = max{x, 0} and x− = min{x, 0}. This is in agreement with the standard
literature on counterparty credit risk, see for instance Gregory [7].

We define the hazard rate curve λX(t) of X by

P(τX > t) = e−λX(t)t, (19.5)

where P denotes the risk-neutral measure. The hazard rate curve of X can be de-
termined from X’s CDS prices. For simplicity we also do not consider simultaneous
default of B and L.

Also we assume that the funding spread sX is constant. This assumption
can be relaxed to include more complex funding structures. This however makes
the valuation of the funding leg more complicated and could potentially lead to an
optimization problem.
Finally, we assume that all the

funding is done in the debt mar-
ket. In Figure 19.1, we highlight
the funding structure where both
B and L fund their transactions
through the “market” which fol-
lows a different convention than
the deal leg between the two
counterparties. In the funding
leg, neither B nor L takes into ac-
count the default risk of the mar-
ket.

Debt market

with OTC close out conventions

Derivative contract

fundingfunding

LB

i

Figure 19.1: Funding in the debt market

...
4This is opposed to the Duffie-Singleton [5] assumption of the recovery to be proportional to

the market value.
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19.4 Valuation of bullet loans

In this section, we derive results for a bullet loan. While simple, the result contains
all the intuition sufficient for understanding risky funding. Following Morini and
Prampolini, we valuate the loan with two legs – funding leg and deal leg. However,
in contrast, we provide valuation of a bullet loan as opposed to an issuance of a
zero-coupon bond.5

In the contract L, to be called the Lender hereafter, lends B, to be called the
Borrower hereafter, an amount equal to P at time t = 0 and B promises to repay
L the amount K at time t = T , the maturity of the contract. Using the notation
from the previous section we have from B’s perspective that

CFB(s) = Pδ(s)−Kδ(s− T ), (19.6)

where δ(s) denotes the Dirac delta function. We find that

VB(0; 0, T ) =

∫ T

0

(
D(0, s)Pδ(s)−D(0, s)Kδ(s− T )

)
ds = P −D(0, T )K, (19.7)

as expected.

In the next two subsections we will value the deal leg and funding leg of this
loan contract in the spirit of Morini and Prampolini.

19.4.1 The deal leg of a bullet loan

The deal leg of a general derivative contract is by definition the risk-neutral expec-
tation of all possible future cash-flows. Notice that in the case of a loan between
two risky counterparties the cash-flows at time t = 0 are deterministic and all future
cash-flows are stochastic, since they depend on the default times of both counter-
parties.

We now figure out all the possible future cash-flows in the loan contract be-
tween B and L from B’s perspective. Clearly B receives an amount equal to P at
time t = 0 and, when neither party defaults during the duration of the contract,
then B pays L an amount equal to K at time t = T . The net-present value of these
potential future cash-flows is equal to

P − E
(
D(0, T )KI{τB>T,τL>T}

)
, (19.8)

5Note that the two are the same when the conventions of the deal and funding legs are the
same.
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where IA represents the indicator of the event A.

It remains to consider the possible cash-flows when one of the parties defaults
during the duration of the contract. Let us first consider the case when the Borrower
B defaults during the duration of the contract and before L does. In this case, L
retrieves a fraction RB of the risk-free value of the contract at time t = τB. The
cash-flow at time t = τB from B’s perspective is −RBD(τB, T )K and the net-present
value of this potential future cash-flow is equal to

− E
(
RBD(0, T )KI{τB<τL,τB≤T}

)
. (19.9)

Finally we consider the case where L defaults during the duration of the con-
tract and before B does. In this case the contract will be closed out at the risk-free
value, i.e. B has to pay L an amount equal to D(τL, T )K at time t = τL. The
net-present value of this potential future cash-flow is equal to

− E
(
D(0, T )KI{τL<τB ,τL≤T}

)
. (19.10)

Summing equations, we find that the value of the deal leg, V deal
B (0), from B’s

perspective at time t = 0 is

V deal
B (0) = P − E

(
D(0, T )KI{τB>T,τL>T}

)
− E

(
RBD(0, T )KI{τB<τL,τB≤T}

)
− E

(
D(0, T )KI{τL<τB ,τL≤T}

)
.

(19.11)

Note that there are six permutations for the order of T , τB, and τL, two
of which represent the survival of both counterparties (first term), two of which
represent the situations where Borrower defaults before maturity and before the
Lender does (second term), and two of which represent the situations where Lender
defaults before maturity and the Borrower does (last term).

If we denote by V deal
L (0) the value of the deal leg from L’s perspective, then

it readily follows from the definition of the deal leg that V deal
L (0) = −V deal

B (0) and
the value of L’s deal leg directly follows from above equation.

19.4.2 The funding leg of a bullet loan

We now discuss the valuation of the funding leg. The value of the funding leg will
give us a measure of the funding advantages/disadvantages that B and L have from
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entering the loan contract. The underlying idea of the valuation of the funding leg
is as in Morini and Prampolini [12].

Since the 2007-08 crisis, uncollateralized trades must pay a higher funding cost
than those that are collateralized. In order to provide a positive NPV, any trade
must be evaluated with its relevant cost of funding, which is a result of the use of
capital – debt or equity.

The cost of debt or equity is a result of the profitability (i.e. market risk)
and the capital structure (i.e. credit risk) of the firm. We assume, for the moment,
that the credit risk of the firm is represented by the credit spread sδ of its debts in
aggregate with δ being the current value of all the debts.

Further let α and ϵ denote the total value of the firm and equity value of the
firm. Then, by WACC (weighted average of cost of capital), we have:

cα =
δ

δ + ϵ
cδ +

ϵ

δ + ϵ
cϵ (19.12)

where cϵ is cost of equity, cδ = r + sδ is cost of debt, and cα is cost of asset. As we
can see, the cost of funding (either cδ or cϵ) is closely tied to the credit risk of the
firm and must be determined endogenously. In a structural modeling framework,
cost of equity cϵ and cost of debt cδ are jointly modeled (as equity is a call option
and debt is a covered call (short put)) and both are closely tied to the credit risk of
the firm. We note that this cost of funding is also closely tied to the deal leg, via
credit risk.

In a real situation, a bank buys a number of assets in wide varieties. The
model for each transaction can certainly be quite complex. This is the reason why
banks adopt reduced-form approaches to obtain quick solutions.

Equation (19.12) also indicates that if liquidity must be priced into cost of
funding, it must go through δ, ϵ, cϵ, and sδ. In general, we believe that equity, ϵ, is
relatively liquid and hence ϵ and cϵ should contain little liquidity impact. In other
words, the cϵ of an illiquid firm should be the same as that of a liquid firm, after
the adjustment of the market risk of course. In the simplest Merton argument [10],
investors are indifferent if two stocks yield the same risk-adjusted excess return in a
perfectly liquid stock market despite that one firm’s assets can be more liquid than
the other’s.6 As a result, bond δ and its spread sδ should carry the weight of the
liquidity impact. In an equilibrium setting, equity investors correctly price in extra
discount due to liquidity in assets and migrate the impact over to debts.

6We can write the equation as (c
(i)
ϵ − r)/σ

(i)
ϵ = (c

(j)
ϵ − r)/σ

(j)
ϵ where i and j represent two

different stocks, σϵ represents the volatility of the stock, and r represent the risk-free rate which
is assumed constant for the sake of simplicity.
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From equation (19.12), we know that no transaction can be completely funded
by debt. This is so because then sδ → ∞ as the credit risk of the firm goes to
infinity. Unfortunately reduced form approaches assume such an assumption and
let cα = cδ = r+sδ. The implication behind this is that some other deals are funded
by the more expensive equity. Hence, we can see that reduced form models used
today violate equilibrium.

While a more complete result will be derived (see [1]) where all risks are prop-
erly and endogenously evaluated, in this paper, we assume sL (Lender spread) and
sB (Borrower spread) to be exogenously given and constant.

We begin with the valuation of B’s funding leg, and let us assume for the
moment that L is risk-free. By receiving P at time t = 0, B has a funding advantage
since it allows him to reduce his funding by an amount equal to P . In fact, if B
would not enter the loan contract with L and receive the amount P at time t = 0,
he would have to issue a bond with principal e(r+sB)TP at time t = 0. By issuing
such a bond, B would receive a premium P at time t = 0. If B has not defaulted
before maturity, he would have to repay the principal to the market at time t = T .

We can now quantify the funding advantage that B has from entering the loan
contract by

− P + E
(
esBTP I{τB>T}

)
+ E

(
esBτBP I{τB≤T}

)
. (19.13)

So far we have assumed for simplicity that L is risk-free. However, B can
enjoy its funding advantage only if L stays alive, and therefore the valuation of
B’s funding leg must depend on B’s credit exposure to L. If L defaults during the
duration of the loan contract and before B does, then B has to close out the loan
contract with L and has to repay the risk-free value of the contract. Therefore B
has only a funding advantage until time t = τL. The cash-flow in the case where L
defaults during the duration of the loan contract and before B does is equal to

E
(
esBτLP I{τL<τB ,τL≤T}

)
(19.14)

and therefore it follows that the value of B’s funding leg is

V fund
B (0) =− P + E

(
esBTP I{τB>T,τL>T}

)
+ E

(
esBτBP I{τB<τL,τB≤T}

)
+ E

(
esBτLP I{τL<τB ,τL≤T}

)
.

(19.15)

Next we consider the value of the funding leg from L’s perspective. As before
let us first assume that the Borrower B is risk-free. When entering the loan contract
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with B, L has to raise an amount equal to P by issuing bonds at time t = 0 and has
to repay an amount e(r+sL)TP at time t = T if he has not defaulted by that time.
Therefore, when we assume that B is risk-free, the value of L’s funding leg at time
t = 0 is

V fund
L (0) =P − E

(
esLTP I{τL>T}

)
+ E

(
esLτLP I{τL≤T}

)
. (19.16)

Now we need to include the possibility of B defaulting during the duration of
the loan contract. The same arguments as in the valuation of B’s funding leg then
imply that the value of L’s funding leg is

V fund
L (0) =P − E

(
esLTP I{τB>T,τL>T}

)
− E

(
esLτLP I{τL<τB ,τL≤T}

)
− E

(
esLτBP I{τB<τL,τB≤τL}

)
.

(19.17)

In the next two sub-sections, we derive a closed-form solution under the in-
dependence assumption of the default times and a semi-closed-form solution under
the correlated assumption.

19.4.3 An example when default times are independent

We define the value VX(0) of the loan contract to X at time t = 0 by

VX(0) = V deal
X (0) + V fund

X (0). (19.18)

For our first numerical example we assume that the default times of B and L
are independent, and further we assume that r, λB and λL, sB and sL, and RB are
constant. In this case equation simplifies to

V deal
B (0) =P − e−(r+λB+λL)TK − e−rTK

RBλB + λL

λB + λL

(
1− e−(λB+λL)T

)
. (19.19)

In a similar way we can simplify equation and show that

V fund
B (0) = P

(
1− e−(λB+λL−sB)T

) sB
λB + λL − sB

. (19.20)

Since V deal
L (0) = −V deal

B (0) we further find from equation

V deal
L (0) =− P + e−(r+λB+λL)TK + e−rTK

RBλB + λL

λB + λL

(
1− e−(λB+λL)T

)
, (19.21)
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and finally from equation we conclude that the value of the Lenders funding leg is

V fund
L (0) = −P

(
1− e−(λB+λL−sL)T

) sL
λB + λL − sL

. (19.22)

Let us now consider an explicit numerical example. We consider a bullet loan
with T = 1year, K =£100.00, and r = 5%. We further assume that λB = 5% and
λL = 3%, sB = 10% and sL = 7%, and that RB = 40%.

Figure 19.2 plots
equation (19.18) for
both the Borrower
and Lender as func-
tions of the premium
P (the amount paid
by the Lender to the
Borrower at time t =
0). Both are lin-
ear but with oppo-
site slopes. The con-
tract value for the
Borrower VB is a pos-
itive function of pre-
mium and that of
the Lender
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Figure 19.2: Contract value as a function of premium

function. The two lines cross at P =£85.12. This diagram indicates that it is
possible for the two counterparties to successfully engage in a trade. In fact the
premium can be set in such a way that VB(0), VL(0) ≥ 0.

This analysis indicates that the law of one price that has prevailed since the
discovery of the Black-Scholes model must be adjusted. There must be a market
clearing condition that decides what the market price (i.e. P ) should be.

We notice that in a risk-free world, i.e. in a world without counterparty credit
risk and funding costs at the risk-free rate, the breakeven premium is given by
P =£95.12 and the NPV for both parties is £0. Looking at the figure we can
see that pricing under the risk-free assumption leads to severe mispricing. More
precisely, in this case the premium paid by L to B at time t = 0 is too large and the
NPV for L is negative. The premium is not large enough to compensate L for the
the risk that B defaults during the duration of the contract and the costs incurred
on L from raising money in the market in order to be able to enter the contract.

In a similar way, if we consider a world with counterparty credit risk but with
funding costs at the risk-free rate, then we find that the breakeven premium is given
by P =£92.38. As before we can see that in our model, where funding costs differ
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from the risk-free rate, this premium leads to a negative NPV for L. It makes
economic sense for B and L to enter the contract as long as it has a positive NPV.
If the premium is sufficiently large then it makes sense for B to enter the deal, and
if the premium is sufficiently small then it makes economic sense for L to enter
the deal. We can see from the figure that there is a whole range of values for the
premium P which causes the deal to have a positive NPV for B and L.

It is now interesting to think about the breakeven premium in a world in which
information is freely available. In this case B will know the hazard and funding curve
of L and L will know the hazard and funding curve of B. Both parties will agree
to enter the contract at the breakeven premium P =£85.12, where the lines in the
graph cross. Entering the contract at this premium will cause the contract to have
the same positive NPV for both parties.

19.4.4 An example when default times are correlated

Again we assume that r, λB and λL, sB and sL, and RB are constant. However,
we now consider the case where τB and τL are correlated under the risk-neutral
probability measure according to a Gaussian copula with correlation parameter ρ ∈
(−1, 1). More precisely, we assume that

P(τB ≤ t, τL ≤ s) = Cρ(P(τB ≤ t),P(τL ≤ s)), (19.23)

where Cρ is the Gaussian copula function with parameter ρ defined by

Cρ(t, s) = Φρ

(
Φ−1(t),Φ−1(s)

)
, (19.24)

where Φ and Φρ denote the normal distribution and the bivariate normal distribution
with parameter ρ.

Using the Gaussian copula model and equation we find that

V deal
B (0) = P − e−rTKCρ

(
e−λBT , e−λLT

)
− λBλLe

−rTK

∫ T

0

∫ ∞

t

cρ(1− e−λBs, 1− e−λLt)e−λBse−λLtds dt

− λBλLRBe
−rTK

∫ T

0

∫ ∞

t

cρ(1− e−λBt, 1− e−λLs)e−λBte−λLsds dt,

(19.25)

where cρ denotes the density of Cρ. Similarly we find from equation that
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V fund
B (0) = −P + esBTPCρ(e

−λBT , e−λLT )

+ λBλLP

∫ T

0

∫ ∞

t

cρ(1− e−λBt, 1− e−λLs)e−(λB−sB)te−λLsds dt

+ λBλLP

∫ T

0

∫ ∞

t

cρ(1− e−λBs, 1− e−λLt)e−λBse−(λL−sB)tds dt.

(19.26)

The value of L’s
deal leg and L’s
funding leg can be
found in the same
way. Similar to
Figure 19.2, we
plot the Borrower’s
and the Lender’s
contract values each
as a function of
the default correla-
tion in Figure 19.3.
Again we assume
that T = 1year,
K =£100, r = 5%,
λB = 5% and
λL = 3%, and
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Figure 19.3: Contract value as a function of correlation

that sB = 10% and sL = 7%. Finally we assume that RB = 40%. In the figure,
the premium is set at the P =£85.12 which is the equilibrium value of the Borrower
and the Lender shown in Figure 19.2.

19.5 Valuation of a general derivative contract

In this section we extend the result of the previous section and derive results for
general derivative contracts. While we lose closed-form solution, the results remain
semi-analytical and computations can be performed fairly efficiently.

19.5.1 Valuation of the deal leg

Recall that the value of the deal leg from X’s perspective is, by definition, equal to
the present value of all possible future cash-flows agreed in the contract. Therefore



Valuation of a general derivative contract 301

the value of the deal leg from X’s perspective at time t = 0 is given by

V deal
X (0) =

∫ T

0

E
(
D(0, s)CFX(s)I{τB>s,τL>s}

)
ds

+ E
(
D(0, τB)CFX(τB)I{τB<τL,τB≤T}

)
+ E

(
D(0, τL)CFX(τL)I{τL<τB ,τL≤T}

)
.

(19.27)

A straightforward calculation shows that the above equation is equivalent to

V deal
X (0) = VX(0; 0, T )− CVAX +DVAX , (19.28)

where CVAX is the credit value adjustment and DVAX is the debit value adjust-
ment from X’s perspective. Our valuation of the deal leg therefore agrees with the
standard literature on counterparty credit risk, see for instance Gregory [7].

19.5.2 Valuation of the funding leg

The valuation of the funding leg for the general derivative contract follows the same
ideas that we used in the valuation of the funding leg for bullet loans in the above
section (FundingLegBulletLoan).

After decomposing a general derivative contract into a series of expected future
cash-flows we are only left with the valuation of the funding advantage/disadvantage
of a forward starting bullet loan with a possibly stochastic premium.

Let us assume that today, at time t = 0, we expect to receive a cash-flow
CFX(t) at time t. Receiving this cash-flow is conditional on neither party defaulting
by that time. In particular this cash-flow yields a funding advantage/disadvantage
only if neither party has defaulted by time t. Moreover, when neither party has
defaulted by time t, then we can understand this cash-flow simply as a bullet loan.
Therefore, when we condition on B and L not defaulting by time t, then the funding
advantage/disadvantage from receiving CFX(t) is equivalent to the funding advan-
tage/disadvantage from a bullet loan initiated at time t and with maturity T . Thus
we can understand every expected future cash-flow as a forward starting bullet loan
with a possibly stochastic premium. In particular, following the valuation procedure
for bullet loan from section FundingLegBulletLoan, we find that the funding advan-
tage/disadvantage from receiving the cash-flow CFX(t) at time t has value today
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equal to

E
((

esX(T−t)D(0, t)CFX(t)I{τB>T,τL>T}

−D(0, t)CFX(t) + esX(τB−t)D(0, t)CFX(t)I{τB<τL,τB≤T}

+ esX(τL−t)D(0, t)CFX(t)I{τL<τB ,τL≤T}

)
I{τB>t,τL>t}

)
.

(19.29)

Adding all the cash-flows together we therefore find that the value of the funding
leg for the general derivative contract is given by

V fund
X (0) =

∫ T

0

E
((

esX(T−t)D(0, t)CFX(t)I{τB>T,τL>T}

−D(0, t)CFX(t) + esX(τB−t)D(0, t)CFX(t)I{τB<τL,τB≤T}

+ esX(τL−t)D(0, t)CFX(t)I{τL<τB ,τL≤T}

)
I{τB>t,τL>t}

)
dt.

(19.30)

19.6 Liquidity

So far we have not considered liquidity. In Morini and Prampolini [12], a constant
liquidity spread is added to discounting exogenously. We recognize that liquidity
discount is often combined with credit (at least very high correlation). While it is
convenient to include liquidity as an extra discounting factor exogenously, it could
lead to severe mispricing. The literature on liquidity has argued that liquidity is an
endogenous result of economic conditions.

To model liquidity risk along with credit risk (so that they can be endogenously
correlated), a structural approach such as the Merton model (adopted by KMV) [11]
or its extensions must be employed. Recently Chen [4] argued that liquidity discount
can be viewed as a put option on the traded asset and as a result is directly linked
to all the risks the traded asset inherits. In other words, both deal leg and funding
leg are affected by the liquidity discount. Equation (19.12) explains why liquidity
cannot be modeled separately from the credit risk.

A liquidity default is a situation where the firm has not enough assets to
pay for its current cash-flow obligations. This is different from an economic default
where the firm’s assets become unproductive and ultimately are not enough to cover
the firm’s debt (not just cash-flow) obligations. Equity investors observe every
fundamental factor of the firm and assign the right value to the equity. If a firm
suffers from a liquidity squeeze (as in the recent crisis) then its assets are highly
discounted so that it faces a possible liquidity-driven default. Then the equity value
will properly reflect such an evaluation and then, liquidity risk dominates and is
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priced (in a form of spread). As a result, using a fixed spread (in particular, using
a bond-CDS basis) is not accurate.

While developing a full model that incorporates all risks– market, credit and
liquidity is beyond the scope of this paper, we shall lay out the framework of how
these risks should interact and why that can severely dictate how a model should
be designed. Taking equation (19.12) as an example. In a “normal” situation where
securities are priced with perfect liquidity (we ignore, for the sake of exposition,
normal/minor liquidity discounts that exist all the time), as described in Section
19.4.2, the equity value ϵ reflects a perfectly liquid value for the assets. The debt
value δ which is just the difference of asset value and equity value then reflects
only credit risk. In a dramatic situation (such as the recent crisis) where assets
are discounted heavily due to liquidity concerns, the equity that is transacted with
perfect liquidity, will properly reflect the lowered asset value. In such a situation,
the debt value δ must reflect both liquidity and credit risks. As a result, sδ embeds
the liquidity risk.

Continue with equation (19.12) which is an accounting identity, we argue that
under the liquidity squeeze, the same equation holds but with different values of
debt and equity:

c∗α∗ =
δ∗

δ∗ + ϵ∗
c∗δ∗ +

ϵ∗

δ∗ + ϵ∗
c∗ϵ∗ (19.31)

where the asterisk superscripts represent values under the liquidity squeeze. Chen
[4] demonstrates how to link α with α∗ via a put option analogy. As α∗ < α, c∗α > cα
and the difference is a liquidity spread ℓα = c∗α − cα. Similarly, c∗δ = cδ + ℓδ and
c∗ϵ = cϵ + ℓϵ. Recall that cδ = r + sδ.

For the sake of argument, we simplify the problem by making the assumption
that ℓα = ℓδ = ℓϵ and furthermore δ∗/(δ∗ + ϵ∗) = δ/(δ + ϵ). Then equation (19.31)
differs from equation (19.12) by the liquidity spread. As a result, the current industry
practice of using the CDS-bond basis as a proxy for liquidity risk is an acceptable
approximation, in that cδ is represented by CDS and c∗δ is represented by bond which
is justified by equation (19.31).

Funding costs should reflect credit risk and liquidity risk. Note that liquidity
risk can be driven by the general economy as well as market-specific (or product-
specific) factors, and as a natural result market microstructure mechanism can be
introduced and general equilibrium prices (market prices) can be identified.

However, while the idea of liquidity risk valuation is intuitive and straightfor-
ward, details need to be worked out. As argued in Chen [4], each case is different and
hence it requires further research to bring about how liquidity risk can be explicitly
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incorporated in the various derivatives contracts.

19.7 Summary and Future Research

In this paper, we study risky funding. We price general derivative contracts in
the context of risky funding. We first evaluate the simple bullet loan assuming a
specific close-out convention where we arrive at a closed-form solution. We then
derive semi-closed-form solutions for the general derivative contracts. Lastly, we
propose a general equilibrium framework in which funding costs are incorporated
into pricing endogenously.

Following Morini and Prampolini [12], we continue to assume an exogenous
funding discount rate. Note that with funding costs explicitly considered in pricing,
each bank will generate different valuation results. As mentioned earlier, this violates
the law of one price. Market microstructure mechanisms and equilibrium theories
must be introduced in order to arrive at market prices.

The confusion arises in the literature as whether or not risky funding should
be part of evaluation in that risky funding often is used in conjunction with liquidity
risk which is part of deal evaluation. While risky funding indeed should incorporate
liquidity risk, such liquidity risk should be separated from the liquidity risk used in
calculating prices of assets.

To reconcile different views in the literature and avoid the confusion of risky
funding and evaluation, a fundamental pricing theory needs to be developed where
liquidity risk, costs of capital, and valuation can be simultaneously assessed within
a consistent framework, which is beyond the scope of this paper and requires further
research.

19.8 Collateral Management

To discuss collateral management, we must first define rehypothecation. The prac-
tice by banks and brokers of using, for their own purposes, assets that have been
posted as collateral by their clients. Clients who permit rehypothecation of their
collateral may be compensated either through a lower cost of borrowing or a rebate
on fees.

The recent crisis has changed how OTC trading is conducted. Prior to the
crisis, most of the trades were “naked”, or uncollateralized. This means that the
two parties that trade with each other (counterparties) trust each other. If one
party defaults, then the other party must suffer from the consequences (i.e. LGD).



Collateral Management 305

As trades and trade parties became convoluted, the defaults of counterparties have
become magnified. And that was the cause of the crisis. Basically the defaults of
Bear Sterns and Lehman had spiraled. All banks had been affected at the end.

A collateralized trade is different. The “out-of-money” counterparty must
post assets that equal (or at least a big percentage of) the value of the trade. For
example, a 5-year, $10 million IRS is transacted between JP Morgan and Goldman
Sachs. At inception, there is no value of this IRS (known as par). A fixed swap
rate is signed between JP Morgan and Goldman Sachs (say 5%). In the next five
years, JP Morgan will pay Goldman Sachs 1.25% of the notional (or $125,000) every
quarter and Goldman Sachs will pay JP Morgan the LIBOR rate. Afterwards, the
swap rate goes up or down. If it goes up, then JP Morgan makes profits out of
this swap so JP Morgan is “in-the-money” and if Goldman Sachs defaults now,
then JP Morgan would lose the money it makes. However, if Goldman Sachs posts
a collateral that equals the value of the trade, then JP Morgan can liquidate the
collateral and its profit is retained. Similarly, if the swap rate goes down, then JP
Morgan would have to post a collateral for the value of the trade so if JP Morgan
defaults, Goldman Sachs will not suffer any loss.

After the crisis, most trades are collateralized and the size of the collateralized
assets grows. These assets that are used for collaterals, if no default, still belong to
the banks that post them. Any interests or dividends still belong to the banks that
post them. These assets are generally be “managed” by a third-party bank known
as a custodian bank. This is similar to any stock investor who wants to do margin
trades or short sales. Stocks in his or her account will be used as collaterals for such
trades. These stocks are already with the broker under his or her account so it is
very convenient. It is well-known that these stock brokers lend these securities out
to make additional profits. Such an action is legally allowed as long as these brokers
operate under the limits by the regulation.

Similarly, these custodian banks can do the same thing. They can loan these
collaterals out via their securities lending business to make additional profits. Often
these profits are shared with the banks who post them so it is a win-win strategy.
As the amount the collaterals grows substantially after the crisis, the profits from
rehypothecation become substantial.

Different from stocks held by stock brokers as collaterals, these assets are not
liquid. As a result, lending them out for profits is tricky. That is, they cannot be
easily bought back when a delivery due to default becomes necessary. As a result,
managing these illiquid assets is difficult. The illiquid nature of these assets reduces
the amount that can be rehypothencated. As a result, banks seek aggressively how
they can evaluate and manage these assets more effectively.

There are two major tasks in managing collaterals:



306 Chapter 19: Funding Value Adjustment (and XVA)

� maintaining a good inventory of assets

� accurately liquidity pricing all assets

Note that billions of dollars of assets covering a huge variety are used for
collaterals. These assets must be properly and accurately priced and categorized.
This is as important as a valuation task as an IT task.

19.9 Appendix

19.9.1 Proof of Theorem 1

Note that if payoff is linear, X(T ) = aV (T ) + b, then the following results hold:

(i) E[X(T )] = aE[V (T )] + b
(ii) V[X(T )] = a2V[V (T )]
(iii) K[V (T ), X(T )] = aV[V (T )]
(iv) β$ = a

where the expectation, variance, and covariance operations are taken under the
physical measure. As a result, following (18.13), we have:

X(t) =
1

R(t, T )
{E[X(T )]− a(E[V (T )]−R(t, T )V (t)} (19.32)

where R(t, T ) = er(T−t) and

E[X(T )]−R(t, T )X(t) = aE[V (T )]− aR(t, T )V (t) (19.33)

which gives rise to the following result:

X(t) =
1

R(t, T )
{aR(t, T )V (t) + b} (19.34)

Note that this is exactly the result of risk neutral pricing (expected value with
a “Ê”), i.e.,

X(t) =
1

R(t, T )
Ê[aV (T ) + b]

= aV (t) + b
1

R(t, T )

(19.35)
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This is also the result described by the Martingale Representation Theorem
which indicates that any contingent claim under continuous trading can be repli-
cated by the underlying asset and the risk-free asset. The result shown in (19.35)
states that equation (18.13) computes also the liquid price, i.e. X(t) = S(t) if the
relationship between economy and the asset price is linear. □

19.9.2 Proof of Theorem 2

We use a two-period binomial model to demonstrate the proof. We let Vij represent
the level of the state variable at time period i and state j respectively. In a two-
period binomial model, the three state variable values at time 2 are V20, V21, and V22

representing low, medium, and high prices respectively. Without loss of generality,
we also let V21 = V0. Similarly, we also let Xij represent the state contingent claim
price at time period i and state j respectively where X20, X21, and X22 represent
low, medium, and high prices respectively.

We let the convex payoff differ from the linear one by slightly altering the
middle one as follows: Xcvx

21 = X lnr
21 −ε where ε is an arbitrary small positive amount

to create the convexity of X in V . The real probability per period is p which is time
invariant. Consistent with the notation above, we symbolize compounding at the
risk-free rate in two periods as R(0, 2). Our goal is to prove that:

Xcvx
0 =

1

R(0, 2)

{
E[Xcvx

2· ]− β$(E[V2·]−R(0, 2)V0)
}

<
1

R(0, 2)

{
E[X lnr

2· ]− β$(E[V2·]−R(0, 2)V0)
}

= X lnr
0

(19.36)

where the symbol “2·” in the subscript represents the three states in period 2, and
“cvx” or “lnr” in the superscript represent convex or linear payoffs respectively. In
the binomial model, the three physical probabilities are p, 2p(1 − p), and (1 − p)2

for high, medium, and low states respectively. Hence, we have:

(i) E[V2·X
cvx
2· ] = E[V2·X

lnr
2· ]− εV212p(1− p)

(ii) E[Xcvx
2· ] = E[X lnr

2· ]− 2εp(1− p)
(iii) E[V2·]E[Xcvx

2· ] = E[V2·]E[X lnr
2· ]− 2E[V2·]εp(1− p)

(iv) cov[V2·, X
cvx
2· ] = cov[V2·, X

lnr
2· ] + 2εp(1− p)(E[V2·]− V21)

and then the dollar beta under the convex function can be derived as:

βcvx = βlnr +
ε2p(1− p)(E[V2·]− V21)

var[V2·]
(19.37)
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As a result,

βcvx{E[V2·]−RV0} =

βlnr{E[V2·]−R(0, 2)V0}+
2p(1− p)ε(E[V2·]− V21)(E[V2·]−R(0, 2)V0)

var[V2·]

(19.38)

and

Xcvx
0 = E[Xcvx

2· ]− βcvx{E[V2·]−R(0, 2)V0}
= E[X lnr

2· ]− 2p(1− p)ε− βlnr{E[V2·]−R(0, 2)V0}

− 2p(1− p)ε(E[V2·]− V21)(E[V2·]−R(0, 2)S0)

var[V2·]

= X lnr
0 − 2p(1− p)ε

{
1 +

(E[V2·]− V21)(E[V2·]−R(0, 2)V0)

var[V2·]

}
< X lnr

0

(19.39)

This is because, clearly,

E[V2·] > V21 = V0

(the expected payoff should be larger than today’s value) and

E[V2·] > R(0, 2)V0

(the expected return should be more than the risk-free rate) to avoid arbitrage. □
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19.10 XVA

This is a combination of CVA, FVA, capital VA (KVA), and margin VA (MVA).
According to Wikipedia:

An X-Value Adjustment (XVA, xVA) is a generic term referring collectively to
a number of different “Valuation Adjustments” in relation to derivative instruments
held by banks. The purpose of these is twofold: primarily to hedge for possible
losses due to counterparty default; but also, to determine (and hedge) the amount
of capital required under Basel III. For a discussion as to the impact of xVA on
the bank’s overall balance sheet, return on equity, and dividend policy, XVA has,
in many institutions, led to the creation of specialized desks. Note that the various
XVA require careful and correct aggregation without double counting.



Chapter 20

A Story about the Financial Crisis
– A Case Study of Lehman
Brothers

20.1 Introduction

The 2008 financial crisis shocked the whole world. It all began with Lehman default.
The default of Lehman Brothers Inc. on September 15, 2008 (Monday) shook the
whole world in many ways. Not only was it the largest bankruptcy case in the
United States, it started an enormous chain effect around the world and started a
bank run unseen before. A new type of systemic risk was witnessed.

To provide a little background of how connected Lehman default is to the
entire crisis – known as systemic risk, European Central Bank in 2000 defines three
types of systemic risk:

� bank run

� contagion

� failure in interbank systems

However, the recent 2008 crisis defines a new systemic risk in our financial
systems. Allen and Carletti (2013) view this new systemic risk as “banking crises
due to asset price falls”. They further define such a problem as “mispricing due to
inefficient liquidity provision and limits to arbitrage.” Shin (2009) explicitly char-
acterizes this liquidity-driven crisis as a new type of bank run. He contends that
illiquidity, together with excess leverage and credit risk, ultimately affects nearly
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every financial institution. In summary, Lehman default has caused a bank-run
type of phenomenon unseen before. And for the first time in the banking history,
Lehman default brings out awareness of a new type of systemic risk that is driven
by (lack of) liquidity. This liquidity driven systemic risk has been the focus of the
recent regulation. Basel III explicitly highlights the need of liquidity regulation via
two liquidity ratios – LCR and NSFR, which we will discuss in details in the next
part. In this chapter, we take materials from Chen, Chidambaran, Imerman, and
Soprazetti (2014) and introduce the risk Lehman faced back in 2008.

20.2 Richard (Dick) Fuld

Fuld began his career at Lehman Brothers in 1969 and had stayed with Lehman
till its bankruptcy in 2008. Lehman was his only employer. In 1969, the leader
of the company, Robert Lehman died and for the first time it was succeeded by a
non-family member, Pete Peterson. Lehman had gone through many transitions.
Most notably was the merger with Shearson, an American Express-owned securities
company in 1984 and then with Hutton in 1988. It was the time of the Shearson-
Lehman-Hutton. In 1994, American Express spun off Lehman in an initial public
offering as Lehman Brothers Holding Inc. Fuld was elected as the CEO then and
stayed at the position till its bankruptcy.

Throughout his term as the CEO, Fuld has experienced the Asian financial
crisis. The company was near bankruptcy.

20.3 Lehman Time Line

As the documentary movie “Too Big To Fail” shows, the default of Lehman was
more or less a government decision to reflect the regret of Bear Sterns bailout. The
government realized the damage of the Bear Sterns bailout (see Chen, Chidambaran,
Imerman, and Soprazetti (2014)) and decided to reverse the trend. The government
felt that the market should learn the consequence of extra risk taking. According
to the movie, the government then decided to let Lehman default but to save the
economy by putting a sound policy around the next bank – Merrill Lynch. The
government arranged for Bank of America to bail out Merill Lynch.

A detailed Lehman timeline in 2008 is provided in the Appendix. We can see
that when the bailout of Bear Sterns is underway, Lehman obtained a $2 billion
credit line from a consortium of 40 banks in March and $4 billion in capital in April
to improve its liquidity situation. Because of this, the price of Lehman stock surged
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by almost 50%. After the bailout of Bear Sterns, Lehman decided not to raise
anymore capital, although there was a loss for the second quarter. In the entire
months of July and August, Lehman did not continue to strengthen its financial
situation. By the time Lehman realized the seriousness of the situation and its CEO
Richard (Dick) Fuld announced a spin-off of its real estate assets in September, it
was too late. In Figure 20.1, we can see clearly how stock price reacts to actions
taken by Lehman.
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20.4 Lehman Default Probability

Chen, Chidambaran, Imerman, and Soprazetti (2014), CCIS for short from now on,
take a novel approach to estimate the default probability of Lehman. They use
the Geske model (an extension of Merton) to estimate the default probabilities of
various tenors of Lehman over time.
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Table 4: Lehman Brothers Collateralized Transactions

This table presents data related to Lehman Brothers’ collateralized transactions including repur-
chase agreements and reverse repurchase agreements, loaned securities and borrowed securities
(cash collateral borrowed and lent, respectively), as well as the amount and sources of collateral
pledged. Amounts are in millions of dollars. Data are from Lehman Brothers’ 10-K and 10-Q
filings and the accompanying footnotes.

2007:Q4 2008:Q1 2008:Q2
Repo $181,732 $197,128 $127,846
Reverse Repo $162,635 $210,166 $169,684

Net $19,097 ($13038) ($41838)

Loaned Securities $55,420.0 $54,847.0 $53,307
Securities Borrowed $124,842.0 $158,515.0 $138,599.0

Net ($69,422.0) ($103,668.0) ($85,292)

Own Collateral Pledged $150,000 $155,000 $123,031
Collateral Permitted to Re-pledge $798,000 $929,000 $518,000
Collateral Actually Re-pledged $725,000 $852,000 $427,000

Percentage 90.85% 91.71% 82.43%
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20.5 Lehman Liquidity Problems

While subprime portfolios were the main cause for the fall of Bear Sterns and
Lehman Brothers, the bankruptcy of Lehman was clearly a liquidity event. Note
that the 1998 Q1 profit was positive for Lehman. Even Q2 was a loss, the amount
was only $2.8 billion; while the market capitalization of Lehman were $9.1 and $8.4
billion in July and August respectively. Hence economic default could have been in-
evitable for Lehman ultimately, the September default had been no doubt triggered
by lack of liquidity.

The press has reported that Lehman was still hopeful on Thursday (September
11) that it could survive. Yet a $3 billion margin call by JP Morgan removed that
hope and Lehman had to finally file bankruptcy.

20.6 Appendix

20.6.1 Lehman Timeline

2007 to January 2008: Lehman scales back its mortgage business, cutting thousands
of mortgage-related jobs and closing mortgage origination units.

2007 Q4: Lehman shows $886 million in quarterly earnings (at compared to third
quarter ) and reported earnings of $4.192 billion for fiscal year 2007 (a 5% increase
from the previous fiscal year).

January 29, 2008: Lehman announces an increase in dividends and plans to repur-
chase up to 100 million shares of common stock.

2008 Q1: Lehman increases holding of Alt-A mortgages despite the prevailing trou-
bles in the real estate market.

March 14, 2008: Lehman obtains a $2 billion, three-year credit line from a consor-
tium of 40 banks, including JPMorgan Chase and Citigroup. On the same day, the
Federal Reserve and JPMorgan Chase begin to put together a deal to bail out Bear
Stearns.

March 16, 2008: JP Morgan announces a deal to purchase Bear Stearns for $2 per
share.

March 18, 2008: Lehman shares surged up almost 50% after the Federal Reserve
gives investment banks access to the discount window.

April 1, 2008: Lehman looks to raise $4 billion in new capital via an offering of
perpetual convertible preferred stock.
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Figure 8: Lehman Brothers Default Probability Term Structure
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Figure 8 shows the cumulative default probabilities, or the term structure of default
probabilities, for Lehman Brothers as of January 2008, March 2008, April 2008, June
2008, and August 2008. Each curve depicts the probability, at that date, of Lehman
Brothers defaulting between then and the end every year from 2008 to 2032.
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Figure 20.2: Lehman Asset Values (Liquid and Illiquid)

2008 Q2: Lehman shows a $2.8 billion loss, the first loss in its history as a public
firm. It admits the losses came not only from mortgage-related positions but also
from hedges against those positions.

June 9, 2008: Lehman announces plan to raise an additional $6 billion in new capital
($4 billion in common stock, $2 billion in mandatory convertible preferred stock).

July 7 to July 11, 2008: Lehman shares plunge more than 30% for the week amid
rumors that the firm’s assets have not been priced appropriately to reflect the true
value.

September 9, 2008: Markets punish Lehman for not raising capital more aggressively;
Lehman’s share price falls 45% to $7.79 on fears that the firm’s capital levels are
insufficient to support exposure to deteriorating real estate investments.

September 10, 2008: Lehman CEO Dick Fuld reveals plans to spin off real estate
assets and sell a portion of the asset management division, insisting that the firm is
solvent enough to survive.

September 11, 2008: Talks of a Lehman takeover permeate the markets as Lehman
shares fall further, closing at $4.22.

September 12, 2008: Lehman approaches several potential buyers, including Bank
of America and Barclays.

September 15, 2008: Lehman officially files bankruptcy after Treasury Secretary
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Paulson refuses to back any takeover; Shares close at $0.21.

September 16, 2008: Lehman is dropped from the S&P 500 Index.

September 18, 2008: Lehman shares close at $0.052 in over-the-counter trading as
effects of the biggest bankruptcy in history ripple through the financial markets.

September 22, 2008: Lehman’s U.S. operations reopen for business under Barclays
Capital after approval for the acquisition was granted by the federal bankruptcy
court presiding over the liquidation.
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Chapter 21

Operational Risk Management

21.1 Introduction

Events such as the September 11 terrorist attacks, rogue trading losses at Société
Générale, Barings, AIB and National Australia Bank serve to highlight the fact that
the scope of risk management extends beyond merely market and credit risk.

The list of risks (and, more importantly, the scale of these risks) faced by banks
today includes fraud, system failures, terrorism and employee compensation claims.
These types of risk are generally classified under the term ’operational risk’.

The identification and measurement of operational risk is a real and live issue
for modern-day banks, particularly since the decision by the Basel Committee on
Banking Supervision (BCBS) to introduce a capital charge for this risk as part of
the new capital adequacy framework (Basel II).

21.2 Basel II event type categories

The following lists the official Basel II defined event types with some examples for
each category:

� Internal Fraud - misappropriation of assets, tax evasion, intentional mismark-
ing of positions, bribery

� External Fraud- theft of information, hacking damage, third-party theft and
forgery
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� Employment Practices and Workplace Safety - discrimination, workers com-
pensation, employee health and safety

� Clients, Products, & Business Practice- market manipulation, antitrust, im-
proper trade, product defects, fiduciary breaches, account churning

� Damage to Physical Assets - natural disasters, terrorism, vandalism

� Business Disruption & Systems Failures - utility disruptions, software failures,
hardware failures

� Execution, Delivery, & Process Management - data entry errors, accounting
errors, failed mandatory reporting, negligent loss of client assets. The P&L
attribution is to explain where the profits and losses come from. Due to the
fact that luck plays a critical role in trading, managers need to make sure that
their traders make money not due to luck but due to skills (or talents). As a
result, P&L attribution has become essential in trading and fund management
business.

21.3 Methods of Operational Risk Management

(The content of this section is taken from a BIS document bcbsca07.pdf entitled
“Consultative Document: Operational Risk”)

Basel II and various Supervisory bodies of the countries have prescribed var-
ious soundness standards for Operational Risk Management for Banks and similar
Financial Institutions. To complement these standards, Basel II has given guidance
to 3 broad methods of Capital calculation for Operational Risk

� Basic Indicator Approach - based on annual revenue of the Financial Institu-
tion

� Standardized Approach - based on annual revenue of each of the broad business
lines of the Financial Institution

� Internal Measurement Approaches - based on the internally developed risk
measurement framework of the bank adhering to the standards prescribed
(methods include IMA, LDA, Scenario-based, Scorecard etc.)

The Operational Risk Management framework should include identification,
measurement, monitoring, reporting, control and mitigation frameworks for Opera-
tional Risk.
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21.3.1 Basic Indicator Approach

The most basic approach allocates operational risk capital using a single indicator
as a proxy for an institution’s overall operational risk exposure. Gross income is
proposed as the indicator, with each bank holding capital for operational risk equal
to the amount of a fixed percentage, α, multiplied by its individual amount of gross
income. The Basic Indicator Approach is easy to implement and universally appli-
cable across banks to arrive at a charge for operational risk. Its simplicity, however,
comes at the price of only limited responsiveness to firm-specific needs and charac-
teristics. While the Basic Indicator Approach might be suitable for smaller banks
with a simple range of business activities, the Committee expects internationally
active banks and banks with significant operational risk to use a more sophisticated
approach within the overall framework.

The calibration of this approach is on a similar basis to that outlined in Annex
3 for the Standardized Approach. The current provisional estimate is that a be set
at around 30% of gross income. This figure needs to be treated with caution as it is
calibrated on a limited amount of data. Also, it is based on the same proportion of
capital (20%) for operational risk as the Standardized Approach and may need to
be reviewed in the light of wider calibration.

For instance, in order to provide an incentive to move towards more sophisti-
cated approaches, it may be desirable to set a at a higher level, although alternative
means of generating such an incentive are also available, for instance under Pillar 2
or by making the Standardized Approach the entry point for internationally active
banks. It is also worth noting that a sample of internationally active banks has
formed the basis of this calibration. As it is anticipated that the Basic Indicator
Approach will mainly be used by smaller, domestic banks, a wider sample base may
be more appropriate.

21.3.2 Standardized Approach

The Standardized Approach represents a further refinement along the evolutionary
spectrum of approaches for operational risk capital. This approach differs from the
Basic Indicator Approach in that a bank’s activities are divided into a number of
standardized business units and business lines. Thus, the Standardized Approach
is better able to reflect the differing risk profiles across banks as reflected by their
broad business activities. However, like the Basic Indicator Approach, the capital
charge would continue to be standardized by the supervisor.

The proposed business units and business lines of the Standardized Approach
mirror those developed by an industry initiative to collect internal loss data in a con-
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sistent manner. Working with the industry, regulators will specify in greater detail
which business lines and activities correspond to the categories of this framework,
enabling each bank to map its structure into the regulatory framework. Annex 2
presents such a mapping. This mapping exercise is yet to be finalized and further
work, in consultation with the industry, will be needed to ensure that businesses are
slotted into the appropriate broad categories to avoid distortions and the potential
for arbitrage.

Within each business line, regulators have specified a broad indicator that is
intended to reflect the size or volume of a bank’s activity in this area. The indicator
is intended to serve as a rough proxy for the amount of operational risk within each
of these business lines. The table below presents the business units, business lines
and size/volume indicators of the Standardized Approach.

Business Units Business Lines Indicator 

Corporate Finance Gross Income 
Investment Banking 

Sales and Trading Gross Income 

Retail Banking Annual Average Assets 

Commercial Banking Annual Average Assets 
Banking 

Payment and Settlement 
Annual Settlement 

Throughout 

Retail Brokerage Gross Income 

Others 
Asset Management 

Total Funds under 

Management 

 

Table 21.1: Standardized Approach

Within each business line, the capital charge is calculated by multiplying a
bank’s broad financial indicator by a .beta. factor. The beta factor serves as a rough
proxy for the relationship between the industry’s operational risk loss experience
for a given business line and the broad financial indicator representing the banks.
activity in that business line, calibrated to a desired supervisory soundness standard.
For example, for the Retail Brokerage business line, the regulatory capital charge
would be calculated as follows:

K(Retail Brokerage) = β(Retail Brokerage) × (Gross Income)1

where K(Retail Brokerage) is the capital requirement for the retail brokerage busi-
ness line, β(Retail Brokerage) is the capital factor to be applied to the retail broker-
age business line (each business line has a different beta factor), and Gross Income

1An alternative to Gross Income may be VaR.
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is the indicator for this business line.

The total capital charge is calculated as the simple summation of the capital
charges across each of the business lines. Annex 3 outlines a possible calibration
mechanism based on existing data and 20% of current minimum regulatory capital.

The primary motivation for the Standardized Approach is that most banks are
in the early stages of developing firm-wide data on internal loss by business lines
and risk types. In addition, the industry has not yet been able to show a causal
relationship between risk indicators and loss experience. As a result, banks that
have not developed internal loss data by the time of the implementation period
of the revised New Basel Capital Accord and/ or do not meet the criteria for the
Internal Measurement Approach will require a simpler approach to calculate their
regulatory capital charge. In addition, certain institutions may not choose to make
the investment to collect internal loss data for all of their business lines, particularly
those that present less material operational risk to the institution. A final important
feature of the Standardized Approach is that it provides a basis for moving, on a
business line by business line basis, towards the more sophisticated approaches and
as such will help encourage the development of better risk management within banks.

21.3.3 Internal Measurement Approach

Methodology

The Internal Measurement Approach provides discretion to individual banks on the
use of internal loss data, while the method to calculate the required capital is uni-
formly set by supervisors. In implementing this approach, supervisors would impose
quantitative and qualitative standards to ensure the integrity of the measurement
approach, data quality, and the adequacy of the internal control environment. The
Committee believes that, as the Internal Measurement Approach will give banks
incentives to collect internal loss data step by step, this approach is positioned as a
critical step along the evolutionary path that leads banks to the most sophisticated
approaches. However, the Committee also recognizes that the industry is still in a
stage of developing data necessary to implement this approach.

Currently, there is not sufficient data at the industry level or in a sufficient
range of individual institutions to calibrate the capital charge under this approach.
The Committee is laying out, in some detail, the elements of this part of the approach
and the key issues that need to be resolved (discussed below). In particular, in order
for this approach to be acceptable, the Committee will have to be satisfied that a
critical mass of institutions have been able individually and at an industry level to
assemble adequate data over a number of years to make the approach workable.
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Structure of Internal Measurement Approach

Under the Internal Measurement Approach, a capital charge for the operational
risk of a bank would be determined using the following procedures.

� A bank’s activities are categorized into a number of business lines, and a broad
set of operational loss types is defined and applied across business lines.

� Within each business line/loss type combination, the supervisor specifies an
exposure indicator (EI) which is a proxy for the size (or amount of risk) of
each business line’s operational risk exposure.

� In addition to the exposure indicator, for each business line/loss type combina-
tion, banks measure, based on their internal loss data, a parameter represent-
ing the probability of loss event (PE) as well as a parameter representing the
loss given that event (LGE). The product of EI*PE*LGE is used to calculate
the Expected Loss (EL) for each business line/loss type combination.

� The supervisor supplies a factor (the “gamma term”) for each business line/loss
type combination, which translates the expected loss (EL) into a capital charge.
The overall capital charge for a particular bank is the simple sum of all the
resulting products. This can be expressed in the following formula:

Required capital = Σi Σj [γ (i,j) * EI(i,j) * PE(i,j) * LGE(i,j)] (where i is the
business line and j is the risk type.)

� To facilitate the process of supervisory validation, banks supply their supervi-
sors with the individual components of the expected loss calculation (i.e. EI,
PE, LGE) instead of just the product EL. Based on this information, super-
visors calculate EL and then adjust for unexpected loss through the gamma
term to achieve the desired soundness standard.

Business lines and loss types

The Committee proposes that the business lines will be the same as those
used in the Standardized Approach. It is also proposed that operational risk in each
business line then be divided into a number of non-overlapping and comprehensive
loss types based on the industry’s best current understanding of loss events. By
having multiple loss types, the scheme can better address differing characteristics of
loss events, while the number of loss types should be limited to a reasonable number
to maintain the simplicity of the scheme. The Committee’s provisional proposal on
the grid for business lines, loss types and exposure indicators, which has reflected
considerable discussion with the industry, is shown in Annex 4. Whilst further work
will be needed to specify the indicators for each risk type per business line, the Com-
mittee has more confidence that the business lines and loss types are those which
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will form the basis of the new operational risk framework. The Committee believes
that there should be continuity between approaches, and that the indicators un-
der the Standardised Approach and Internal Measurement Approach should, where
possible, be similar. The Committee therefore welcomes comment on the choice of
indicators under both approaches, including whether a combination of indicators
might be used per business line in the Standardised Approach, and if so, what these
might be. The Committee also welcomes comment on the proposed loss categories.

Parameters

The exposure indicator (EI) represents a proxy for the size of a particular
business line’s operational risk exposure. The Committee proposes to standardise
EIs for business lines and loss types, while each bank would supply its own EI data.
Supervisory prescribed EIs would allow for better comparability and consistency
across banks, facilitate supervisory validation, and enhance transparency.

Probability of loss event (PE) represents the probability of occurrence of loss
events, and Loss given event (LGE) represents the proportion of transaction or ex-
posure that would be expensed as loss, given that event. PE could be expressed
either in “number” or “value” term, as far as the definitions of EI, PE and LGE
are consistent with each other. For instance, PE could be expressed as .the number
of loss events / the number of transactions. and LGE parameters can be defined
as .the average of (loss amount / transaction amount).. While it is proposed that
the definitions of PE and LGE are determined and fixed by the Committee, these
parameters are calculated and supplied by individual banks (subject to Committee
guidance to ensure the integrity of the approach). A bank would use its own his-
torical loss and exposure data, perhaps in combination with appropriate industry
pooled data and public external data sources, so that PE and LGE would reflect
each bank’s own risk profile.

Risk weight and gamma (scaling factor)

The product of EI*PE*LGE produces an Expected Loss (EL) for each business
line/risk type. The term γ represents a constant that is used to transform EL into
risk or a capital charge, which is defined as the maximum amount of loss per a
holding period within a certain confidence interval. The scale of γ will be determined
and fixed by supervisors for each business line/loss type. In determining the specific
figure of γ that will be applied across banks, the Committee plans to develop an
industry wide operational loss distribution in consultation with the industry, and
use the ratio of EL to a high percentile of the loss distribution (e.g. 99%).

Correlations

Current industry practice and data availability do not permit the empirical
measurement of correlations across business lines and risk types. The Committee
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is therefore proposing a simple summation of the capital charges across business
line/loss type cells. However, in calibrating the gamma factors, the Committee
will seek to ensure that there is a systematic reduction in capital required by the
Internal Measurement Approach compared to the Standardized Approach, for an
average portfolio of activity.

Further evolution

While the Committee believes that the definitions of business lines/loss types
and parameters should be standardized at least in an early stage, the Committee
also recognizes such standardization may limit banks. ability to use the operational
risk measures that they believe most accurately represent their own operational risk
(although banks could map their internal approaches into regulatory standards).
As banks and supervisors gain more experience with the Internal Measurement Ap-
proach and as more data is collected, the Committee will examine the possibility of
allowing banks greater flexibility to use their own business lines and loss types.

Key issues

The committee should pay close attention to the following key issues:

1. In order to use a bank’s internal loss data in regulatory capital calculation, har-
monisation of what constitutes an operational risk loss event is a prerequisite
for a consistent approach.

2. In order to calibrate the capital calculation, an industry wide distribution will
be used.

3. The historical loss observation may not always fully capture a bank’s true risk
profile.

4. As noted previously, a regulatory specified gamma term γ, which is determined
based on an industry wide loss distribution, will be used across banks to trans-
form a set of parameters, such as EI, PE and LGE, into a capital charge for
each business line and risk type.

5. More work is needed to determine if there is a stable relationship between EL
and UL and what the role of external data (to include severity) should be in
assessing this relationship.

Loss Distribution Approach (LDA)

A more advanced version of an .internal methodology. is the Loss Distribution
Approach. Under the LDA, a bank, using its internal data, estimates two probability
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distribution functions for each business line (and risk type); one on single event
impact and the other on event frequency for the next (one) year. Based on the
two estimated distributions, the bank then computes the probability distribution
function of the cumulative operational loss. The capital charge is based on the
simple sum of the VaR for each business line (and risk type). The approach adopted
by the bank would be subject to supervisory criteria regarding the assumptions
used. At this stage the Committee does not anticipate that such an approach would
be available for regulatory capital purposes when the New Basel Capital Accord
is introduced. However, this does not preclude the use of such an approach in the
future and the Committee encourages the industry to engage in a dialogue to develop
a suitable validation process for this type of approach. The LDA is discussed further
in Annex 6.
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Chapter 22

Fair Value Accounting

22.1 Introduction

Ever since the invention of bookkeeping, accounting has been of crucial essence in
any business. Noticeably, the areas of banking and finance rely on accounting more
than any other industries. This is because financial firms are all highly levered.
With high leverage, a financial firm relies heavily on risk management to mitigate
its credit risk and risk management relies heavily on numbers. As a result, the
reliability of numbers is of crucial essence for financial firms.

Accounting has been built on three principles

1. cost

2. objectivity

3. consistency

4. full disclosure

5. conservatism

6. materiality

7. revenue realization

8. matching

Yet these very powerful and useful principles cannot deal with the dynamic and
uncertain world, especially in the areas of banking and finance. One would imagine
in a stationary environment, such principles are valid but not in a highly uncer-
tain and dynamic environment. Indeed, accounting information has been proven
misleading in a vast varieties of practices in all areas banking and finance.

Even decades ago in the computer industry which was booming, the cost prin-
ciple has been highly criticized as inaccurate in reflecting the inventory value of a
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computer company. As we have seen in the history, during the past decades, com-
puters have become cheaper (and better), not more expensive. Hence, outdated
computers wrongly inflate the value of inventory. These computers sitting in the
inventory are worthless and yet high in cost.

Now, we are facing a similar problem in banking and finance. These important
accounting principles must be adapted in order to reflect the true information of a
bank (or any financial institution). Hence in 1998, GAAP adopted a new statement
(No. 133) as the first step toward fair value accounting.

FASB No. 133 revolutionizes the above principles of accounting. It embraces
uncertainty and dynamics that are denied by the traditional accounting philosophy.
While FASB No. 133 moves closer to the market, it also becomes more dependent
on models which can be easily manipulated. This is the very thing traditional
accounting principles try to avoid. Hence we have a trade-off at hand. In lieu of
this model dependency, model risk has become one of the major risk management
items.1

22.2 FASB No. 133

According to Wikipedia:

Statements of Financial Accounting Standards No. 133, Accounting for Deriva-
tive Instruments and Hedging Activities, commonly known as FAS 133, is an ac-
counting standard issued in June 1998 by the Financial Accounting Standards Board
(FASB) that requires companies to measure all assets and liabilities on their balance
sheet at “fair value”. This standard was created in response to significant hedging
losses involving derivatives years ago and the attempt to control and manage cor-
porate hedging as risk management not earnings management.

All derivatives within the scope of FAS133 must be recorded at fair value as an
asset or liability. Hedge accounting may be applied if there is hedge documentation
and gains and losses in the value of the derivative with gains and losses in the value
of the underlying transaction.

To be designated and qualify for FAS 133 hedge accounting, a commodity
(hedged item) and its hedging instrument must have a correlation ratio between
80% and 125%, and the reporting enterprise must have hedge documentation in
place at the inception of the hedge. If these criteria are not met, hedge accounting
cannot be applied. The non-applicability of hedge accounting can lead to significant
volatility in corporate earnings. Now, the financial community has had enough

1This seems to fall in a loop... that we introduce a solution which introduces a new problem.
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experience with FAS 133 that companies and constituents better understand this
process and are less critical of the volatile impact on earnings.

Creating forward commodity values to determine correlation, required by FAS
133, is not perfect due to the nature of different OTC derivative commodities and the
fact that they are not quoted in exchanges like NYMEX and ICE. Many companies
outsource this data collection to ensure that industry methods and standards are
achieved. As important as FASB 133 is in risk management and hedging, this
reporting system has limited some creative hedges solely based on the potential
negative impact on the companies’ earnings.

22.2.1 FASB No. 157

Financial Accounting Standard 157 (FAS 157) is the Financial Accounting Standards
Board (FASB)’s controversial fair value accounting standard, which was introduced
in 2006, in the run up to the global financial crisis.

According to Investopedia:2

Financial Accounting Standard 157 (FAS 157) established a single consistent
framework for estimating fair value in the absence of quoted prices, based on the
notion of an “exit price” and a 3-level hierarchy to reflect the level of judgment
involved in estimating fair values, ranging from market-based prices to illiquid Level
3 assets where no observable market exists and valuations have to be based on
proprietary internal information, like the most recent funding round.

Shortly after the FAS 157 was introduced, the subprime crisis put its subjective
measures of fair value to the test. Equity market volatility and illiquid markets
played havoc with fair value accounting models, and forced private equity firms
to mark down the value of assets on their balance sheets – causing a destructive
feedback loop of asset write-downs that threatened the solvency of the banking
system. Because volatile markets and fair value accounting can give a misleading
picture of the true state of a company’s finances, the FASB has since given companies
more leeway when valuing illiquid assets.

2https://www.investopedia.com/terms/f/fasb 157.asp
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22.2.2 FASB No. 159

22.2.3 FASB No. 161

22.3 CECL versus ALLL

According to the OCC website:3

The Financial Accounting Standards Board (FASB) issued a new expected
credit loss accounting standard in June 2016. The new accounting standard in-
troduces the current expected credit losses methodology (CECL) for estimating
allowances for credit losses. The standard is effective for SEC filers in fiscal years
and interim periods beginning after December 15, 2019. For public business entities
that are not SEC filers, the standard takes effect in fiscal years and interim periods
beginning after December 15, 2020. For an entity that is not a public business entity,
it takes effect in fiscal years beginning after December 15, 2020.

22.4 Black-Scholes as a cost method

3https://www.occ.treas.gov/topics/bank-operations/accounting/cecl/current-expected-credit-
loss-model.html



Chapter 23

Types of Capital

23.1 Introduction

23.2 Regulatory Capital (wiki)

Capital requirement (also known as Regulatory capital or Capital adequacy) is the
amount of capital a bank or other financial institution has to hold as required by its
financial regulator. This is in the context of fractional reserve banking and is usually
expressed as a capital adequacy ratio of liquid assets that must be held compared
to the amount of money that is lent out. These requirements are put into place
to ensure that these institutions are not participating or holding investments that
increase the risk of default and that they have enough capital to sustain operating
losses while still honoring withdrawals.

In the Basel II accord bank capital has been divided into two “tiers” [6] , each
with some subdivisions.

23.2.1 Tier 1 capital

Tier 1 capital, the more important of the two, consists largely of shareholders’ equity
and disclosed reserves. This is the amount paid up to originally purchase the stock
(or shares) of the Bank (not the amount those shares are currently trading for
on the stock exchange), retained profits subtracting accumulated losses, and other
qualifiable Tier 1 capital securities (see below). In simple terms, if the original
stockholders contributed $100 to buy their stock and the Bank has made $10 in
retained earnings each year since, paid out no dividends, had no other forms of
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capital and made no losses, after 10 years the Bank’s tier one capital would be $200.
Shareholders equity and retained earnings are now commonly referred to as “Core”
Tier 1 capital, whereas Tier 1 is core Tier 1 together with other qualifying Tier 1
capital securities.

Owned funds stand for paid up equity capital, preference shares which are
compulsorily convertible into equity, free reserves, balance in share premium ac-
count and capital reserves representing surplus arising out of sale proceeds of asset,
excluding reserves created by revaluation of asset, as reduced by accumulated loss
balance, book value of intangible assets and deferred revenue expenditure, if any.

23.2.2 Tier 2 (supplementary) capital

Tier 2 capital, or supplementary capital, comprises undisclosed reserves, revaluation
reserves, general provisions, hybrid instruments and subordinated term debt.

Undisclosed Reserves

Undisclosed reserves are not common, but are accepted by some regulators where a
Bank has made a profit but this has not appeared in normal retained profits or in
general reserves. Most of the regulators do not allow this type of reserve because it
does not reflect a true and fair picture of the results.

Revaluation reserves

A revaluation reserve is a reserve created when a company has an asset revalued
and an increase in value is brought to account. A simple example may be where a
bank owns the land and building of its headquarters and bought them for $100 a
century ago. A current revaluation is very likely to show a large increase in value.
The increase would be added to a revaluation reserve.

General provisions

A general provision is created when a company is aware that a loss may have occurred
but is not certain of the exact nature of that loss. Under pre-IFRS accounting
standards, general provisions were commonly created to provide for losses that were
expected in the future. As these did not represent incurred losses, regulators tended
to allow them to be counted as capital.
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Hybrid debt capital instruments

They consist of instruments which combine certain characteristics of equity as well
as debt. They can be included in supplementary capital if they are able to support
losses on an on-going basis without triggering liquidation. Sometimes, it includes
instruments which are initially issued with interest obligation (e.g. Debentures) but
the same can later be converted into capital.

Subordinated-term debt

Subordinated debt is classed as Lower Tier 2 debt, usually has a maturity of a
minimum of 10 years and ranks senior to Tier 1 debt, but subordinate to senior
debt. To ensure that the amount of capital outstanding doesn’t fall sharply once a
Lower Tier 2 issue matures and, for example, not be replaced, the regulator demands
that the amount that is qualifiable as Tier 2 capital amortises (i.e. reduces) on a
straight line basis from maturity minus 5 years (e.g. a 1bn issue would only count
as worth 800m in capital 4years before maturity). The remainder qualifies as senior
issuance. For this reason many Lower Tier 2 instruments were issued as 10yr non-
call 5 year issues (i.e. final maturity after 10yrs but callable after 5yrs). If not
called, issue has a large step - similar to Tier 1 - thereby making the call more likely.

23.2.3 Common capital ratios

Common capital ratios are:

� Tier 1 capital ratio = Tier 1 capital / Risk-adjusted assets ≥ 6%

� Total capital (Tier 1 and Tier 2) ratio = Total capital (Tier 1 + Tier 2) /
Risk-adjusted assets ≥ 10%

� Leverage ratio = Tier 1 capital / Average total consolidated assets ≥ 5%

� Common stockholders’ equity ratio = Common stockholders’ equity / Balance
sheet assets

23.2.4 Capital adequacy ratio

Capital Adequacy Ratio (CAR), also called Capital to Risk (Weighted) Assets Ratio
(CRAR), is a ratio of a bank’s capital to its risk. National regulators track a bank’s
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CAR to ensure that it can absorb a reasonable amount of loss and complies with
statutory Capital requirements.

Capital adequacy ratios (CARs) are a measure of the amount of a bank’s core
capital expressed as a percentage of its risk-weighted asset.

Capital adequacy ratio is defined as:

CAR =
Tier 1 capital + Tier 2 capital

Risk weighted assets

� TIER 1 CAPITAL = (paid up capital + statutory reserves + disclosed free
reserves) - (equity investments in subsidiary + intangible assets + current &
b/f losses)

� TIER 2 CAPITAL = A) Undisclosed Reserves + B) General Loss reserves +
C) hybrid debt capital instruments and subordinated debts

where Risk can either be weighted assets ( a) or the respective national regulator’s
minimum total capital requirement. If using risk weighted assets,

CAR =
T1 + T2

a
≥ 10%

The percent threshold varies from bank to bank (10% in this case, a common
requirement for regulators conforming to the Basel Accords) is set by the national
banking regulator of different countries.

Two types of capital are measured: tier one capital (T1 above), which can
absorb losses without a bank being required to cease trading, and tier two capital
(T2 above), which can absorb losses in the event of a winding-up and so provides a
lesser degree of protection to depositors.

Risk weights

Since different types of assets have different risk profiles, CAR primarily adjusts for
assets that are less risky by allowing banks to “discount” lower-risk assets. The
specifics of CAR calculation vary from country to country, but general approaches
tend to be similar for countries that apply the Basel Accords. In the most basic
application, government debt is allowed a 0% “risk weighting” - that is, they are
subtracted from total assets for purposes of calculating the CAR. Risk weighted
assets - Fund Based : Risk weighted assets mean fund based assets such as cash,
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loans, investments and other assets. Degrees of credit risk expressed as percentage
weights have been assigned by RBI to each such assets.

Non-funded (Off-Balance sheet) Items : The credit risk exposure attached to
off-balance sheet items has to be first calculated by multiplying the face amount of
each of the off-balance sheet items by the Credit Conversion Factor. This will then
have to be again multiplied by the relevant weightage.

Local regulations establish that cash and government bonds have a 0% risk
weighting, and residential mortgage loans have a 50% risk weighting. All other types
of assets (loans to customers) have a 100% risk weighting.

Bank “A” has assets totaling 100 units, consisting of:

� Cash: 10 units

� Government bonds: 15 units

� Mortgage loans: 20 units

� Other loans: 50 units

� Other assets: 5 units

Bank “A” has debt of 95 units, all of which are deposits. By definition, equity
is equal to assets minus debt, or 5 units.

Bank A’s risk-weighted assets are calculated as follows:

� Cash 10 * 0% = 0

� Government securities 15 * 0% = 0

� Mortgage loans 20 * 50% = 10

� Other loans 50 * 100% = 50

� Other assets 5 * 100% = 5

� Total risk

� Weighted assets 65

� Equity 5

� CAR (Equity/RWA) 7.69%

Even though Bank “A” would appear to have a debt-to-equity ratio of 95:5,
or equity-to-assets of only 5%, its CAR is substantially higher. It is considered less
risky because some of its assets are less risky than others.
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23.3 Economic Capital (Wiki)

In finance, mainly for financial services firms, economic capital is the amount of risk
capital, assessed on a realistic basis, which a firm requires to cover the risks that
it is running or collecting as a going concern, such as market risk, credit risk, and
operational risk. It is the amount of money which is needed to secure survival in a
worst case scenario. Firms and financial services regulators should then aim to hold
risk capital of an amount equal at least to economic capital.

Typically, economic capital is calculated by determining the amount of capital
that the firm needs to ensure that its realistic balance sheet stays solvent over a
certain time period with a pre-specified probability. Therefore, economic capital is
often calculated as value at risk. The balance sheet, in this case, would be prepared
showing market value (rather than book value) of assets and liabilities.

The first accounts of economic capital date back to the ancient Phoenicians,
who took rudimentary tallies of frequency and severity of illnesses among rural
farmers to gain an intuition of expected losses in productivity. These calculations
were advanced by correlations to predictions of climate change, political outbreak,
and birth rate change.

The concept of economic capital differs from regulatory capital in the sense
that regulatory capital is the mandatory capital the regulators require to be main-
tained while economic capital is the best estimate of required capital that financial
institutions use internally to manage their own risk and to allocate the cost of main-
taining regulatory capital among different units within the organization.

23.3.1 E&Y Model

Economic Capital (‘EC’) is calculated to measure the amount of capital that an in-
surer should hold to withstand all risks it undertakes on the economic basis. Capital
adequacy is the core use of EC for most insurers – providing a measure of capital
that truly captures the risk of the insurer’s own portfolio. Besides, EC is frequently
featured as an important component of an insurer’s risk appetite framework to fa-
cilitate risk measurement and monitoring processes.

Moreover, EC plays an important role in performance management, risk-based
decision making, risk-based pricing and business strategic planning. In short, EC
serves as a key tool for insurance companies to adjust their risk-taking behaviors
and to improve capital efficiency within the defined risk and capital framework.

In recent years, EC has drawn increasing attention from the Chinese and other
Asia-Pacific insurers. The emergence of the new financial reporting standards, reg-
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ulatory capital requirements and business value measurements continue to drive the
principle-based and market-consistent framework. We are experiencing a structural
evolution in the global insurance industry and are moving towards the Solvency II
and IFRS 4 Phase II regimes. Within the context of the global regulatory environ-
ment changes, China Insurance Regulatory Commission (‘CIRC’), has published a
set of guidelines on risk management and governance for life and health insurance
companies in 2010, requiring insurers to set up an EC framework as the risk man-
agement tool before 2014. Recently, Monetary Authority of Singapore (‘MAS’) has
published consultation papers on insurer Enterprise Risk Management (‘ERM’) and
investment activities requirements as well. MAS encouraged insurance companies
in Singapore to compute EC in their Own Risk and Solvency Assessment (‘ORSA’)
report.

The proposed ERM and investment activities requirements would be effective
from 1 January 2014 (subject to approval by the Board). Meanwhile, at the other
end of Eurasia, the credit and sovereign crises continue to ferment and drive up
global market volatility. In such a market, the capability to manage an insurance
business in a risk-sensitive EC framework becomes necessary, particularly in Asia.

Economic capital refers to the required capital under an economic accounting
framework, where assets and liabilities are measured using a market-consistent ap-
proach. EC is commonly defined as the amount of capital required to withstand
a maximum loss under the market-consistent basis, over a one-year time horizon,
with a certain confidence level (e.g. 99.5In other words, EC is calculated based on
economic principles and linked to the company’s own risk profile. From a risk mea-
surement point of view, EC can be interpreted as a one-year Value-at-Risk (‘VaR’)
of the company’s Market-consistent Value of Surplus (‘MVS’).

The starting point for EC is an economic, market consistent approach to valu-
ing both assets and liabilities. In an economic framework, there is a clear distinc-
tion between the role of capital and the role of Market-consistent Value of Liability
(‘MVL’). Capital is used to buffer risks during a given, defined time horizon, while
provisions cover the expected liability. In other words, expected liability is covered
by MVL, whereas any deviations from the expected liability are covered by capital.
For most Asian insurers, economic capital is disjointed with its actual operations,
as the assets are not marked to market and liabilities are still based on the Net
Level Premium reserve approach. As we are moving towards the market-consistent
environment, such disjoints will eventually be eliminated. The MVL is the value
at which the liability could be transferred to a willing, rational, diversified counter-
party in an arm’s length transaction under normal business conditions. The MVL
consists of:

� The Best Estimate Liability (‘BEL’): this is the expected present value of
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Figure 23.1: MVS

future liability cash flows, and

� The Risk Margin (‘RM’) this is an additional, explicit cost for non-hedgeable
risks

There are three approaches: Confidence Level; Conditional Tail Expectation;
and Cost of Capital.

Approach 1: Confidence Level

Under this approach, the MVL is considered to be the highest estimate liability
within a specified confidence interval. This view of MVL presumes that the liability
holder is reasonably confident that the costs due to liability are less than the pay-
ments to be received for holding the liability (under certain confidence level) Under
this view, the RM is actually implied by the MVL because RM is the difference
between MVL and BEL. To calculate RM under the confidence level approach, the
following steps are required: · Calculate best estimate liability stochastically · Plot
a probability distribution of the best estimate liability · Calculate the risk margin
based on the best estimate liability at the desired percentiles on the distribution
In practice, the confidence level approach is usually simplified to the Provision of
Adverse Deviation (‘PAD’) approach. PAD will be added to the insurance and
operation assumptions when calculating MVL, while BEL is calculated under best
estimate assumptions. In this case, the RM is measured as the difference between
the BEL with and without the PAD. When implementing such an approach, the
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Figure 23.2: Framework

PAD should be calibrated to the required confidence level for each assumption. The
calculation of this approach is straightforward and easy to explain. However, it has
the drawbacks that the required confidence interval is subjective and the associated
PAD parameters are difficult to calibrate. Also, the approach requires insurance
shock calibration and inter-risk correlation.

Approach 2: Conditional Tail Expectation (‘CTE’)

This approach is similar to the confidence level approach, except the risk measure is
replaced by Conditional Tail Expectation (‘CTE’). The RM is thereby the difference
between the CTE (e.g. at 60 percentile) and the mean of the BEL distribution.

Approach 3: Cost-of-capital (‘CoC’)

The cost-of-capital approach sets RM equal to the present value of the required risk
premiums for each period, where the risk premiums are assumed to be proportional
to the amount of capital required to support the liability. In order to calculate the
RM, the following steps are required.

The CoC approach requires the projection of capital requirements across the
whole projection period. The capital requirement is the amount required to be able
to withstand a maximum loss over a one year period, which is consistent with the
EC calculation horizon. It is less subjective than the confidence level approach. The
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CoC approach is also the CRO Forum recommended approach. The main drawback
of the CoC approach is that it is computationally intensive. Furthermore, there is
no consensus on what cost-of-capital rate to use.

To calculate EC, the distribution of future (one year horizon) MVS under real
world scenarios (outer scenarios) is required. Each MVS in the distribution will
need to be calculated based on the simulated risk neutral scenarios (inner scenarios)
if contractual options and guarantees exist. EC therefore requires stochastic on
stochastic (’SOS’) calculations.

There is a widespread concern in the industry regarding the intensive compu-
tation of SOS. For example, assume there are (1) 1000 outer scenarios; (2) 1000 inner
scenarios; (3) 1000 liability model points; and (4) 100 CPUs (running 2 model points
per second per CPU). Under such a situation, it would take 58 days to complete the
calculation. Below are three common approaches used to avoid the intensive SOS
calculation.

Replicating Portfolio

The Replicating Portfolio approach matches the cash flows (magnitude and
timing) of a standard asset portfolio (which may include derivatives) with the asset
and liability cash flows of the insurer. The MVS under the outer scenarios can
be determined by the market value of the replicating portfolio (normally closed
form formula is available). The valuation of liabilities under inner scenarios on the
stochastic basis is therefore not required when quantifying EC at each time period.

Curve Fit Model

The Curve fit model finds a polynomial to fit the asset and liability changes
corresponding to the variation of risk factors, where the variation of risk factors are
input variables of the polynomial. The regression method is used to determine the
coefficients of the polynomial based on results of calibration points. The MVS under
the outer scenarios can therefore be determined by the polynomial with changes in
the risk factors in the scenario. Under this approach, the calculation under risk
neutral scenarios is only required for a limited number of calibration points

Stress Test

Under the stress test approach, future MVS is estimated within two outer sce-
narios: (1) best estimate scenario and (2) stress test scenario. EC is then determined
based on the difference between the MVS under these two scenarios. Usually, the
stress test method is used to derive EC of the individual risk factor and a correlation
matrix is used to aggregate the individual risk factor EC to derive the overall EC.
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23.4 Risk Adjusted Return On Capital (RAROC)

Risk-adjusted return on capital (RAROC) is a risk-based profitability measurement
framework for analysing risk-adjusted financial performance and providing a consis-
tent view of profitability across businesses. The concept was developed by Bankers
Trust and principal designer Dan Borge in the late 1970s. Note, however, that more
and more return on risk adjusted capital (RORAC) is used as a measure, whereby
the risk adjustment of Capital is based on the capital adequacy guidelines as outlined
by the Basel Committee, currently Basel III.

23.4.1 Basic formula

Two alternative and yet identical formulas:

� RAROC = (Expected Return)/(Economic Capital) or

� RAROC = (Expected Return)/(Value at risk)

Broadly speaking, in business enterprises, risk is traded off against benefit.
RAROC is defined as the ratio of risk adjusted return to economic capital. The
economic capital is the amount of money which is needed to secure the survival
in a worst case scenario, it is a buffer against expected shocks in market values.
Economic capital is a function of market risk, credit risk, and operational risk, and
is often calculated by VaR. This use of capital based on risk improves the capital
allocation across different functional areas of banks, insurance companies, or any
business in which capital is placed at risk for an expected return above the risk-free
rate.

RAROC system allocates capital for two basic reasons:

� Risk management

� Performance evaluation

For risk management purposes, the main goal of allocating capital to indi-
vidual business units is to determine the bank’s optimal capital structure – that is
economic capital allocation is closely correlated with individual business risk. As
a performance evaluation tool, it allows banks to assign capital to business units
based on the economic value added of each unit.
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23.5 David Chow

The United States passed the Gramm-Leach-Billy Act in 1999 (a.k.a the Financial
Services Modernization Act of 1999) to repeal the 1933 Glass–Steagall Act that
limited commercial bank securities activities and affiliations between commercial
banks and securities firms. This article deals with that limited meaning of the
Glass–Steagall Act. A separate article describes the entire Banking Act of 1933.
With the passage of the Gramm-Leach-Bliley Act, commercial banks, investment
banks, securities firms, and insurance companies were allowed to consolidate. The
legislation was signed into law by President Bill Clinton. Citi Bank is a typical
recent example.

Large international banks started the one-stop service in 1990. The rise of
these large international banks was a consequence of globalization in the banking
industry. These banks offer integrated services in the following areas: (1) mergers
and acquisitions, (2) private equity funds, (3) brokerage, (4) consulting, and (5)
risk management. These large international banks expand via acquiring specialized
financial institutions like brokerage firms, small banks, insurance companies, etc.
These acquisitions can be multi-national. The major benefit is two-fold: (1) eco-
nomical scale and (2) diversification. The former is reflected in securities trading
and asset management. Theatrically, managing $10 billion and managing $100 mil-
lion require similar resources. Yet $10 billion investment can generate 100 times of
the returns. The latter is obvious that diversification can be most effective with the
inclusion of the entire investment universe.

23.5.1 Gap Analysis

EVA (economic value added) and SVA (shareholder value added)

EVA=NOPAT-(Invested Capital x WACC)



Chapter 24

Stress Testing, DFAST, CCAR,
and CVaR

24.1 Introduction

While stress testing has been a long- and well-discussed topic since Basel II, it
only becomes mandatory and part of the regulation by many governments after the
recent crisis. Now, all BHCs (bank holding companies) must perform stress tests on
a regularly basis. Those that fail must provide remedies timely or penalties will be
applied.

24.2 Stress Testing

A stress test, as the name suggests, is to simulate an extreme (bad) economic envi-
ronment and see if a bank (BHC, or bank holding company) can survive under the
extreme condition. Usually, there are three ways to conduct such a test – historical,
parametric, and

24.2.1 Historical Stress Testing

A historical stress test is to look back in (a very long) history and find historically
the worst cases and use those scenarios as the stress tests. For example, for a stock,
a stress test can be its 10 worst returns in the past 10 years. These 10 worst returns
are the stress scenarios used today.



352 Chapter 24: Stress Testing, DFAST, CCAR, and CVaR

24.2.2 Parametric Stress Testing

A parametric stress test is to use a model to calibrate to the target portfolio and
then stress the parameters of the model. For example, for a fixed income portfolio,
we can fit the value with an Heath-Jarrow-Morton model for the term structure and
Jarrow-Turnbull model for the credit spreads. Then we stress the yield curve, the
spreads, and the correlations between them.

Scenarios

� A 100-basis-point parallel shift (up or down) in a yield curve.

� Increasing or decreasing all the implied volatilities by 20% of current values.

� Increasing or decreasing an equity index by 10%.

� Increasing or decreasing the exchange rate for a major currency by 6%.

� Increasing or decreasing the exchange rate for a minor currency by 20%.

Regression

Historical data and linear.

Option-theoretic

Forward-looking and non-linear.

Liquidity discount model is one example.

24.2.3 Conditional Stress Testing

Let peripheral variables be functions of core variables

24.2.4 Reverse Stress Testing

While stress testing addresses the concern of extreme events and their impacts on
a bank’s assets/portfolios. How it is implemented is often subject to question.
Basically, models that are used to generate stressed losses are the same models that
are used to measure non-catastrophic risks. The behaviors of these models are well
understood and as a result the stressed losses are highly predicted. [A simple analogy
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is basically that if a daily VaR is $20 million then a stressed loss, after shocking the
scenarios by 5 times, will be simply $100 million. So what is there to learn and what
is the purpose of doing such a stress test?!]

Hence a result-driven analysis is proposed. Instead of shocking the economic
variables and see how the impacts are, regulators ask the following question: under
what scenarios the bank is in default?

As a result, banks need to find out where the vulnerabilities lie. This is a much
more efficient stress test than shocking the economic variables. Once the vulnera-
bilities are found, banks can then focus on those vulnerable areas and enhance risk
management in those areas.

24.2.5 A Simple Demonstration

The simplest stress test can be done in the following manner. We run regression
(linear) of a target portfolio on all chosen economic variables. Once the regression
coefficients are estimated, we shock the coefficients by the defined scenarios.

y = a+Xβ

where y is a time series of portfolio returns (% or $), X contains time series of
economic variables (hence a matrix), and β is the coefficients that need to be shocked
by defined stressed scenarios.

Of course, such a model is too simplistic. Furthermore, the regression coef-
ficients may not be economically or even statistically significant. So what is the
meaning of such a model!

Hence, more advanced methodologies must be used. One such methodology is
combine pricing models and regressions. From the pricing models we know clearly
and confidently how much input variables impact asset values. Then we try to
find using regressions to investigate how these input variables are affected by macro
economic variables.

This two-step method is more desirable in that not only is it able to measure
more accurately the relationships between asset values and economic variables, but it
can incorporate nonlinearities of the relationships because pricing models are usually
non-linear.

For example, if we run option values (meaning returns) against VIX (one
of the chosen economic variables in CCAR), we may not be able to find significant
coefficient. But if we run the implied volatility against VIX and then use the shocked
VIX coefficient to compute the implied volatility and then compute the option value
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(return), we can much better measure the impact of shocked VIX on option value,
as the implied volatility and VIX must be highly related and implied volatility can
capture the true of the option well. That is:

σ̂ = a+ bv

c = SN(d1)− P (t, T )KN(d2)

where σ̂ is implied volatility and v is VIX. The second line is the Black-Scholes
model for the option.

24.3 Comprehensive Capital Analysis and Review

(CCAR)

CCAR is an exercise includes a supervisory stress test to evaluate whether firms
would have sufficient capital in times of severe economic and financial stress to con-
tinue to lend to households and businesses. The Federal Reserve estimated revenue
and losses under the stress scenario based on detailed data provided by the firms
and verified by supervisors. The CCAR draws on the expertise of hundreds of staff
throughout the Federal Reserve System, including supervisors, economists, markets
analysts, and others.

Scenarios

� Five measures of economic activity and prices:

� Real and nominal Gross Domestic Product (GDP),

� unemployment rate of the civilian non-institutional population aged 16 and
over,

� nominal disposable personal income, and the Consumer Price Index (CPI);

Four aggregate measures of asset prices or financial conditions:

� CoreLogic National House Price Index,

� National Council for Real Estate Investment Fiduciaries Commercial Real Es-
tate Price Index

� Dow Jones Total Stock Market Index,

� Chicago Board Options Exchange Market Volatility Index;
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Four measures of interest rates:

� rate on the three-month Treasury bill,

� yield on the 10-year Treasury bond,

� yield on a 10-year BBB corporate security,

� the interest rate associated with a conforming, conventional, fixed-rate, 30-year
mortgage.

For the international variables,

� Three variables in four countries/country blocks.

� percent change in real GDP,

� Percent change in the Consumer Price Index or local equivalent,

� U.S./foreign currency exchange rate.

The four countries/country blocks included:

� Euro area

The euro area is defined as the 17 European Union member states that
have adopted the euro as their common currency

� United Kingdom,

� developing Asia

The developing Asia is defined as the aggregate of China, India, Hong
Kong, and Taiwan

� Japan

24.4 Dodd-Frank Act Stress Testing (DFAST)

Dodd-Frank regulation asks banks (BHCs) to conduct CCAR to examine required
capital. CCAR is based upon results from the stress tests.

Supervisory scenarios

� base line
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� adverse

� severely adverse

28 variables (16 on economy and GDP growth, inflation, and FX of 4 countries)

Models and methodology -31 participating BHCs -Project revenues, expenses,
etc. -How b/s, rwa, n/i, of BHC are affected by economy changes -Loss = PD *
LGD * EAD

More than a dozen individual models

� Wholesale loans

� commercial and industrial (C&I) loans, commercial real estate (CRE) loans

� Retail loans

� residential mortgages, credit cards, student loans, auto loans, small business
loans, and other consumer lending.

� Subcategories

24.5 Credit VaR

A CVaR in an intuitive way is the necessary capital for the firm to survive its most
harsh possible economic conditions. As a result, many regard CVaR as an output
of CCAR.
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