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Stochastic Volatility and Jumpsin Interest Rates:
An Empirical Analysis

Abstract

Daily changes in interest rates display statistical properties that are similar to those observed in
other financial time series. The distributions for changes in Eurocurrency interest rate futures are
leptokurtic with fat tails and an unusually large percentage of observations concentrated at zero.
The implied volatilities for at-the-money options on interest rate futures reveal evidence of sto-
chastic volatility, as well as jumpsin volatility. A stochastic volatility model with jumpsin both
rates and volatility isfit to the daily data for futures interest rates in four major currencies and the
model provides a better fit for the empirical distributions. A method for incorporating stochastic
volatility and jumps in a complete model of the term structure is discussed.



Stochastic Volatility and Jumpsin Interest Rates:
An Empirical Analysis

1 | ntroduction

Models of the term structure of interest rates have many applications in financial man-
agement. Banks that trade and make markets in interest rate derivatives use models to value and
hedge their derivative portfolios. Models for the future evolution of multiple interest rates under
the risk-neutral distribution are calibrated daily for the purpose of valuation, and these models are
used to implement hedging strategies. Models for changes in interest rates, under real world dis-
tributions, are used to monitor market and credit risk in derivative positions. The joint distribu-
tion for changes in interest rates, including the covariation across multiple maturities, is critical
for al of these applications. A common perception in the market is that interest rates do not vary
much in the absence of economic news, but do move in response to the release of new numbers
on the state of the economy and to shocks in financial markets. One could argue that interest rate
volatility changes as markets react to the arrival of new information. In some cases, the swings
in interest rates, particularly short-term interest rates, have been sudden and dramatic. For exam-
ple, on the day after the stock market crash of October of 1987, short-term interest rates in the
U.S. dropped by more than 100 basis points as investors sought safe havens from the stock mar-
ket: 3 month LIBOR dropped from 9.1875% to 8.25% and the December Eurodollar futures
price increased from 90.64 to 91.80. In the British market, short-term interest rates dropped dra-
matically during the exchange rate crisis of September 1992: on September 17, 1992, 3 month
LIBOR in pound sterling dropped from 10.062% to 9.623% after a drop of 50 basis points for the
previous day, and the December futures interest rate decreased from 10.80% to 8.72%. The mar-
ket for interest rate options incorporates stochastic volatility and the potential for large interest
rate moves in the form of a volatility smile, or skew. In Figure 1, we have plotted the implied
volatility from Black’s model for the actively traded Eurodollar futures options. The variation in
the implied interest rate volatility is significant across the strikes for options with the same expi-
ration date, and the slope of the skew is largest for the options with near term expirations.! The
purpose of this paper is to examine empirically the role of stochastic volatility and jumps in
short-term interest rates. In the last section of the paper, we use results from Duffie, Pan, and
Singleton (2000) to construct a term structure model that is tractable and incorporates these em-
pirical features of interest rate volatility.

! Theimplied volatilities have been computed for the close on Jan. 25, 2002, and only those options with less than 1
year to expiration and volumes of at least 1,000 contracts were used. The options trade at the Chicago Mercantile
Exchange and the implied volatility isfor the futures rate, not the futures price. The options are American and a lat-
tice model was used to compute the American premium and the implied volatility. The early exercise premiums for
these options are small. The largest computed early exercise premium is 0.27 basis points, and the largest as a per-
centage of the option valueis 0.48%.



To motivate the role of stochastic volatility and jJumps in interest rates, we begin with a
statistical analysis of futures interest rates and implied volatilities from the markets for options
on interest rate futures. Figures 2-5 contain time series plots of the LIBOR futures interest rates
and the implied volatility for four major currencies.? All of the contracts included here are the
near delivery futures contracts on 3 month LIBOR, or 3 month TIBOR for the Japanese yen mar-
ket.® To construct the time series, we roll to the next delivery in the quarterly cycle at the begin-
ning of each delivery month. An inspection of these plots reveals that there have been days when
there were large, sudden changes in both short-term interest rates and the implied volatility, but it
should be noted that some of the apparent jumps are associated with the roll between different
futures contracts. Figures 6 to 9 contain scatter plots of changes in the implied volatility versus
changes in futures interest rates.* The patterns in the scatter plots reveal some interesting fea-
tures that are common across al four currencies. changesin the futures interest rates and the im-
plied volatilities are randomly scattered around zero and there does not appear to be much, if any,
correlation between the two variables. The plots also highlight the discrete nature of changesin
the futures rates. The tick size is one basis point for the interest rate futures in German marks
(Euros), Japanese yen, and British pounds. The tick size for the U.S. dollar interest rate futures
was one basis point up until afew years ago when it was reduced to half of abasis point.

There are some extreme outliers, and it is unlikely that diffusion processes for interest
rates and interest rate volatility could produce the time series in Figures 2-5 or the scatter plotsin
Figures 6-9. These scatter plots are also quite different from what is observed for major stock
indexes. Figure 10 contains the scatter plot for changes in the CBOE volatility index (VIX) ver-
sus changes in the log of the S&P 100 index. There is a strong negative correlation between
stock price changes and changes in implied volatility, for both large changes as well as small
changes. The correlation between price changes and volatility changesis -.67 for the S& P 100,
and the rank correlation coefficient is-.63. The correlation between changes in interest rates and
changes in the implied volatility of interest rates is much smaller, and less significant: -.07 for
the U.S. rates, -.12 for Germany, .07 for Japan, and .09 for Great Britain. Several outliers associ-
ated with financial shocks can be identified in the plots. the October 1987 crash for the U.S.
market and the exchange rate shock in September 1992 for the pound sterling and the European
currencies. If these outliers are removed, the correlation coefficients decrease significantly: .008
for the U.S,, -.06 for Germany, and .05 for Great Britain. The rank correlation coefficients for

2 The markets trade on futures prices with the final settlement based on 100 minus 3 month LIBOR on the delivery
date. The futuresrateis 100 minusthe futures price. The market convention isto quote the implied volatility asa
volatility for the log of the futures interest rate.

% The data for futures rates and implied volatilities are from the exchanges: the CME for Eurodollars; LIFFE for
Eurosterling, Euromarks, and Euribor; TIFFE for the futureson TIBOR. The CME data are from the DRI database,
the LIFFE data are from two sources, LIFFE End-of-Day Financial Products and DRI, and the TIFFE data are from
the TIFFE web site.

* The changes for futures rates and implied volatility are computed by using the same delivery contract, and the de-
livery month used for computing these changesis the nearest delivery, which isrolled to the next delivery contract at
the beginning of each delivery month.



changes in interest rates and changes in the implied volatility are also small: .01 for the U.S.
rates, -.04 for Germany, .13 for Japan, and .01 for Great Britain. These observations suggest that
thereislittle or no correlation between interest rate changes and volatility changes, and the direct
dependence between jumps in interest rates and jumps in volatility is also weak.

For completeness, we have included some summary statistics for the short-term interest
rates of these four currencies in Tables 1-4. There are several common features across all four
currencies. The excess kurtosis statistics are large, and there are many days in the samples when
the interest rates and the futures settlement rates do not change. For example, in the U.S. dollar
market, from March 1985 to December 2000, 3 month LIBOR did not change for 36.5% of the
days and the near delivery Eurodollar futures did not change for 19.5% of the days. The autocor-
relations for changes in futures rates are al close to zero, and the sample standard deviations for
changes in the futures rates are close to the sample standard deviations for changes in 3 month
LIBOR. The correlations across interest rate changes within a currency are also significant.

The distribution of interest rate changes is important for both option pricing and value-at-
risk analysis. Figure 11 contains a plot of the empirical distribution for daily changes in the
Eurodollar futures interest rate, and Figure 12 contains the distribution for the change in the log
of this rate. Both graphs include plots of normal distributions that have been fit to the data.®
Relative to the normal, the actual distributions have fatter tails and more observations closer to
zero. The plots of the empirical distributions also highlight the large number of days when there
is no change and in Figure 11 the discrete nature of the rate changes, in basis points. The ex-
changes compute implied volatilities for futures rates by using Black's model with at-the-money
put and call options, and the numbers reflect the market's forward looking expectation of volatil-
ity in the futures rate. If the futures rate is determined by a diffusion process with stochastic
volatility, the implied variance rate computed from at-the-money options should be a good proxy
for the expected variance over the remaining life of the option. We have also used the implied
volatility from the previous day to compute a conditional standard deviation for daily changes in
the log of the futures rate as follows:

Std. Dev(t) = Imp.Vol(t-1) x /% -

Figure 13 contains a plot of the empirical distribution for the change in the log of the Eurodollar
futures rate divided by this proxy for the conditional standard deviation. The sample standard
deviation for this time series is .9820, which implies either a small upward bias in the implied
volatility as a predictor of future volatility, or some error in the adjustment from the annualized
volatility to adaily volatility. Figure 13 includes a plot of a normal distribution with a mean of
zero and a standard deviation of .9820, and this normal distribution does not fit the empirical

® We have used a mean of zero and a standard deviation equal to the sample standard deviation for the observations.



distribution. This preliminary analysis of the data suggests that a diffusion process with stochas-
tic volatility does not fit the distributions of changes in futures rates.

2 Estimating the Jump Parameters from Daily Changesin Futures Rates

The goal in this section is to fit models to the empirical distributions for the interest rates
in the four currencies described in section 1. Jump processes are rare events that are important
for characterizing tail behavior, and the estimation of the jump parameters will require estimators
that incorporate the tails of the distribution over relatively short time intervals. In addition, it
may be difficult to find evidence of jumps in volatility by examining data on interest rates only.
Jumps in volatility should be most apparent in option prices, measured relative to the underlying
interest rate or futures rate. To estimate the jJump parameters, we use daily changes in interest
rates as well as daily changesin the option implied volatility.

One approach to this problem has been to specify a model, solve the option pricing func-
tion, and develop a complex estimation strategy that utilizes data on both interest rates and option
prices. Bakshi, Cao, and Chen (1997) have taken this approach in estimating a model for the
S& P 500 stock index and Bates (1996) has taken this approach in estimating models for foreign
exchange rates. To apply this approach to the term structure of interest rates, one must apply the
model simultaneously to a number of interest rates and option prices. Our approach is to apply
simpler econometric techniques to the daily data on futures rates and implied volatilities and test
for deviations from diffusion based models. In the final section, we describe a formal model of
the term structure, which incorporates jJumps in both rates and volatility.

We begin by specifying an ad hoc empirical model for the futures rate as follows:

dFR = byvdz, +dJ,
D
dv = k(6-v)dt +o+/vdz, +dJ,

where v is the stochastic variance factor, dZ, and dZ, are Brownian motion increments, and dJ,
and dJ, arejump processes. The jump in the futures rate is a jump process with a random inten-
Sity parameter A, (t) = ¢+ dv(t) and ajump size distributed as a normal with zero mean and a
standard deviation o,,. A mean was initially included in the distribution for the jump magni-
tude, but the estimates were found to be close to zero and insignificant. The estimates for ¢ in
the random intensity parameter were also found to be close to zero and insignificant. The jump
in the stochastic variance factor is a Poisson process with intensity parameter A;, and a jump
Sizethat is exponentially distributed with amean ;..



Under the risk neutral distribution, the futures price, or the futuresrate in this case, should
be a martingale, but these prices are not necessarily martingales under the actual or real world
distribution. The autocorrelations for changes in futures rates reported in Tables 1-4 are all close
to zero. These results imply that past values of futures rates are not useful in the prediction of
changes in the futures rates. One would need to examine other economic variables or determi-
nistic functions of time in order to model a non-zero drift in the d FR process. Additional mod-
eling of the drift for changes in the futures rate is not likely to add anything significant to the em-
pirical model.

We have chosen to model the futures rate as a “normal” process with a stochastic volatil-
ity, and we use the option implied volatility as a proxy for this stochastic volatility factor. If a
futures price is determined by a diffusion process with fixed volatility, df = o dZ, and the short
rate for discounting is constant, the solution for a call on the futuresis

C = e fl-NEDT + 2 epl-3(5L) - K1-NED) ).

For an at-the-money call, f = K, and

C=¢e" ﬂ :

Jom
The interest rate futures examined in this paper are al American, but the options traded at the
LIFFE (Eurosterling, Euromarks, and the new Euribor and Eurilibor contracts) have futures style
margining and it is not optimal to exercise these options early. For call options on futures with
futures style margining, the general option pricing solution has the following form:

C = E (max[0, f(T)-K])

where the expectation is taken under the risk neutral distribution, conditional on information at
timet, t<T. The contracts traded in Chicago and Japan do have early exercise premiums, but
they are generally quite small for the near term expirations. We find that there is little difference
between the implied volatilities from the European pricing model and the American pricing
model. Black’s model applied to an at-the-money call has the following solution:

Ro, T

C = e " FRINGOVT) - N(-104T)] = € Fm

As aresult, the normal volatility for at-the-money options is approximately equal to the at-the-
money implied volatility from Black’s model multiplied by the level of the futures rate. The var-



iance rate, v(t), in (1) is the annualized variance rate and we use o xFR? asthe proxy. The sca
lar parameter b isincluded to account for the fact that part of the implied volatility in option pric-
esis due to the variance from the jump process. If there are no jumps in interest rates and the im-
plied volatility is equal to expected volatility from near term options, then b = 1.

For data sampled on adaily basis, we estimate the following econometric model.

AFR(t) = b MI-1) AZ,(t) + AJ,(t)
()
VD) = g+ put-1) + o ME-D) AZ,) + AJ,()

where p = exp(-«k At) and y = 8(1- p). We apply maximum likelihood under the assump-
tion that AZ, is distributed as a normal with mean zero and variance At, and AJ, is a Poisson
jump process with intensity A,,(t) = c+dv(t —1) and jump magnitudes that are distributed as
normals with mean zero and variance o?,. The distribution for the number of jumps over adaily
time interval is approximated as a Poisson distribution with parameter A, At. The resulting
conditional density function for the random variable AFR(t) is

e Mua) 1 {_AFRZ(t)}

=0 j! J2ma? (1) 207 (t)

where o (t) = b®v(t-1)At + joj,. The Poisson weights decay rapidly so that typically only
20 to 30 terms in the infinite summation are necessary.

We have already noted that rate changes occur in discrete units, basis points, and the per-
centage of daily changes equal to zero is relatively large. The sample standard deviations re-
ported in Tables 1-4 range from alow of 4.49 basis points for Germany up to a high of 7.85 basis
points for Great Britain. Thetick sizeis one basis point for futures on German LIBOR, Japanese
TIBOR, and British LIBOR. For most of the sample, the tick size was one basis point for futures
on U.S. LIBOR, but it was recently reduced to half of a basis point, and it is a quarter of a basis
point for futures with less than a month to delivery. Even though the underlying process driving
interest rates may be a continuous random variable, we observe a discrete random variable in the
market. A simple model for the discrete process is that the market will round the interest rate to
the nearest tick. Given the number of jumps, the model distribution is normal, and the probabil-
ity of observing AFR(t) =xis

;e () Jl(t)At

j=0

[Ny -]



where J is half of thetick size and N([) is the standard normal distribution function. The re-
sulting log-likelihood function for a sample of observations on AFR(t) is

o A=A (t)At
InL = Z InL(t) = z In {Z e (J Jl(t)At [N (AF;(R;J AFZA(R)J )] ] 3

0

We find that this modification for the discreteness of the observed data has a significant impact
on the estimation of the intensity parameters for the jump in interest rates.

To derive a tractable likelihood function for the volatility equation, we need to simplify
the second jump process so that at most only one jump can occur each day with a probability of
1-e M and if there is ajump, the jump occurs at the end of the period with a jump size that
has an exponential distribution with mean p,,. We need to derive the conditional density func-
tion for v(t) given a normal distribution for AZ,(t) and the assumed distribution for A J,(t).
With probability e 2, the distribution is normal with mean u+ pv(t—1) and variance
o2 v(t-1)At. With probability 1-e "2, the density function is the density for the sum of a
normal and an exponential. We derive this density function by using the convolution method,
and we get the following log-likelihood function for a sample of observations on v(t).

_ Z _ Z Dogtt 1 (V(t) - - pv(t-1)°
| | | J2 —
k= = = n[e \21T o \V(t -1 At exp{ 207v(t-1)At }

@
b foeha) (L- N(X)) exp{—v(t)wwv(t—l) +02v(t—1)At} }

IUJZ IUJZ 2/”?2
where N(X) is the cumulative standard normal distribution function and

w = TV +p+pvt-D+ [o7v(t-D)At] py,

o 4JV(t -1 At

The maximum likelihood estimation for the volatility equation is approximate maximum likeli-
hood because the conditional distribution for volatility has been approximated.

To find the maximum likelihood estimates, we use the algorithm developed by Berndt,
Hall, Hall, and Hausman (1974). This method requires analytic first derivatives for the log-
likelihood function and an approximation for the information matrix. Let S be the vector of pa-
rameters to be estimated and let B be the maximum likelihood estimator. In large samples, 8



has a distribution that is approximately normal with mean [ and a covariance matrix that is the
inverse of the information matrix. The information matrix is estimated by computing

T (aInL(t))(aInL))
50555075

and the inverse of the information matrix is used in the algorithm to find the maximum likeli-
hood estimator. This approximation for the information matrix is based on the observation that

(_9°InL®) _ (aInL®)(aInL '
d53p Yz EYz

The results of the maximum likelihood estimation are summarized in Tables 5-8. All of
the parameter estimates are large relative to their standard errors so that the parameter estimates
are statistically significant at conventional significance levels. The p parametersin the volatility
eguations are also significantly different from onein all four samples. thet statistics for the null
hypothesisthat p = 1 are-12.54 for volatility in U.S. rates, -8.55 for Germany, -12.94 for Japan,
and -10.33 for Great Britain. These results are evidence supporting mean reversion in the im-
plied volatility. The likelihood ratio statistics for testing the null hypotheses of no jumpsin rates
and no jumps in volatility are al statistically significant. Each one of these statistics has an as-
ymptotic distribution that is chi-squared with 2 degrees of freedom under the null hypothesis.
The likelihood ratio statistics for no jumps in rates are 1,105.4 for the U.S., 286.6 for Germany,
383.4 for Japan, and 450.6 for Great Britain. The likelihood ratio statistics for no jumpsin vola-
tility are 1,340.6 for the U.S., 729.6 for Germany, 1,166.0 for Japan, and 695.6 for Great Britain.
We have also reported the estimated values for o,,, the standard deviation for the magnitude of
the interest rate jJump when a jump occurs. For the U.S,, the estimate of d implies an average
value of 206.0 for A, (t), which corresponds to an average of 206 jumps per year.’ The o 3 €5
timate is 0.052%, or 5 basis points, for jJumps in interest rates, which can be compared to the
daily standard deviation of 6.4 basis points. The estimate of 6.682 for A,, implies an average of
6 to 7 jJumps per year in volatility. Thevalueof u,, isthe expected jump size for the annualized
variance of the change in the futures rate. The market quotes the implied volatility as an annual-
ized standard deviation for AFR/FR. For the U.S. results, if we use afutures rate of 5% and the
estimated average variance level of 6.8198 x10°, the estimate of 3.5652x107 for ,, impliesan
expected increase of 3.86% in the annualized implied volatility when ajump in volatility is trig-
gered. The exponential distribution is skewed to the right so that there is a reasonabl e probability

® Here, and below, the mean for the stochastic variance process is computed from the estimates for the model in (1).
The mean for the variance process includes the mean reverting level and the effect of the jump.



of observing volatility jumps that are 3 to 4 times the mean. The results are similar for futures
interest rates and volatility in the other three currencies. The average number of jumps per year
in the ratesis, however, much less. 84.7 for Germany, 87.4 for Japan, and 38.8 for Great Britain.
The standard deviation for the magnitude of the jump in rates for Great Britain is much larger,
0.12%.

The primary purpose for the maximum likelihood estimation is to fit the model in (1) to
the data and the empirical distributions. A natural diagnostic test for the model is to use the
maximum likelihood estimates to compute the distribution function for AFR and compare this
model distribution function to the empirical distribution function. The model in (1) is similar to
the double jump model of section 4 in Duffie, Pan, and Singleton (2000). The drift for the
changein the futures rate is not the same as the drift for the change in the log of the stock pricein
their model, and the two jump processes have been modified to account for the empirical features
of interest rate variability. We need the unconditional characteristic function for AFR over a
daily time interval, and we derive it in two steps. The first step is to evaluate the characteristic
function for the change in the futures rate at time At, AFR = FR(At) — FR(0), conditional on
v(0). This characteristic function is solved by first solving the following conditional expectation.

Wut,FRY) = E(e"™M|FRt),V(Y)) .

This function must satisfy the following partial differential integral equation:

2
oW, 10%W

°wY , ow oW
ot 2 0FR? ¥

ov+——[0 + — (k6 —kv)
ov? dFR ov

expl-3 %)
\/ZTJJI

1
V=
2

+ (c+dv) ]i[LIJ(u,t,FR+ X,V) —LIJ(u,t,FR,v)] dx

+ A5 T[W(U,t,FR,V"‘ X)‘W(U,'[,FR,V)] M dx = 0

J2

And there is a boundary conditionthat as t — T, W(u,t,FR,v) = exp{iuFR(t)} . This expecta-
tion has an exponential affine solution,

W(u,t,FRV) = exp{a’ (Atu) +iuFR(E) + B (Atu)v(p)} |

where At =T —t. The characteristic function for the change in the futuresrateis



O (u) = E(UFROFROT| FR(0), W(0) ) = €O W(u,0,FRV)

exp{a’ (At,u) + B° (at,u) v(0)}

with
_ _ A-yAt

gy = ———2d-e )

2y-(y-k)1-e %)
a’ (At,u) = —KH[V;,ZKAt+%In[1—u(l—e‘m)ﬂ + c(e_%luz —1)At

o o 2y
+ A, (y+k) At At - . 2/;,a zln(l_y_K_,UJza(l_e—yAt)J
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y=Jk2+0c% and a = bu? + 2d(1-e ),

To get the unconditional characteristic function, we need to take the unconditional expectation of
D (u):

®(u) = E[® ()] = g (atu) E[eﬁ*(At,u)v(O)] _

This is done by evaluating first the conditional moment generating function for v(t +7), condi-
tional on v(t) and then letting 7 — o . This moment generating function,

M (u,t,V) = E[eﬁ’(At,u)v(tﬂ) | v(it)],

must satisfy the following partial differential integral equation:

—exp{‘%n} dx = 0.

J2

, 0°M oM oM

1o2v — +(K9—KV)W+F+/\JZJ[M(U,I,V+X)—M(U,I,V)]

The solution is an exponential affine function, M (u) = e*@* A0 where

2k e B (At,u)
2k — B (At,u)o? (1-e77)

B(1) =

10
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Let 7 — o and the unconditional characteristic functionis

d(u) = E(eiUAFR) - exp{_Ke (y-k)At  2k6 ln{l_ y—K (1_e—ym H

o’ o? %

e
B 2/(20 In{l— o - B (At,u) }”‘ 2 (y +k)At
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The distribution has a mean of zero and the density function is symmetric around zero. Applying
these results, we compute the cumulative distribution function for the model by using Fourier
inversion of the characteristic function. For x> 0,

F(x) =

I\)ll—\

1 "”X)fb(u)
ol

and for x< 0, F(X) = 1 — F(-X). The numerical integration is performed by applying the Poisson
summation formula.”

In Figures 14-17, we have plotted the empirical distribution functions with the model
distribution functions for the stochastic volatility, jump model and the stochastic volatility model
without jumps. The stochastic volatility, jump model fits the empirical distribution for the inter-
est ratesin all four currencies. The stochastic volatility model without jumps provides a good fit

" See Feller (1972, Chps. 15, 19) for a discussion of Fourier inversion formulas and the Poisson summation formula.
An application of the Poisson summation formulain an option pricing model can be found in Chen and Scott (1995).
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for most of the distributions, but there are noticeable deviations. The model without jumps does
not fit the middle part of the distributions for the U.S., German, and Japanese interest rates. It s,
however, difficult to distinguish the model without jumps from the stochastic volatility, jump
model in Figure 17 for British interest rates. There are, however, numerous extreme outliers, as
shown in Figures 6-9. Figures 18-21 focus on the tails of the distribution, and here one can see
the differences between the two models, particularly in the cases of the U.S. and British interest
rates. In every currency, the stochastic volatility model without jumps misses either the middle
part of the distribution or the tails of the distribution, and in some case, it misses both.

3 Summary and Extensions

The empirical analysis in section 2 highlights the importance of jumps in both interest
rates and interest rate volatility. The empirical model for the analysis is an ad hoc empirical
model in which jump processes are added to the diffusion equations for futures interest rates. A
complete model of the term structure of interest rates would be necessary for the management of
a portfolio of interest rate derivatives that includes options on multiple maturities. Duffie, Pan,
and Singleton (2000) have recently shown how to extend exponential affine models to incorpo-
rate multiple jumps, and they develop a model for valuing stock options with stochastic volatility
and simultaneous jumps in both the stock price and volatility. Their results can be used to devel-
op a multi-factor model of the term structure with jJumps in both interest rates and volatility. An
example would be the following three factor model with a stochastic mean, y,, and a stochastic
volatility, y,:

dr = [K0 yl—Kor] dt + .y, dZ, + dJ,
dy, = [/(191 —Klyl] dt + o,4y, dZ, (5)
dy, = [K292 —K2y2] dt + 0,4y, dZ, + dJ,
where r(t) is the instantaneous short-term interest rate.® The two jump processes can have the
same structure as the jump processes used in the empirical model for futures rates. A model of

this form has exponential affine solutions for discount bond prices and futures on simple interest
rates such as LIBOR.®

8 See Anderson and Lund (1996) and Dai and Singleton (2000) for examples of three-factor models with stochastic
mean and stochastic volatility, without the jumps.
® The solutions for aterm structure model are developed in the Appendix.
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Strategies for calibrating a model of this form are numerous. Because the bond pricing
function and the model for futures rates are exponential affine, one can work with transforma-
tions that are linear functions of the factors and develop estimators based on moments. There are
analytic solutions for the means, variances, covariances of linear combinations of the factors and
one could fit the model to a set of sample moments estimated from discount rates and futures
rates. One could alternatively develop estimators based on the empirical characteristic function,
asin Chacko (1999) and Singleton (2001). Another strategy would be to solve the option pricing
functions and calibrate the model to an entire initial term structure of rates as well as option
prices for various maturities. The model could be calibrated to match an initial term structure of
interest rates (discount rates, futures rates, and swap rates) by introducing a deterministic func-
tion of time in the drift of the dr equation. To match the model to a term structure of implied
volatilities, which is essentialy a set of at-the-money option prices for different expirations, one
could make o, adeterministic function of time.'

Stochastic volatility and jumps are important empirical features for stock prices, foreign
exchange rates, and interest rates. The empirical results presented in section 2 support the case
for stochastic volatility and jJumps in interest rates, but there are some subtle, but important dif-
ferences for interest rate models. There is no evidence of correlation between changes in interest
rates and changes in interest rate volatility. Aside from one or two observations out of severa
thousand, there is little or no evidence of correlation between large changes in interest rates and
large changes in interest rate volatility. These results can be contrasted with the evidence of
strong negative correlation between stock price changes and changes in stock market volatility,
for both large changes and small changes.

1% |n this case, the bond pricing function is still exponential affine and the deterministic function for the volatility of
the stochastic mean factor isincorporated in the numerical solutions for the ODE'’s.
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Appendix
The formal model, under the risk neutral distribution, is

dr = [KO yl—KOr—/\Oyz] dt + y, dZ, + dJ,
dy, = [k, ~ (ke + )yl dt + 0,4y, 6z, (A1)

dy, = [k,0, = (K, +A,)y,] dt + 0,4y, dZ, + dJ,

where r(t) is the instantaneous short-term interest rate, y,(t) is a stochastic mean factor, and
Yy, (t) is a stochastic volatility factor. The jump in the short-term rate is a jump process with a
random intensity parameter A}, (t) = a'y,(t) and ajump size distributed as a normal with mean
U, and astandard deviation g ,,. The jump in the stochastic volatility factor is a Poisson proc-
ess with intensity parameter A), and a jump size that is exponentially distributed with a mean
U, . Thetwo jumps can be modeled as independent processes for interest rates, except that the
intensity of the interest rate jump is a function of y,. The parameters with primes are jump pa-
rameters that should be adjusted when moving from the real world distribution to the risk neutral
distribution.

The model in (A1) can be solved to produce a pricing function for discount bonds, as well
as futures on 3 month LIBOR. The discount bond pricing function is the solution to the follow-
ing expectation under the risk-neutral distribution:

Pt YL Y, T) = é[exp(— [ r(s)dSJ r(t), (), yz(t)} -

This function must satisfy the following partial differential integral equation:

oP  ,0°P
— 4+ 1
ot

_az_Po'zy +la_
oy; 71 foy

2

Y, +3 "o
272 2 2
or 5

0P
gy, +W[Koy1_Kor_/]oy2]

opP
+

oP
[Klgl_(Kl"'/]l)yl]"' W[Kzez_(/(z"'/\z)yz] - rP
2

1
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-2 ()

© ex
+ a'y, J'[P(t,r +X, ¥, Y,) — P(t,r,yl,yz)] oo X
e Jo

+/‘32 I[P(t'r1y11y2+x)_P(Lr’ypyz)] % dx =0
0

J2

The solution for the bond pricing function is an exponential affine function of the state variables,
P(t, rynYss T) = exp{ - A(T) - Bo (T) I’(t) - Bl(T) yl(t) - Bz (T) Y, (t)} J

where 7 =T —t and the coefficients are solutions to the following system of ordinary differential
equations.

% =1 -k,B,(7)

L= 10T + KBy - (K +A)B(D

Lo = 30T - HBHD) - ABY(D) ~ (K, +A)B,(D)
- a [exp{—Bo(r),u'JO +%B§(r)0§o} —1]

(;—‘AT‘ = k,6,B,(1) + k,0, B,(1) - ASZ(WlBZ(T)_lj

The boundary conditions are A(0) = B,(0) = B,(0) = B,(0) =0. The first equation can be solved
analyticaly:

1 — e—KQT
B,(1) =

0

The other equations must be solved numerically.* The continuously compounded yields for dis-
count bonds, —InP/(T —t), are linear functions of the state variables, which are useful for em-

pirical analysis.

1 standard ODE solvers, such as Runge-K utta, produce extremely accurate solutions very quickly.
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The futures contracts on 3-month LIBOR are set up so that the final settlement is equal to
100 - 3 month LIBOR. LIBOR is asimple interest money market rate quoted on an annual basis
so that

3month LIBOR = 360><( 1 -1)
90 P(t,r,y, Y, t+%%:s)

The futures price is a martingale under the risk neutral distribution and it is found by solving the
following risk-neutral expectation conditional on the current valuesfor r(t), y,(t), and vy, (t) 12

F(@T) = E[lOO—lOOX%X(exp{A(r') + B, (') r(T) + B,(T") y,(T) + B,(7) y,(T)} —1)] :
where 7' = %9,.. Thefutures rateis 100 minus the futures price:

FR(,T) = 100x 32 x[exp{a(T -t) + B,(T-t)r®) + BT - v,(t) + B, (T -1) v, (0} -1] ,
where the coefficients must satisfy the following system of ordinary differential equations.

db,
dr

— Ko Bo(T)

% = 102 B2(1) + Ko By(T) — (Ky+ ) BL(D)

dB, _ LaZ B2(1) + BPE({T) -2, Bo(T) — (k,+A,) B, (1)

dr

+ a [exp{ B, + 1 B2 (D) 0%} 1]
da _ . 1 3
E = k,6, (1) + k,0, B,(r) + A}, (W ]J

The boundary conditions for this system are a(0) = A(r"), 5,(0) =B, ("), B,(0) =B,(7"), and
B,(0) =B, (") . Thefirst equation has an analytic solution, 5,(r) = e " B,(r"), and the other
three equations must be solved numerically.

12 See Cox, Ingersoll, and Ross (1981).
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Tablel
Summary Statistics, U.S. LIBOR
Sample Period, March 1985 to December 2000, T = 3985

Changesin Interest Rates
Futures Rate 3 Month LIBOR 6 Month LIBOR

12 Month LIBOR

Sample Mean -0.0027% -0.0010% -0.0010%
Standard Deviation 0.0641% 0.0682% 0.0725%
Excess Kurtosis 32.30 14.45 17.47
% of Days, No Change 19.5% 36.5% 34.4%
Autocorrelations:
1 0.07 -0.09 -0.11
2 0.02 0.02 0.04
3 -0.01 -0.02 -0.01
4 -0.02 0.02 -0.01
Correlation Matrix
1.00 0.38 0.41
0.38 1.00 0.70
0.41 0.70 1.00
0.43 0.61 0.72
Table2

Summary Statistics, German LIBOR
Sample Period, August 1990 to February 1998, T = 1898

Changesin Interest Rates
Futures Rate 3 Month LIBOR 6 Month LIBOR

-0.0012%
0.0798%
18.07
30.5%

-0.09
0.03
-0.01
0.00

0.43
0.61
0.72
1.00

12 Month LIBOR

Sample Mean 0.0000% -0.0026% -0.0027%
Standard Deviation 0.0449% 0.0630% 0.0620%
Excess Kurtosis 22.23 9.10 8.11
% of Days, No Change 15.4% 30.5% 30.9%
Autocorrelations:
1 -0.01 -0.19 -0.24
2 0.07 0.02 0.04
3 -0.05 -0.03 -0.03
4 0.03 -0.02 0.02
Correlation Matrix
1.00 0.38 0.40
0.38 1.00 0.58
0.40 0.58 1.00
0.35 0.48 0.58
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-0.0028%
0.0653%
6.09
30.5%

-0.20
0.00
0.00
0.01

0.35
0.48
0.58
1.00



Table3
Summary Statistics, Japan TIBOR
Sample Period, July 1989 to December 2000, T = 2808

Changesin Interest Rates
Futures Rate 3 Month LIBOR 6 Month LIBOR

12 Month LIBOR

Sample Mean -0.0008% -0.0018% -0.0018%
Standard Deviation 0.0371% 0.0353% 0.0358%
Excess Kurtosis 9.30 15.10 11.20
% of Days, No Change 21.4% 42.7% 38.9%
Autocorrelations:
1 0.08 0.14 0.12
2 -0.01 0.02 0.05
3 0.02 0.02 0.02
4 0.06 0.01 0.03
Correlation Matrix
1.00 0.54 0.60
0.54 1.00 0.78
0.60 0.78 1.00
0.61 0.69 0.79
Table4

Summary Statistics, British LIBOR
Sample Period, August 1990 to December 2000, T = 2620

Changesin Interest Rates
Futures Rate 3 Month LIBOR 6 Month LIBOR

-0.0018%
0.0357%
10.95
36.4%

0.16
0.07
0.07
0.03

0.61
0.69
0.79
1.00

12 Month LIBOR

Sample Mean -0.0019% -0.0035% -0.0035%
Standard Deviation 0.0785 0.0836% 0.0920%
Excess Kurtosis 202.53 29.75 24.14
% of Days, No Change 11.53% 28.9% 26.9%
Autocorrelations:
1 0.07 -0.23 -0.18
2 -0.04 0.03 -0.02
3 0.09 -0.01 0.05
4 0.01 0.05 0.03
Correlation Matrix
1.00 0.42 0.53
0.46 1.00 0.59
0.54 0.59 1.00
0.54 0.48 0.68
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-0.0034%
0.0947%
21.74
28.0%

-0.18
0.01
0.05
0.01

0.52
0.48
0.68
1.00



Table5

Maximum Likelihood Estimation of Jump Parameters, U.S.

A. AFR(t) Equation

InL -12,135.6
Restricted In L -12,688.3
(d=0,,=0)
b2 0.15944
(0.00884)
d 3.0211 x 10°

(0.2068 x 10°

o2 2.6530 x 10”7
(0.1631 x 10°")

o, 0.052%

Sample Size, T = 3985

B. Stochastic Volatility Equation

InL 41,170.4
Restricted In L 40,500.1
(AJZ = IuJZ = 0)

H 6.2259 x 10”7

(1.4823 x 10

p 0.97706
(0.00183)
o2 2.1298 x 10*

(0.0331 x 10

A, 6.6823
(1.0183)

U, 3.5652 x 10°
(0.2228 x 10°)

Table 6

Maximum Likelihood Estimation of Jump Parameters, Germany

A. AFR(t) Equation

InL -5,093.8
Restricted In L -5,237.1
(d=0,,=0)
b2 0.33817
(.02445)
d 1.3024 x 10°
(0.2473 x 10°
o2 2.8340 x 10”7
(0.3439x 10"
o, 0.053%

Note: Standard errorsin parentheses.

Sample Size, T = 1905

B. Stochastic Volatility Equation

InL 19,692.6
Restricted In L 19,327.8
(AJZ = IuJZ = 0)

H 1.0895 x 10

(0.2335 x 10°°)

p 0.96742
(0.00381)
o: 2.4176 x 10

(0.0581 x 10

A, 12.896
(2.611)
U, 2.0265 x 10°

(0.0221 x 10°)
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A. AFR(t) Equation

InL

Restricted In L
(d=0,,=0)

b2

A. AFR(t) Equation

InL

Restricted In L
(d=0,,=0)

b2

Table7
Maximum Likelihood Estimation of Jump Parameters, Japan

Sample Size, T = 2302

-5,383.2
-5,574.9

0.33198
(.02092)

2.7926 x 10°
(0.4278 x 10°

1.7606 x 10~
(0.2317 x 10"

0.042%

-7,846.3
-8,142.4

54115
(.02167)

4.3279 x 10°
(0.6178 x 10°)

1.4210 x 10°®
(0.1355 x 10°)

0.119%

Note: Standard errorsin parentheses.

B. Stochastic Volatility Equation

InL

Restricted In L
(AJZ = IuJ2 = 0)

u

Hy,

Table 8
Maximum Likelihood Estimation of Jump Parameters, Great Britain
Sample Size, T = 2640

24,344.8
23,761.8

1.6495 x 10
(0.2151 x 10°°)

0.91281
(0.00674)

3.1403 x 10*
(0.0547 x 10

10.083
(1.604)

3.1957 x 10°
(0.4506 x 107)

B. Stochastic Volatility Equation

InL
Restricted In L

(AJZ :ILIJZ = 0)

u

J2

Hy,

22

26,458.5
26,018.7

15771 x 10°
(0.2996 x 10°°)

0.96357
(0.00314)

3.7018 x 10*
(0.0460 x 10

5.6627
(1.0091)

7.5966 x 10°
(0.8966 x 10°)



Figurel
Implied Volatility from Eurodollar Futures Options
January 25, 2002
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Figure2
FuturesInterest Rate and Implied Volatility, United States
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Figure3
Futuresinterest Rate and ItsImplied Volatility, Germany
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Figure4
Futuresinterest Rate and Implied Volatility (Rate Level),
Japan
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Figure5
Futuresinterest Rate and ItsImplied Volatility, Great Britain
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Figure6

Changein Implied Volatility vs. Changein Futures|nterest Rate, U.S.
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Figure8
Changein Implied Volatility (Levels) vs. Changein Futures|nterest Rate,
Japan
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Figure 10
Changein VIX vs. Changein Log of S& P100 Index

. Changein 120 -
VIX 004
80 -
60 -
40 -
M 20 4 Changein
MIRALS S&P100
MEEAIP® - ]
-0.25 0.2 -0.15 0.1 005 I e 005 * 01
-40 -
-60 A .
-80 -
Figure1l
Distribution of Changesin Futures Rate, United States
1.0 /
0.8 /
0.6 /
//
0.2 /
OO T 1 1 1 1 1
-0.004  -0.003  -0.002 -0.001 0 0.001 0.002 0.003 0.004

Empirical Distribution —— Normal Model

28



Figure12
Distribution of Changesin Log of Futures Rate, United States
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Figure 14
Distribution of Changesin Futures Rate, United States

1.0
0.8 /
0.6

0.2 /

-1 4

0.0 T T T 1 1 1 1 1
-0.25% -0.20% -0.15% -0.10% -0.05% 0.00% 0.05% 0.10% 0.15% 0.20% 0.25%

Empirical Distribution Stochastic Vol Jump Model = = = Stochastic Volatility Model

Figure 15
Distribution of Changesin Futures Rate, Ger many
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Figure 16

Distribution of Changesin Futures Rate, Japan
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Figure17
Distribution of Changesin Futures Rate, Great Britain
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Figure 18
L eft and Right Tails of the Distribution for
Changesin the Futures Rate, USD
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Figure 19
L eft and Right Tails of the Distribution for
Changesin the Futures Rate, Germany
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Figure 20
L eft and Right Tails of the Distribution for
Changesin the Futures Rate, Japan
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Figure21
L eft and Right Tails of the Distribution for
Changesin the Futures Rate, Great Britain
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