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Abstract 
 
This paper presents a method for estimating multi-factor versions of the Cox, Ingersoll, Ross (1985b) model of the term 
structure of interest rates.  The fixed parameters in one, two, and three factor models are estimated by applying an 
approximate maximum likelihood estimator in a state-space model using data for the U.S. treasury market.  A nonlinear 
Kalman filter is used to estimate the unobservable factors.  Multi-factor models are necessary to characterize the 
changing shape of the yield curve over time, and the statistical tests support the case for two and three factor models.  A 
three factor model would be able to incorporate random variation in short term interest rates, long term rates, and 
interest rate volatility. 
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1. Introduction 
 
The Cox, Ingersoll, Ross (1985b) model is an equilibrium asset pricing model for the term structure 
of interest rates.  The model provides solutions for bond prices and a complete characterization of 
the term structure which incorporates risk premiums and expectations for future interest rates.  The 
model is frequently presented as a one factor model, but in sections 6 and 7 of their paper, Cox, 
Ingersoll, and Ross, hereafter CIR, show how to incorporate multiple factors and how to extend the 
model to value nominal bonds and nominal claims.  The model is important for several reasons: it 
provides a link between intertemporal asset pricing theory and the term structure of interest rates, 
preserves the requirement that interest rates remain nonnegative, and produces relatively simple 
closed form solutions for bond prices.  The model is also useful as a tool for valuing interest rate 
derivative securities.1 
 In this paper, we estimate multi-factor versions of the CIR model by using a state space 
model in which estimates of the unobservable state variables are generated by a Kalman filter.  One, 
two, and three factor models are estimated, and several tests are performed to determine whether 
these models can accurately capture the variability of the term structure over time.  The estimation 
technique is different from methods previously used to estimate CIR models, and the econometric 
model is able to capture several important features of the term structure.2  The Kalman filter model 
does not require the additional restrictive assumptions associated with previous work based on 
maximum likelihood estimation.3  Our results support the case for multi-factor models and the em-
pirical tests identify several advantages associated with a three factor model.  The three factor mod-
el that we estimate represents an extension of the two factor model analyzed by Longstaff and 
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Schwartz (1992).  In that model, Longstaff and Schwartz interpret the two factors as the short term 
interest rate and interest rate volatility.  An alternative interpretation is one in which the two factors 
are the short term rate and a long term rate, which is similar in spirit to the work of Brennan and 
Schwartz (1979).  The two factor model that we estimate seems to fit more closely to this latter 
interpretation.  If the short term rate, a long term rate, and interest rate volatility are three distinct, 
important influences for the term structure, then a three factor model is necessary.  Using factor 
analysis applied to a sample of bond returns, Litterman and Scheinkman (1991) have found that 
three factors are necessary to characterize empirically the intertemporal variation of the term 
structure: the general level of interest rates, the slope of the yield curve, and curvature, which is 
associated with volatility.4  The three factor model that we estimate captures these three features of 
the term structure within a model that can be used for asset pricing.  We directly estimate the fixed 
parameters of the CIR model, and we effectively impose all of the restrictions implied by the 
model.  These fixed parameters determine the cross correlations and the dynamic behavior of bond 
rates.  In addition, the econometric model produces estimates of the parameter combinations that 
are relevant for asset pricing. 
 Finally, it is necessary to observe that the CIR model does not satisfy all of the normality 
assumptions required for statistical consistency in the maximum likelihood estimation of a state-
space model.  As we explain in section 2, the Kalman filter for estimating the unobservable state 
variables requires modification.  As a result, the filter for the CIR model is not linear and may have 
a bias even though it is a minimum mean squared error estimator.  The innovations in the CIR 
model have noncentral 2χ  distributions, in contrast to the normal distribution that is assumed for 
maximum likelihood estimation of Kalman filter models.  Maximum likelihood estimation under 
the assumption of normality is often applied in cases where the fundamental innovations are not 
normally distributed.  When these estimators are consistent, they are classified as quasi maximum 
likelihood estimators.  Consistency for these estimators can be verified by setting up the first order 
conditions for the maximization, 
 

0ln =
∂

∂
β

L  , 

 
and checking the large sample properties.  In the case of quasi maximum likelihood estimators that 
impose normality assumptions, statistical consistency depends on correctly modeling the first and 
second moments.  In the application of the CIR model here, the first and second moments are 
modeled correctly, but statistically consistency cannot be established because the Kalman filter pro-
duces estimates of the unobservable state variables that may be conditionally biased.  The Kalman 
filter estimates are, however, minimum mean squared error estimates and are unconditionally unbi-
ased.  We examine the seriousness of this potential bias by performing a Monte Carlo analysis of 
the approximate maximum likelihood estimator.  This analysis reveals significant biases for the 
parameters that determine the time series properties of interest rates, but the biases for the 
parameter combinations that are relevant for asset pricing are found to be either small or insignif-
icant. 
 The paper is organized as follows.  In section 2 we present a multi-factor model for pricing 
nominal bonds which follows from sections 6 and 7 of CIR, and we show that the model can be set 
up in discrete time as a state space model, which is estimated by approximate maximum likelihood. 
Estimates of the unobservable state variables are computed with a nonlinear Kalman filter.  In 
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sections 3 and 4, we present the estimates for one, two, and three factor models, and we perform a 
variety of tests on the models.  In section 5, we present the Monte Carlo analysis of the approximate 
maximum likelihood estimator. 
 
 
2. The State Space Model for Parameter Estimation  
 
2.1 The CIR Model of the Term Structure 
 
The model for the analysis is the nominal pricing model in equations (57) - (60) of CIR (1985b).  
The instantaneous nominal interest rate is assumed to be the sum of K state variables, 
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and the state variable are assumed to be independent and generated as square root diffusion proces-
ses: 

Kjdzydtydy jjjjjjj ,...,1for ,)( =+−= σθκ  . 
 

The solution for the nominal price at time t of a nominally risk-free bond that pays $1 at time s is 
determined as follows: 
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and 22 2)( jjjj σλκγ ++= .  Each state variable has a risk premium,  y  jjλ , and each jλ  is 
treated as a fixed parameter.5  The continuously compounded yield for a discount bond is defined as 
follows: 
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which is a linear function of the unobservable state variables.  Given a set of yields on K discount 
bonds, one can conceptually invert to infer values for the state variables.6   
 
2.2 The State Space Model for Estimation 
 
To estimate the CIR model, we use the state space model, which is described in Engle and Watson 
(1981) and Watson and Engle (1983).7  Because the unobservable state variables are distributed 
conditionally as noncentral 2χ  variates, adjustments must be made to the Kalman filter.  If we con-
sider observations for the state variables and bond rates sampled at discrete time intervals, the 
continuous time model can be expressed as follows: 
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where ty , tv , and a are 1×K  vectors, tR  and A are 1×M  vectors, Φ  is a KK ×  diagonal 
matrix, and B is an KM ×  matrix.  ty  contains the unobservable state variables and tR  contains 
the continuously compounded yields for various discount bonds, )( it sR , i = 1, ..., M.  A, B, a, and 
Φ  are functions of the fixed parameters in the stochastic processes for the state variables.  The 
individual elements of ty  and tR  are as follows: 
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where t∆  is the size of the time interval in the discrete sample.  The equations for the state 
variables follow directly from the noncentral 2χ  distribution.  The expectation for jty  conditional 
on information at t - 1 is 
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The error term jtv  represents the unanticipated change in jty  and it has a conditional expected 
value of zero and a conditional variance equal to 
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There is no serial correlation in jtv , but there is serial dependence in the variance.  The model 
described up to this point is an exact discrete time representation of the CIR model, without any of 
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the typical approximations that are applied in deriving discrete time representations of continuous 
time models. 
 This model can be expressed in the state space form by adding error terms to the equations 
for the observable bond rates: 
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where ),...,( 1 Mttt εεε =′ .  Each error term is a measurement error, or noise term, that is 
introduced to allow for small errors and imperfections in the observed bond rates.  Bond rates are 
typically computed from averages of bid and ask prices, and in many samples, the rates for long 
term discount bonds must be computed from various coupon bond issues.8  We assume that there is 
no serial correlation and no cross correlation in these measurement errors for the bond rates.  This 
simple structure for the measurement errors is imposed so that the serial correlation and the cross 
correlation in bond rates is attributed to the variation of the unobservable state variables.  With 
these assumptions, the covariance matrix for the error terms in (1) can be written as follows: 
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where tQ  is a diagonal matrix with the conditional variances of the state variables on the diagonal, 
and U is a diagonal matrix with the variances of the measurement errors on the diagonal. 
 
2.3 The Kalman Filter 
 
The fixed parameters of a state space model are typically estimated by the method of maximum 
likelihood using the Kalman filter to compute estimates of the unobservable state variables.  The 
model in (1) fits into the framework of the state space model described in equations (1) - (3) in 
Watson and Engle (1983), but the innovations for the state variables in the CIR model are not 
normally distributed.  If the innovations in a state space model are not normally distributed, the 
standard linear Kalman filter is no longer conditionally unbiased as an estimator of the unobserv-
able state variables.9 The fixed parameters in a state space model are typically estimated by using 
the Kalman filter to compute innovations in the unobservable state variables and maximizing a 
likelihood function that imposes normal distributions for all of the innovations.  There are models 
in which the normality assumptions can be relaxed and the maximum likelihood estimator is still 
consistent.  These estimators are known as quasi maximum likelihood estimators.  In this appli-
cation for the CIR model, the quasi maximum likelihood estimation is not consistent because there 
is a bias in the Kalman filter.  To develop a consistent quasi maximum likelihood estimator, one 
must develop an unbiased estimator for the unobservable state variables. 
 To clarify some of these issues, we begin with a review of the linear model.  The Kalman 
filter is an algorithm for computing estimates of the state variables at each time period during the 
sample.10 The innovations for the observed bond rates are defined as: 
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where 1ˆ −ty  is an estimate of 1−ty  based on 1−tu  and 2ˆ −ty .  For the initial estimate 0ŷ , one can use 
the unconditional means for the state variables.  The innovations for the state variables, given the 
previous estimates, are defined as: 
 

1ˆ −Φ−−= ttt yayη  . 
 

The Kalman filter is a linear model for computing estimates of the state variables: 
 

tttt uDyay +Φ+= −1ˆˆ   ,                                                 (2) 
 
where tD  is an KM ×  matrix of coefficients which are set to minimize the mean squared error 
between ty  and tŷ .  If the innovations are normally distributed, this estimator is also the expecta-
tion conditional on the current and past values of the observed variables.  In the estimation of the 
unobservable state variables, the fixed parameters of the model are presumed to be known.  The 
estimator is formed by solving the following minimization:  
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Because ttttt uDyy −=− ηˆ , the minimization can be restated as 
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Here, the expectation is conditional on the observations available at time t ( tR , 1ˆ −ty , 1−tR , …).  The 
Kalman filter uses a least squares projection of tη  on tu  to estimate the coefficients in tD , which 
determine the current innovations for the state variables.  The first order conditions for this minimi-
zation problem are 
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The covariance matrices are defined as follows: 
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 In the CIR model, the diagonal elements of tQ  are linear functions of 1−ty , and tQ̂  is 
formed by replacing 1−ty  in tQ  with 1ˆ −ty .  The solution that minimizes the mean squared errors is 

tD  = 1ˆ −′Σ tt HB  and the estimates are computed as follows: 
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To start this algorithm, one sets 0ŷ  equal to the unconditional mean for y and 0Σ  equal to the 
unconditional variance, and the calculations are done recursively.  This filter is the standard Kalman 
filter with one important difference:  tH  depends on 1ˆ −ty , which depends on observations through 
time t - 1 ( 1−tR , 2−tR , ...). 
 The model also has one more important difference because there is an extra restriction on 
the state variables, 0≥ty .  If the Kalman filter produces a negative estimate for jty , one can 
generate a better estimate, in the sense of minimizing the mean squared error, by setting  jtŷ  equal 
to zero.  One can add this nonnegativity constraint to the minimization of the mean squared errors 
and use the Kuhn-Tucker conditions. 
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The first order conditions are now modified as follows: 
 

0ˆ   as  0ˆ ≥≥−′Σ tttt yHDB  . 
 
If tŷ  > 0, the corresponding equation holds as an equality.  The solution to these first order condi-

tions can be found by first computing the linear solution tD  = 1ˆ −′Σ tt HB .  If an element of tŷ  is 
negative, set that estimate equal to zero and drop the corresponding row from the system of 
equations.  The result is 

0ˆ ** =−′Σ ttt HDB  , 
 
where *ˆ

tΣ  is KK ×− )1(  and the row dimension of *
tD  is K - 1.  The resulting solution, *

tD  = 
1*ˆ −′Σ tt HB , produces the same estimates for the nonnegative elements of tŷ  found in the original 

solution.  The net result is the linear estimator from the standard Kalman filter, with any negative 
estimates replaced with zeros.  We refer to this Kalman filter as a quasi linear Kalman filter, but it 
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is nonlinear. 
 The quasi linear Kalman filter minimizes the mean squared errors subject to the restriction 
that the estimates must be nonnegative.  Even though we have retained the linear structure of the 
standard Kalman filter, the resulting filter is nonlinear in two respects:  the nonnegativity restriction 
and the dependence of the coefficients in tD  on 1ˆ −ty .  Because the estimator is not strictly linear, it 
is not a best linear estimator that minimizes mean squared error, and it is possible that there are 
other nonlinear estimators that produce smaller mean squared errors.  This estimator, like the 
standard Kalman filter, is computed by inverting a matrix and performing several matrix 
multiplications, and it does not require an iterative solution to a set of nonlinear equations.  
 
2.4 The Approximate Maximum Likelihood Estimator 
 
The maximum likelihood estimator is obtained by maximizing the following log-likelihood func-
tion: 
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where β  is a vector containing all of the fixed parameters to be estimated.  In our application of the 
state space model, tu  is not normally distributed, but this approximate maximum likelihood est-
imator, based on the normality assumption, is a method of moments estimator.  The estimates are 
found by solving the likelihood equations, the first order conditions for the maximization problem 
in (3): 
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for  j = 1, …, N.  Setting these derivatives equal to zero is equivalent to setting 
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for  j = 1, …, N.  Here we have used the result that tr (AB) = tr (BA).  In each one of the first 
order conditions, the approximate maximum likelihood estimator effectively sets the sum of two 
sample moments equal to zero.  The partial derivatives in the equations are functions of the fixed 
parameters and past values of the random variables, 1−tR , 2−tR , …, etc.  Consistency could be 
established if the following results were to hold: 
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The first condition is not satisfied because the quasi linear Kalman filter for the CIR model does 
not necessarily equal the conditional expectation for the state variables.11  If the Kalman filter is 
conditionally unbiased, then both conditions hold and the estimator is statistically consistent. 
 In quasi maximum likelihood estimation, the covariance matrix for the parameter estimates 
must be adjusted and the likelihood ratio statistics for model restrictions do not have asymptotic 

2χ  distributions.12  As shown in White (1982), the covariance matrix for )ˆ( ββ −T  converges 
to 
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If the innovations are normally distributed as in the standard model, then 
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and the covariance matrix becomes the familiar inverse of the information matrix.  These statistical 
properties do not necessarily carry over for the approximate maximum likelihood estimator, but we 
use equation (4) to compute standard errors for the parameters estimates.  In section 3, we proceed 
as if the biases are not serious.  In section 5, we examine the magnitudes of the biases.  To find the 
approximate maximum likelihood estimator, we use a modified method of scoring which is de-
scribed in Berndt, Hall, Hall, and Hausman (1974) and Engle and Watson (1981).  The covariance 
matrix for β  is computed by replacing the expectations in (4) with sample moments.  The first der-
ivatives and the expectation of the second derivative matrix are given in Engle and Watson.   
 
2.5 Comparison with Other Estimation Techniques in the Literature 
 
Several approaches have been used in the previous research on the empirical estimation of CIR 
models.  Gibbons and Ramaswamy (1993) and Heston (1989) have used unconditional sample 
moments in a generalized method of moments (GMM) framework to estimate and test different 
versions of the model.  GMM estimators of this form are typically less efficient than alternative 
estimators and the resulting estimates for the model parameters have relatively large standard 
errors.  This approach does have some advantages:  specific distributional assumptions are not 
required, and as Gibbons and Ramaswamy have noted, the GMM estimators allow for 
measurement errors in the bond rates.  Longstaff and Schwartz (1992), in their estimation of a two 
factor model, use one month T-Bill rates as a proxy for the instantaneous interest rate and estimates 
of interest rate volatility generated from a GARCH model.13  Their parameters are estimated by 
regressing bond yield changes on the changes in these two estimated factors.  This approach 
depends on the assumption that the estimates for the two factors do not contain measurement error. 
 A third approach is maximum likelihood estimation, which has been used in Chen and Scott 
(1993) and Pearson and Sun (1994).  The likelihood function for the observed bond rates is 
developed from the conditional density functions for the state variables, which have noncentral 2χ  
distributions.  Because there are typically more bond rates than unobservable factors or state 
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variables, Chen and Scott introduce measurement errors for selected bond rates.  To obtain tractable 
likelihood functions, they assume that some of the bond rates are measured without error.  This 
approach to maximum likelihood is not tractable if all of the bond rates are measured with some 
error, and it requires a specific distribution for the measurement errors.  Duffie and Singleton 
(1997) have applied this maximum likelihood estimator to rates in the interest rate swap market. 
Pearson and Sun have circumvented this problem by assuming no measurement errors and by re-
stricting the number of cross sections for the bond rates to be equal to the number of factors.  In the 
estimator developed in this section, we allow for measurement errors on all of the bond rates and 
the likelihood function remains relatively simple and tractable.  This estimator differs from the 
previous maximum likelihood estimators because we do not use the non-central 2χ  density 
function and we are not required to impose a specific assumption for the distribution of the meas-
urement errors.  The estimator uses the structure imposed by the CIR model on the first and second 
moments of the conditional distributions, and it imposes more of the model structure than the 
previously implemented GMM estimators.  The negative feature of the estimator developed in this 
section is the potential large sample bias.  The magnitudes of the biases are examined in section 5. 
 More recently, a simulated method of moments (SMM) estimator has been developed by 
Dai and Singleton (2000) for exponential affine term structure models that include the CIR model 
as a special case.  Their SMM estimator is statistically consistent, but the estimator is computation-
ally slow as it requires iterative solutions coupled with Monte Carlo simulations.  Two recent pap-
ers have used Kalman filters to estimate multi-factor term structure models.  Babbs and Nowman 
(1999) use the standard Kalman filter, state-space model to estimate a generalized Vasicek model, 
in which all of the innovations are normally distributed.  They use weekly data on 8 maturities over 
the period 1987 to 1996 to estimate 1, 2, and 3 factor models.  Their zero coupon rates are extracted 
from quotes for U.S. LIBOR and U.S. swap rates, and the longest maturity is 10 years.  Geyer and 
Pichler (1999) have estimated multi-factor CIR models using the estimation technique developed in 
this section.  They use monthly data for 16 maturities in the U.S. Treasury market over the period 
1964 to 1993, and they estimate models with up to 5 factors.  The longest maturity in their study is 
5 years.  In the next section, we use 4 maturities from the U.S. Treasury market to estimate 1, 2, and 
3 factor models, and the longest maturity varies from 15 to 30 years.  We emphasize the use of long 
maturities because we feel that the length of the maturities used in the analysis will have a 
significant impact on the estimation of the mean reversion parameters. 
 
 
3. Estimation of One, Two, and Three Factor Models 
 
3.1 Data 
 
We use two data sets for the estimation of the CIR model.  The first data set includes yields for 
discount bonds calculated by McCulloch, and presented in Shiller and McCulloch (1990).  We use 
the rates from the table for the zero coupon yield curves for 3 months, 6 months, 5 years, and the 
longest maturity available (10-25 years).  The rates are annualized and stated on a continuously 
compounded basis and represent rates for discount bonds.  These rates have been computed from 
month end prices in the Treasury bond market, and we use the data for the period 1960 to 1987.  
This monthly data set serves as a longer sample for the estimation of the parameters in the interest 
rates processes. 
 Interest rate volatility appears to have changed over the last 30 years, and Treasury bond 
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prices are also available on a daily or weekly basis.  The second data set consists of bond prices on 
Thursdays from January 1980 to December 1988.  Prices for 13 week and 26 week T-bills, 5 year 
Treasury notes, and the longest maturity noncallable bonds available have been collected from the 
Wall Street Journal.  For this period, there are 470 weekly observations.  This particular set of ob-
servations was selected for several reasons.  T-bills mature on Thursdays and there are only a few 
holidays that fall on Thursday during the sample period.14   By using weekly data instead of 
monthly data, we have a much larger sample size.  The four different maturities were chosen so that 
different points along the yield curve could be used to estimate the factors and the parameters in the 
processes that determine the factors.  The two Treasury bills are discount bonds, but the two longer 
term bonds are coupon bonds.  The yields for 5 year discount bonds and long term discount bonds 
have been approximated from the coupon bonds by assuming two forward rates:  one to apply from 
6 months to 5 years and one from 5 years to 30 years.  The longest maturities on noncallable bonds 
were 15 years at the beginning of the 1980's and 30 years at the end of the sample period. 
 
3.2 Empirical Results 
 
The results of the estimation are presented in Tables I and II.  Table I contains the estimates for the 
monthly data set, 1960-87, and Table II contains the estimates for the weekly data set, 1980-88.  
Time is measured in years so that all of the parameter values are expressed on an annual basis.  All 
of the variance parameters are statistically significant, but the results are mixed for the individual 
estimates of the κ , θ , and λ  parameters.  Most of the estimates for the risk premiums are negative 
and approximately half are statistically significant.  Only one of the risk premium estimates is 
positive and it is not significant.  The κ  and θ  estimates are statistically significant for the first 
factor, but they are generally insignificant for the second and third factors in the multi-factor 
models.  The log-likelihood values increase dramatically as the number of factors is increased.  The 
standard deviations for the measurement errors naturally decrease as the number of factors is 
increased.   
 In most of the cases, the standard deviations for the measurement errors on the 6 month T-
Bill rate go to zero.  This is a common phenomenon in factor analysis, and the estimates for the 
variances, and the standard deviations, are constrained to be nonnegative.  In the weekly data set, 
the variance for the measurement error on the long term bond rate also goes to zero in the three 
factor model.  The estimated standard deviations for the measurement errors are much larger for the 
one factor model.  In the monthly data set, these standard deviations are 33 basis points for the 3 
month T-Bill rate, 102 basis points for the 5 year bond rate, and 132 basis points for the long term 
bond rate.  In the weekly data set, the standard deviations are 40 basis points for the 3 month T-Bill 
rate, 104 basis points for the 5 year bond rate, and 122 basis points for the long term bond rate.  The 
measurement errors for the 5 year bond rate and the long term bond rate are quite large in the one 
factor model.  The largest standard deviations for measurement errors in the multi-factor models are 
30 to 37 basis points, and most of the estimates are much smaller.  For example, in the three factor 
model estimated from the weekly data set, these standard deviations are 32 basis points for the 3 
month T-Bill rate, 0 for the 6 month T-Bill rate, 7 basis points for the 5 year bond rate, and 0 for the 
long term bond rate.  These results indicate that most of the variation in the observed bond rates is 
explained by the common factors in the multi-factor models. 
 The estimates for the κ  parameters are close to zero for the extra factors in the multi-factor 
models, and almost all of the estimates are smaller than their standard errors.  The only exception is 

2κ  in the two factor model estimated from the weekly data, but the estimate, .021185, is relatively 
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small.  The stochastic processes for the state variables resemble first order autoregressions if they 
are sampled at discrete time intervals, and the κ  parameters determine the rate of mean reversion.  
The coefficient on 1−ty  in the autoregression is equal to )exp( t∆− κ , where t∆  is the size of the time 
interval over which the data are sampled.  If the κ  parameter is close to zero, then the 
autoregression coefficient is close to one, which is equivalent to having a root close to the unit 
circle in the time series representation.  If κ  is zero, the state variable is a random walk and the 
bond rates are not stationary time series.  Cooley, LeRoy, and Parke (1992) have argued from a 
theoretical perspective that interest rates should be stationary time series.15  If κ  = 0 for a square 
root process in the CIR model, the factor behaves like a pure random walk but zero becomes an ab-
sorbing barrier for the process; if the process hits zero, it disappears.  If the κ  parameter is small so 
that κθ2  < 2σ , the process can hit zero, but zero serves as a reflecting barrier so that the process 
continues.  The small κ  estimates indicate that some of the factors in the multi-factor models do 
exhibit characteristics similar to random walks, and these factors are the ones that explain the 
variation of the long term bond rates.  The rate of mean reversion for each factor can be measured 
by computing mean half lives.16  In the two factor model estimated from the weekly data set, the 
mean half lives are .95 years for the first factor and 32.7 years for the second factor.  In the three 
factor model estimated from the weekly data set, the mean half lives for the three factors are .48 
years, 40.9 years, and 19.7 years.  The factors with long mean half lives are the ones that determine 
the variation of the longer term bond rates.  The estimates for the mean half lives are much shorter 
in the studies by Babbs and Nowman(1999) and Geyer and Pichler (1999).  We attribute the 
difference to our inclusion of 30 year maturities. 
 The estimator developed in section 2 is based on the assumption that the bond rates and the 
state variables are stationary time series, but the Kalman filter can be applied to nonstationary time 
series.17  If the series are not stationary, one uses a starting value for 0y  which is treated as a fixed 
parameter and 0Σ  is set equal to zero.  We have treated the bond rates as stationary time series and 
the unconditional means, θ , are used for the initial estimate 0ŷ , and the unconditional variances 
and covariances are used for 0Σ .  If jκ  is close to zero, the corresponding variance in 0Σ  is large 
so that the estimate, jtŷ , for the first period is allowed to have a large deviation from the 
unconditional mean.  The Kalman filter uses conditional variances for the subsequent observations 
in the sample.  The large variance associated with a small κ  parameter affects the first observation 
only.  We have run the models in Tables I and II with the nonstationary Kalman filter and the 
changes in the parameter estimates are very small. 
 An analysis of the factor loadings can be used to determine the nature of the factors cal-
culated by the Kalman filter.  In this model, the factor loadings are the coefficients in the matrix B 
defined in equation (1).  In Figures 1-4, we present graphs of these coefficients across different 
maturities in the two and three factor models.  The coefficients for the two and three factor models 
computed from the estimates in the 1960-87 sample are presented in Figures 1 and 2.  The 
coefficients computed from the estimates for the weekly data set, 1980-88, are in Figures 3 and 4.  
The patterns are similar for both sets of graphs.  In the two factor model, the coefficients on the first 
factor decrease quickly as time to maturity increases.  The coefficients for the second factor are 
approximately one for all maturities.  The first factor has a strong influence on short term rates, but 
a diminished effect on long term rates, and this factor determines the slope of the term structure.  
The second factor affects all rates and determines the general level of interest rates.  We find that 
estimates of the first factor are highly correlated with the slope of the term structure, specifically the 
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short term rate minus the long term rate, and estimates of the second factor are highly correlated 
with the long term interest rate.  In the three factor model, the coefficients for the first factor are 
similar to those for the first factor in the two factor model.  The coefficients decrease sharply as 
time to maturity increases, and this factor determines the slope of the term structure.  The 
coefficients for the second factor decrease slowly as time to maturity increases, and the coefficients 
for the third factor increase with time to maturity and then level off between 20 and 30 years.  The 
second and third factors determine the general level of interest rates and the relationship between 
medium and long term rates.  We find that the sum of the second and third factors is highly 
correlated with medium and long term rates.  In these model estimates, the second factor has a 
higher volatility and the third factor has a lower volatility.  The interaction of these two factors 
determines the curvature of the term structure and the volatility of bond rates. 
 In all of these models, the relevant combinations of parameters for valuing bonds and 
interest rate derivative assets are )( jj λκ + , jjθκ , and jσ .  The estimates for these parameter com-
binations in the multi-factor models are presented with their asymptotic standard errors in Table III. 
 Most of these parameter combinations are statistically significant in the sense that the estimates are 
large relative to their standard errors, but several of the estimates for jjθκ  are close to zero and are 
smaller than their standard errors.  All of the estimates for )( jj λκ +  and jσ  are several times 
greater than their standard errors.  Most of the parameter combinations that are relevant for asset 
pricing are estimated with a high degree of precision.  
 We turn now to statistical tests of the different models.  Because the three models are 
nested, one could use the likelihood ratio statistic for hypothesis testing, but this statistic does not 
have the standard 2χ  distribution when the innovations are not normally distributed.  The asymp-
totic distribution for the likelihood ratio statistic would be a weighted sum of 2χ  distributions, as 
described in Vuong (1989).  We have already noted that the approximate maximum likelihood 
estimator is potentially biased and the statistical results for quasi maximum likelihood estimators 
may not apply.  Comparisons of log likelihood functions across the models do serve as indicators of 
the model performance in fitting the data.  The values for the log likelihood function in the monthly 
data set are 5,828.77 for the one factor model, 6,730.11 for the two factor model, and 6,954.48 for 
the three factor model.  In the weekly data set, these values are 8505.09 for the one factor model, 
10008.65 for the two factor model, and 10,424.24 for the three factor model.  The likelihood ratio 
statistics for tests of the one factor model versus the two factor model are 1,803 in the monthly data 
and 3,007 in the weekly data.  The likelihood ratio statistics for tests of the two factor model versus 
a three factor model are 449 in the monthly data and 831 in the weekly data.  The values for these 
likelihood ratio statistics are extremely large and would indicate rejection of the null hypotheses at 
low significance levels if one could apply either the standard 2χ  distribution or the results for 
weighted sums of 2χ  distributions in Vuong.  There is also a substantial reduction in the standard 
deviation of the measurement error for the 5 year bond rate as we move from the two factor model 
to the three factor model.  In the monthly data set, this standard deviation is reduced from 37 basis 
points to 16 basis points.  In the weekly data set, it is reduced from 34 basis points to 7 basis points. 
 There are reductions in the standard deviations for the other measurement errors in the three factor 
model, but the improvements are smaller. 
 During the period 1979-82, there was a shift in Federal Reserve policy toward an emphasis 
on growth rates of the money supply, and interest rate volatility increased.  In Tables IV and V, we 
present estimates of the CIR model with this period removed from the two samples.  The results are 
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similar to those reported in Tables I and II, except for the estimates of the volatility parameters.  
The estimates for the σ  parameters are smaller and in some cases the estimates are much smaller.  
For example, in the weekly data set the σ  estimates for the two factor model decrease from .16885 
and .054415 to .08515 and .04579 when the 1979-82 period is removed.  The standard deviations 
for the measurement errors are also smaller when this period is not included in the samples.  The 
other aspects of the results remain the same.  In the two and three factor models, there are factors 
with slow mean reversion (κ estimates close to zero).  Most of the risk premium estimates are 
negative, and the log likelihood function increases significantly as the number of factors is 
increased. 
 
 
4. Can the CIR Model Explain the Term Structure of Interest Rates Over Time? 
 
In this section we examine the ability of the CIR models to fit actual bond prices and the different 
points along the yield curve.  For selected days from 1980 through 1992, we have collected all of 
the available bond prices for the U.S. Treasury market.  The flower bonds, the callable bonds, and 
the coupon issues with less than a year to maturity have been excluded.  The specific dates are 
given in the note to Table VI.  Eight dates from June 1989 to December 1992 fall outside of the 
estimation period.  On each day, we compute prices and yields using the three CIR models with the 
parameter estimates from Table II for the weekly data set, which covers the period 1980-88.  The 
estimates for the state variables are computed from the Kalman filter.  The same values for the 
fixed parameters have been used in the post sample period, 1989-92.  To calculate the estimates for 
the state variables during the post sample period, we use weekly observations on the same bond 
rates from 1989 to 1992.  We then compare the prices from the three CIR models with actual bond 
prices, and we compare the yields-to-maturity computed from the CIR model prices with 
yields-to-maturity computed from actual bond prices. 
 To measure the fit for the three models, we compute root mean square errors for the errors 
in prices and yields.  Both absolute pricing errors and percentage pricing errors are computed.  The 
calculations are summarized in Table VI.  The root mean squared errors are similar for the absolute 
pricing errors and the percentage pricing errors.  The relative ranking of the three models is the 
same across all of the measures of model fit:  the three factor model performs marginally better than 
the two factor model, and both multi-factor models perform much better than the one factor model. 
 For the 1980-88 sample of 2,304 bonds, the multi-factor models have root mean squared errors 
which are much smaller than the root mean squared errors for the one factor model.  The 
multi-factor models continue to outperform the one factor model in the post sample period.  During 
the 1980-88 sample period, the root mean squared error for prices with the three factor model is 
35% lower than the root mean squared error for prices from the two factor model.  In terms of 
yields, the root mean squared error for the three factor model is 19% lower.  The three factor model 
outperforms the two factor model by a small margin in the post sample observations from 1989 to 
1992. 
 What is the nature of the pricing errors of these models?  In Figure 5, we present graphs of 
the yield curve for selected days on which we have complete sets of observations for the Treasury 
market.18  In the graphs we plot yield-to-maturity versus duration, a common measure of maturity 
for bonds.  The actual yields are plotted as asterisks against curves for the three CIR models.  The 
one-factor model performs poorly and on many days there are large misses for the long end of the 
yield curve.  In all of the graphs, the two factor model is able to fit both the short end of the yield 
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curve and the long end, but on a few days it is unable to fit the intermediate points.  The two factor 
model captures the general slope of the yield curve, but it occasionally misses the shape or 
curvature of the yield curve.  In almost all of the cases the three factor model fits the general shape 
as well as the slope of the yield curve.  For example, in June 1984, the two factor model misses the 
yields for bonds with durations of one to five years, whereas the three factor model generally prices 
these bonds correctly.  For the post sample dates, the yield curves for the multi-factor models are 
close and the actual yields fall very close to the two curves.  For many of the days in the sample, the 
two factor model provides an adequate characterization of the actual yield curve, but there are 
occasions when a three factor model is necessary to capture the curvature of the yield curve.  The 
one factor model is unable to characterize the changes in the yield curve over time and the errors of 
the model are economically significant.  To make the one-factor model perform well over time, one 
must regularly adjust the parameter values, but such a procedure is internally inconsistent and 
suggests that some of the parameters should be treated as state variables.  Geyer and Pichler (1999) 
run additional diagnostic tests to show that the multi-factor CIR models are rejected by the term 
structure data. 
 
 
5. A Monte Carlo Analysis of the Approximate Maximum Likelihood Estimator 
 
In section (2), we have modified the Kalman filter to impose a nonnegativity restriction and to 
account for the dependence of the variance of the state variables on previous levels, and the 
resulting filter is not strictly linear.  At a theoretical level, the approximate maximum likelihood 
estimator can have large sample biases.  In this section, we simulate a two factor model to study the 
properties of the modified Kalman filter and the approximate maximum likelihood estimator.  The 
two factor model has been chosen because it captures much of the variation of the term structure 
over time, and the approximate maximum likelihood estimator for the two factor model converges 
at a much faster rate than the estimator for the three factor model. 
 As shown in CIR (1985b), if y is generated as a square root process, the distribution of  ty  
conditional on sy  is a noncentral 2χ  if we perform the transformation x = tyc2 , where 
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simulating a standard normal, Z, and performing the following transformation:  )(/2
1 δχ  = 

2)( δ+Z .  Then a second simulation from a 2
1−νχ  is added to this value to produce the simulation. 

 Some of the estimates in our multi-factor models produce degrees of freedom that are less than one 
and this method cannot be used in these cases.  Another method is based on the observation that a 
noncentral 2χ  variate is a mixture of central 2χ  variates.  First simulate the degrees of freedom 
from a Poisson distribution that has an expected value equal to δ2

1  and then simulate a 2χ  variate 
with the simulated degrees of freedom.  We have used the first method in those cases where the 
degrees of freedom are greater than one and the second method when the degrees of freedom are 
less than one.  The random number generators for the standard normal, the chi-squared, and the 
Poisson distributions contained in the International Mathematical and Statistical Library (IMSL) 
have been used for the simulations. 
 For the Monte Carlo analysis, we have simulated the model in (1) with two factors and four 
bond rates.  The simulations for the unobservable state variables have been drawn from the 
noncentral 2χ  distribution as described above, and the measurement errors have been simulated as 
normal random variables with zero means.  The fixed parameter values have been set at the values 
given in Table 7, which are very close to the estimates for the two factor model in Table 2.  The 
maturities for the bond rates in the simulations are 3 months, 6 months, 5 years, and 30 years. 
 We checked first the properties of the Kalman filter by running the filter with true values for 
the parameters.  In each sample, we simulated 470 weeks of observations for the bond rates and 
then calculated the estimates for the state variables.  Five hundred independent samples were 
simulated, and the results are summarized in Table 7 where we report the means and the root mean 
squared errors for tt yy ˆ− .  The means for both state variables are very close to zero, which 
confirms the result that the unconditional expectation of the bias in the quasi linear Kalman filter is 
zero.  The possibility of a conditional bias has not been examined.  The root mean squared errors 
are also small, .00098 and .00065.  In basis points, the root mean squared errors are 10 and 7, which 
suggest that the estimates from the filter are close to the true values, and that the conditional biases 
may be relatively small. 
 We have examined the behavior of the approximate maximum likelihood (ML) estimator in 
two different samples.  The first set of simulations is for samples representing 10 years of monthly 
data.  The second set is for samples of weekly data with 470 weeks of observations, which is 
approximately 9 years of data.  In the initial simulations, we found that there were some samples in 
which the estimate for )( 2εσ  was approaching zero and the estimator did not converge.  In these 
cases, we have fixed )( 2εσ  at a value close to zero and we have restarted the estimator for the 
remaining parameters.   The results are summarized in Panels A and B of Table 8.  In both sets of 
simulations, there are clearly biases in the estimates of the κ , θ , and λ  parameters, but no signifi-
cant biases in the variance parameters, 1σ  and 2σ , and no biases in the standard deviations for the 
measurement errors.  In section (3), we noted that the relevant parameters for asset pricing are the 
σ , λκ + , and θκ  combinations.  We have also reported the simulation results for λκ +  and 

θκ  and there are no significant biases for these combinations.  The approximate ML estimator 
produces reliable estimates for the standard deviations of the measurement errors and the 
parameters that are relevant for asset pricing, but there are significant biases in the separate est-
imates of the κ , θ , and λ  parameters.  The κ  and θ  parameters determine some of the time 
series properties of the factors:  the κ  parameter measures the rate of mean reversion and the θ  
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parameter is the long run average.  
 
 
6. Summary and Conclusions 
 
In this paper we have used a state space model to estimate multi-factor versions of the CIR model 
of the term structure of interest rates.  Estimates of the unobservable state variables have been 
generated by a nonlinear Kalman filter.  We find that multi-factor models are necessary to explain 
the changes over time in the slope and shape of the yield curve.  In statistical tests, the two factor 
model is rejected with the three factor model as the alternative hypothesis.  The diagnostic tests in 
section 4 suggest that the two factor model frequently performs as well as the three factor model, 
but there are periods when the three factor model is needed to capture the general shape of the yield 
curve.  The three factor model has the added flexibility necessary to explain the random variation in 
short term interest rates, long term rates, and volatility.  In the multi-factor models, the variation of 
long term rates is explained by factors that experience very slow mean reversion.  This aspect of the 
empirical results is a reflection of the near random walk behavior of long term rates. 
 The approximate maximum likelihood estimator for the CIR model is one that is potentially 
biased, even in large samples.  The Monte Carlo simulations confirm that there are significant 
biases in some of the parameter estimators.  The significant biases occur in the estimates of κ , θ , 
and λ .  The κ  and θ  parameters, along with the σ  parameters, control the time series properties 
of interest rates.  The κ  parameters control the rates of mean reversion and the θ  parameters 
control the long run averages.  The λ  parameters control the risk adjustments when moving from 
the real world distribution to the risk neutral distribution for asset pricing.  The parameter combin-
ations, λκ + , θκ , and σ , determine the risk neutral distribution for asset pricing.  In contrast, 
there is no evidence of significant biases in these parameter estimates.  Geyer and Pichler (1999) 
report that the inclusion of more maturities improves the precision of the parameter estimates; the 
standard errors of the estimates decrease as more maturities are added.  The inclusion of additional 
maturities increases the number of cross sections in the sample, and this would improve the 
precision of the risk neutral parameter combinations.  This conclusion cannot be applied to the 
estimation of the long run means, the mean reversion parameters, or the risk premia.  Throughout 
the paper, we have alluded to the potential conditional bias in the quasi linear Kalman filter as the 
cause of the biases in the approximate maximum likelihood estimator.  The estimation errors in the 
Kalman filter appear to be small in the Monte Carlo simulations for the CIR model, and the biases 
in the κ  and θ  parameters could be nothing more than the familiar finite sample biases found in 
autoregressive models.  The biases in the λ  parameters are the result of the biases in the κ  
parameters, because the estimates for the λκ +  combinations do not have significant biases. 
 
 
Notes 
  
  1. Solutions for option and futures prices in two factor versions of the CIR model can be found in Beaglehole and 

Tenney (1991), Chen and Scott (1992), and Longstaff and Schwartz (1992).  Solutions for the multi-factor model 
can be found in Chen and Scott (1995). 

  2. Geyer and Pichler (1999) use the same estimation technique developed here to estimate multi-factor CIR models. 
  3. Specifically the estimation techniques found in Chen and Scott (1993), Longstaff and Schwartz (1992), and Pearson 

and Sun (1994).  For other work on the estimation of CIR models, see Brown and Dybvig (1986), Gibbons and 
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Ramaswamy (1993), and Stambaugh (1988). 

  4. There is a relationship between volatility and the curvature of the yield curve, and this aspect of the term structure is 
examined in Litterman, Scheinkman, and Weiss (1991). 

  5. This model can be derived by applying arbitrage methods or by using the utility based model in CIR (1985b).  The 
risk premiums are determined endogenously in a utility based model by the covariability of the state variables with 
marginal utility of wealth.  The form for the risk premium used here is consistent with a log utility model. 

  6. This inversion of bond rates to infer values for the state variables has been used in Chen and Scott (1993), Duffie 
and Kan (1993), and Pearson and Sun (1994). 

  7. For an application of the state space model in the finance literature, see Pennacchi (1991). 
  8. A similar allowance for measurement errors in bond rates was used by Stambaugh (1988). 
  9. In this case, the Kalman filter is a linear minimum mean squared error estimator and it is unconditionally 

unbiased.  See Harvey (1991, pp. 109-113). 
10. For references on Kalman filters, see Chow (1975, pp. 186-95) and Harvey (1991). 
11. A minimum mean squared error estimator can be biased.  
12. See White (1982) and Vuong (1989). 
13. They estimated interest rate volatility by applying a GARCH model to one month T-Bill rates.  GARCH is an 

acronym for generalized autoregressive conditional heteroskedasticity. 
14. For those weeks during which Thursday is a holiday, we use Wednesday or Friday prices. 
15. Statistical tests for unit roots have very little power and one cannot distinguish empirically in a finite sample whether 

a time series has a root on or just close to the unit circle. 
16. The mean half life is the expected time for the process to return halfway to its long run average. The mean half life is 

defined as follows: or, where is the mean half life. 
17. See Watson and Engle (1983, p.387). 
18. We present graphs for 7 days.  The graphs for the other 19 days in the sample can be obtained from the authors. 
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Table I 
 

Estimates from Monthly Data, 1960-87 
Sample Size, T=326 

 
 
    One            Two      Three 
            Factor Model       Factor Model                   Factor Model             
 
  κ  .07223   .6402     .01700   1.3683       .08433       .008428 
  (.02646)   (.1576)   (.01901)   (.1649)     (.07688)     (.02389) 
 
  θ  .03739   .03080    .00003265  .02979      .0006553    .0007228 
  (.01426)   (.00721)  (.00003647)  (.00296)   (.0006024)  (.0008492) 
 
  σ  .07540   .1281     .05547   .1231       .1355         .04883 
  (.003801)  (.0099)   (.00263)   (.0061)     (.00803)     (.00217) 
 
  λ  -.07892   -.1744    -.04076   -.3229      -.04425      -.05830 
  (.02877)   (.1516)   (.01886)   (.1375)     (.07810)     (.02372) 
 
 
  σ(ε1)  .003324   .003103    .002974 
  (.0001956)  (.0002370)   (.0001167) 
 
  σ(ε2)  0.0   .0007315   0.0 
     (.0003378) 
 
  σ(ε3)  .01022   .003709    .001624 
  (.0004331)  (.0001894)   (.00008175) 
 
  σ(ε4)  .01320   .0009302   .0005319 
  (.0003583)  (.00006960)   (.00006981) 
 
 
  ln L  5,828.771  6,730.114   6,954.484 
 
  AIC  -11,642   -13,436    -13,877 
 
 
 
NOTES: The numbers in parentheses are standard errors.  AIC is the Akaike information criterion. 
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Table II 

 
Estimates from Weekly Data, 1980-88 

Sample Size, T=470 
 

 
  One             Two                   Three 
          Factor Model        Factor Model                 Factor Model           
 
  κ  .13974   .7298      .021185   1.4298      .01694      .03510 
  (.03408)   (.3013)    (.004139)  (.2761)    (.11319)    (.02776) 
 
  θ  .08480   .04013    .022543   .04374    .002530     .003209 
  (.02050)   (.01660)  (.003616)  (.00838) (.016991)  (.002543) 
 
  σ  .10001   .16885    .054415   .16049    .1054        .04960 
  (.003846)  (.01015)  (.002786)  (.01047) (.00679)  (.003148) 
 
  λ  -.07132   -.01731   -.044041  -.2468      .03411     -.1569 
  (.03475)   (.30105)  (.005692)  (.2635)    (.11281)    (.03077) 
 
 
  σ(ε1)  .0039566  .0034988   .0031873 
  (.0002126)  (.0002000)   (.0001041) 
 
  σ(ε2)  0.0   0.0    0.0 
 
 
  σ(ε3)  .010443   .0033555   .0007033 
  (.0003792)  (.0001149)   (.0000461) 
 
  σ(ε4)  .012249   .0007003   0.0 
  (.0002952)  (.0000582)   
 
 
  ln L  8,505.09   10,008.65   10,424.24 
 
  AIC  -16,994   -19,993    -20,816 
 
 
NOTES:  The numbers in parentheses are standard errors.  AIC is the Akaike information criterion. 
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 Table III 

Estimates of Parameter Combinations for Asset Pricing 
 
A.  The Two Factor Model 
 
 1.  Monthly Data Set, 1960-87 
 
  κ1 + λ1 = 0.4659  κ1θ1 = 0.01972  σ1 = 0.1281 
   (0.03605)  (0.001386)  (0.009914) 
 
  κ2 + λ2 = -0.02376  κ2θ2 = 0.0000005551 σ2 = 0.05547 
   (0.003677)  (0.000001152)  (0.002626) 
 
 2.  Weekly Data Set, 1980-88 
 
  κ1 + λ1 = 0.7125  κ1θ1 = 0.029287 σ1 = 0.16885 
   (0.04084)  (0.001759)  (0.01015) 
 
  κ2 + λ2 = -0.02286  κ2θ2 = 0.0004776 σ2 = 0.054415 
   (0.002782)  (0.00009256)  (0.002786) 
 
 
B.  The Three Factor Model 
 
 1.  Monthly Data Set, 1960-87 
 
  κ1 + λ1 = 1.0454  κ1θ1 = 0.04076  σ1 = 0.1231 
   (0.1094)   (0.003988)  (0.006088) 
 
  κ2 + λ2 = 0.04008  κ2θ2 = 0.00005526 σ2 = 0.1355 
   (0.01536)  (0.00005830)  (0.008030) 
 
  κ3 + λ3 = -0.04988  κ3θ3 = 0.000006092 σ3 = 0.04883 
   (0.003933)  (0.00001563)  (0.002173) 
 
 2.  Weekly Data Set, 1980-88 
 
  κ1 + λ1 = 1.1830  κ1θ1 = 0.06253  σ1 = 0.16049 
   (0.08895)  (0.006666)  (0.01047) 
 
  κ2 + λ2 = 0.05105  κ2θ2 = 0.00004286 σ2 = 0.105392 
   (0.01868)  (0.00058632)  (0.006794) 
 
  κ3 + λ3 = -0.12177  κ3θ3 = 0.0001126 σ3 = 0.049599 
   (0.01394)  (0.00008353)  (0.003148) 
 
 
NOTE:  The numbers in parentheses are standard errors. 
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Table IV 

 
Estimates from Monthly Data, 1960-78 

Sample Size, T=228 
 
 
   One              Two                      Three 
          Factor Model          Factor Model                      Factor Model                
 
  κ  .06462   .7544     .2652 × 10-8  1.4849       .08472       .00003807 
  (.01985)   (.1439)   (.2115)   (.1797)     (.06500)     (.07716) 
 
  θ  .04015   .03385    .1794 × 10-10  .02835      .003658     .25 × 10-8 
  (.01241)   (.00531)  (.001428)  (.00254)    (.002873)   (.51 × 10-5) 
 
  σ  .06514   .08632    .04395   .09085      .1240         .04041 
  (.003053)  (.00768)  (.00408)   (.00639)    (.01034)     (.00268) 
 
  λ  -.05576   -.1213    -.02022   -.3888       .07104      -.03795 
  (.02072)   (.1202)   (.2143)   (.1351)     (.07061)     (.07766) 
 
 
  σ(ε1)  .003002   .002659    .002519 
  (.0001642)  (.0002196)   (.0001400) 
 
  σ(ε2)  0.0   .0008400   .0002344 
     (.0002357)   (.0006357) 
 
  σ(ε3)  .007394   .002763    .001410 
  (.0003287)  (.0001948)   (.00008235) 
 
  σ(ε4)  .009943   .0008082   .0007660 
  (.0003387)  (.00006897)   (.00007019) 
 
 
  ln L  4,312.428  4,944.305   5,074.019 
 
 AIC  -8,609   -9,865    -10,116 
 
 
NOTES:  The numbers in parentheses are standard errors.  AIC is the Akaike information criterion. 
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Table V 

 
Estimates from Weekly Data, 1983-88 

Sample Size, T=313 
 
 
    One             Two                 Three 
           Factor Model       Factor Model                 Factor Model           
 
  κ  .07951   1.5446      .01265   2.07588    .004553   .002329 
  (.008763)  (.2530)    (.003292)  (.2601)    (.09144)   (.05131) 
 
  θ  .04109   .02638    .02120   .02786    .001125   .0005463 
  (.004081)  (.006711) (.004718)  (.00503)  (.02262)   (.01201) 
 
  σ  .1033   .08515    .04579   .08388    .08477     .04550 
  (.001388)  (.01120)  (.005044)  (.009100) (.006595) (.003724) 
 
  λ  -.1428   -.7289     -.02881   -.9228     -.01284    -.09760 
  (.008840)  (.2388)   ( .007158)  (.2462)    (.09022)   (.05391) 
 
 
  σ(ε1)  .002472   .001711    .001414 
  (.0001306)  (.0001103)   (.0000705) 
 
  σ(ε2)  0.0   .0005836   .0007931 
     (.00008857)   (.00006275) 
 
  σ(ε3)  .004964   .002897    .0005658 
  (.0001716)  (.0001418)   (.00004888) 
 
  σ(ε4)  .007055   .0007848   .0001197 
  (.0002334)  (.00005392)   (.0002590) 
 
 
  ln L  6,308.50   7,104.68    7,439.12 
 
  AIC  -12,601   -14,185    -14,846 
 
 
NOTES:  The numbers in parentheses are standard errors.  AIC is the Akaike information criterion. 
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Table VI 

 
Comparisons of Actual Bond Prices with Prices from 

the Estimated CIR Models 
 
 
 
                     Root Mean Squared Errors                
       Absolute Percentage   Yield-to- 
     Pricing  Pricing     Maturity 
      Errors      Errors    (Basis Points) 
 
A.   1980-88 (2304 Bonds) 
 
 One Factor Model  $3.00    3.12%         87 
 Two Factor Model    1.34    1.35          47 
 Three Factor Model    0.87    0.89          38 
 
B.   1989-92, Out-of-Sample Period (1160 Bonds) 
 
 One Factor Model  $2.38    2.24%         56 
 Two Factor Model      .71      .66          23 
 Three Factor Model      .68      .64          21 
 
 
Note: All prices are calculated for $100 of par value.  100 basis points represents 1% in the yield.  
Our rule for selecting days has been to pick a Thursday every six months beginning with June 1980. 
 The 1980-88 sample contains bond prices from the following days: 
 
  June 5, 1980,  Dec. 4, 1980,  June 4, 1981,  Dec. 3, 1981, 
  June 3, 1982,  Dec. 2, 1982,  June 2, 1983,  Dec. 1, 1983, 
  June 7, 1984,  Dec. 6, 1984,  June 6, 1985,  Dec. 5, 1985, 
  June 5, 1986,  Dec. 4, 1986,  June 4, 1987,  Dec. 3, 1987, 
  June 2, 1988,  Dec. 1, 1988. 
 
 The 1989-92 sample contains bond prices for June 1, 1989, Dec. 7, 1989, and June 7, 1990, 
December 6, 1990, June 6, 1991, December 5, 1991, June 4, 1992, and December 3, 1992.  Over 
the selected days all Treasury bond prices were used except flower bonds, callable bonds, and 
coupon bonds with maturities less than a year. 
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Table 7 

A Simulation Analysis of the Kalman Filter 
 
 
 
A. Parameter Values for Simulations 
 
 
  Factor      κ        θ        σ         λ      
 
       1   .7298  .04013  .1688  -.0173 
       2   .02118  .02254  .05442  -.04404 
 
 σ(ε1) = .003499 σ(ε2) = .0005  σ(ε3) = .003355 σ(ε4) = .0007 
 
 
B. Results for 500 Independent Simulations 
 The Number of Time Series Observations for Each Simulation is 470 
 
  11 �yy −      22 �yy −   
 
      Root Mean        Root Mean 
    Mean     Squared Error      Mean     Squared Error  
 
 -.74 × 10-8      .00098   .23 × 10-7     .00065 



 

 
 

28

Table 8 
A Simulation Analysis of the Approximate ML Estimator 

 
 
A. 500 Simulations of Monthly Samples 
 Each Sample Covers 10 Years of Monthly Data, T = 120 
 
     κ1        θ1         σ1        λ1   κ1 + λ1    κ1θ1 
Parameter 
   Value  .7298  .04013  .1688  -.0173  .7125  .029287 
 
  Mean  .8676  .03757  .1682  -.1381  .7295  .030129 
 
Std. Error .2609  .01201  .0187   .2421  .0746  .004601 
 
 
     κ2        θ2         σ2        λ2   κ2 + λ2    κ2θ2 
Parameter 
   Value  .02118  .02254  .05442  -.04404  -.02286  .000477 
 
  Mean  .05218  .01021  .05486  -.07598  -.02381  .000490 
 
Std. Error .01683  .00422  .00071   .02438   .01165  .000155 
 
 
   σ(ε1)    σ(ε2)    σ(ε3)    σ(ε4)   
Parameter 
   Value  .003499  .0005  .003355  .0007  
 
  Mean  .003405  .000603  .003289  .000708  
 
Std. Error .000278  .000587  .000239  .000194  
 
 
 
 
B. 500 Simulations of Weekly Samples 
 Each Sample is 470 Weeks, T = 470 
 
     κ1        θ1         σ1        λ1   κ1 + λ1    κ1θ1 
Parameter 
   Value  .7298  .04013  .1688  -.0173  .7125  .029287 
 
  Mean  .8526  .03748  .1679  -.1348  .7178  .029713 
 
Std. Error .2419  .01065  .0101   .2377  .0348  .002710 
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Table 8 cont. 
 
 
 
     κ2        θ2         σ2        λ2   κ2 + λ2    κ2θ2 
Parameter 
   Value  .02118  .02254  .05442  -.04404  -.02286  .000477 
 
  Mean  .04899  .01017  .05458  -.07248  -.02348  .000476 
 
Std. Error .01015  .00290  .00462   .01469   .00723  .000079 
 
 
   σ(ε1)    σ(ε2)    σ(ε3)    σ(ε4)   
Parameter 
   Value  .003499  .0005  .003355  .0007 
 
  Mean  .003484  .000494  .003339  .000702 
 
Std. Error .000123  .000263  .000105  .000050 
 
 
 
NOTE:  The standard errors are the standard deviations for the simulated values.  The standard error for the mean is 
equal to the standard error (in the table) divided by the square root of T, where T is 120 in panel A and 470 in panel 
B. 
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Figure 1
Factor Loadings, 2 factor Model Estimated from Monthly Data
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Figure 2
Factor Loadings, 3 factor Model Estimated from Monthly Data
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Figure 3
Factor Loadings, 2 factor Model Estimated from Weekly Data
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Figure 4
Factor Loadings, 3 factor Model Estimated from Weekly Data
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Figure 5 
Yield Curve Plots, Actual Yields with Model Yields 
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Figure 5 (continued) 
Yield Curve Plots, Actual Yields with Model Yields 
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Figure 5 (continued) 
Yield Curve Plots, Actual Yields with Model Yields 
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Figure 5 (continued) 
Yield Curve Plots, Actual Yields with Model Yields 
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