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A B S T R A C T   

In this paper, we use knowledge graph (KG) to study systemic risk in the banking industry. KG provides a graphic 
representation of the connections of entities of interest (known as vertices or nodes) with the strengths of 
connections being reflected by the lines connecting them (known as edges) or distances between them. As a 
result, KG is a natural tool for visualizing the relationships among financial institutions. Furthermore, various 
data and graph choices can present how differently entities of interest can be connected. In this paper, we draw 
KGs on two datasets: liquidity index and volatility and three different embedding methods: locally linear 
embedding, spectral embedding and principal component analysis. Our empirical results show, not surprisingly, 
that volatility and liquidity index are not similar in explaining how banks are connected. Embedding methods 
also matter.   

1. Introduction 

In this paper, we use knowledge graph (KG) to study systemic risk in 
the banking industry. KG provides a graphic representation of the con-
nections of entities of interest (known as vertices or nodes) with the 
strengths of connections being reflected by the lines connecting them 
(known as edges) or distances between them. As a result, KG is a natural 
tool for visualizing the relationships among financial institutions. 
Furthermore, various data and graph choices can present how differ-
ently entities of interest can be connected. 

The origin of KG is the graph theory by Leonhard Euler in 1735 when 
he solved Konigsberg’s (now Kaliningrad) bridge problem.1 Even since, 
the development that follows Euler has been exploding. Largely there 
are three areas of development: probability graphic models (PGM), KG, 
and KG database. 

In the first case, PGMs are similar to other network models (e.g. 
Bayesian networks). The general idea is the expression a multi- 
dimensional probability distribution of entities of interest (which de-
scribes how entities are connected) in a series of conditional probability 
distributions. The focus of this line of research is generally to estimate 
such a network and establish statistical inferences. Hence, there is no 

need to present graphs. Also worth noting is that predominantly in this 
line of research normality (i.e. Gaussian distribution) is assumed. This 
differs from the second approach (see next paragraph) where non- 
parametric algorithms (i.e. machine learning) are adopted. 

In the second case (knowledge graphs), graphs are essential in pre-
senting the main result. A model (i.e. knowledge) is applied to create 
connections among entities of interest (e.g. stocks or banks). There is a 
huge selection of graphs, depending upon the purpose of the study. In 
general, various machine learning models are used (e.g. embedding and 
clustering methods) to create “knowledge”. Textual analyses (e.g. NLP 
models such as LDA2) are also often used to create knowledge. In the 
next section, a Harry Potter characters graph is given as an example in 
which all figures in the first three novels of the Harry Potter series are 
plotted in a graph. The purpose of the graph is to see how different 
characters are connected and the relative importance of their roles in the 
story. It can be seen then that multiple models are used in conjunction to 
create the graph. The models are not parametric (unlike the first 
approach above) which provide the flexibility of combining models. 

Lastly is to use KG to build databases. Such databases are essential for 
search engines. In a traditional database where tables/columns are used 
(a.k.a. relational database), “keys” are how various variables (i.e. 

☆ We thank the editor Iftekhar Hasan for his encouragement and the anonymous referee for very insightful suggestions that help position the paper in the literature 
greatly. 

* Corresponding author. 
E-mail addresses: rchen@fordham.edu (R.-R. Chen), xzhang25@fordham.edu (X. Zhang).   

1 See Alexanderson (2006) for a nice review.  
2 NLP stands for natural language processing and LDA stands for latent Dirichlet allocation. 

Contents lists available at ScienceDirect 

Journal of Financial Stability 

journal homepage: www.elsevier.com/locate/jfstabil 

https://doi.org/10.1016/j.jfs.2023.101195 
Received 28 January 2023; Received in revised form 1 November 2023; Accepted 7 November 2023   

mailto:rchen@fordham.edu
mailto:xzhang25@fordham.edu
www.sciencedirect.com/science/journal/15723089
https://www.elsevier.com/locate/jfstabil
https://doi.org/10.1016/j.jfs.2023.101195
https://doi.org/10.1016/j.jfs.2023.101195
https://doi.org/10.1016/j.jfs.2023.101195
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfs.2023.101195&domain=pdf


Journal of Financial Stability 70 (2024) 101195

2

columns in tables) are connected. However, in a KG database, “adjacent 
matrices” (i.e. connections) are used in connecting variables. This rev-
olutionizes how search engines such as Google can provide speedy and 
relevant search results. 

While PGMs (including network models) have been used in finance 
for quite some time,3,4 KG is relative new. This is because machine 
learning tools are only introduced to finance recently. As mentioned 
earlier, the main difference between PGMs and KG is that the former 
assumes normality (parametric) and the latter use various machine 
learning methods to create knowledge (non-parametric). 

While PGMs are more suitable for portfolio analysis (see footnote 4), 
KG is more suitable for studying systemic risk, especially for the finan-
cial industry. This is because financial institutions are connected in a 
rather convoluted manner. They hold each other’s assets and share 
common vulnerability against macro economic conditions. Further-
more, many large financial institutions are global, which make they 
expose to various country risks. These convoluted connections in a large 
and wide variety of risk factors (many of which are not even numerals (e. 
g. political risks)) make the study of their connections impossible to be 
parametrical. 

Financial institutions, given their specific inter-connectivity, present 
a substantial systemic risk that is vulnerable to crises as in 2008. KG 
which provides a network map is a natural tool to represent relation-
ships among banks and as a result ideal to studying the systemic risk. 
Following the literature (to be reviewed in the next section) that uses KG 
to study systemic risk of the financial sector, in this paper, we draw a set 
of KGs of all financial firms in our sample using data between 1996 ~ 
2013 (216 months). While using KG to measure the systemic risk is a 
consensus, what variables (features) to use remains a challenge. In KG, 
the measurement for the relationships is “edges” of which a higher value 
represents a closer relationship, and vice versa. 

As mentioned earlier, there are a wide variety of choices for the 
variables to connect financial firms, such as firm fundamentals (e.g. 
profitability, credit risk, etc.), technicals (e.g. seasonality, momentum, 
etc.), management (e.g. governance, size, etc.), among numerous others; 
and descriptive variables such as news, lawsuits, analyst reports, and 
others. Ideally, all of these variables should be included in building a 
network model using KG. Unfortunately, in the literature, there has been 
no such work. Furthermore, even in the very limited literature, stock 
prices/returns are often chosen as the only variable in building a KG. It is 
understandable to use returns in that correlations are measured by 
returns. Yet return is an aggregated measure and too broad to be 
informative in many situations such as systemic risk. There are a few 
studies that do not use returns including a dissimilarity index (Boss et. al. 
(2000), volatility (Ahelegbey, 2016), stress indices (Nicola et al., 2020), 
non-performing loans (Dolfin et al., 2019), and interest rates (Caccioli 
et al., 2018). 

We propose to use an alternative variable – the liquidity discount 
measure by Chen (2012) which focuses on the co-movement of the 
liquidity of financial firms during the 2008 crisis (see Chen et al., 2013 
and Chen et al., 2016). As a robustness test, we also use volatility, as 
suggested by Ahelegbey (2016). In addition, we draw KGs with three 

different embedding methods: locally linear embedding, spectral 
embedding and principal component analysis. Our empirical results 
show, not surprisingly, that volatility and liquidity index are not similar 
in explaining how banks are connected. Embedding methods also 
matter. 

2. Motivation and literature 

As mentioned in the Introduction, the use of PGMs has had a long 
history, and is reviewed by Caccioli et al. (2018).5 Giudici and Parisi 
(2016) summarize various parametric models.6 Yet KG is relatively new 
and the literature is rather linited. The focus of this paper is to build a KG 
using machine learning methods.7 

To our knowledge, Boss et al. (2004) is earliest KG used on banks. 
They, using only September 2002 data, present a KG of Austrian banks 
using clustering method (for the connections) and Zhou’s dissimilarity 
index for edges.8 Birch et al. (2015) also and planar maximally filtered 
graphs to analyze DAX 30 stocks for the time period 2001–2012. In 
addition, they use minimum spanning tree and asset graph to compare 
results. Soramäki et al. (2016) also use planar maximally filtered graph 
and minimum spanning tree to analyze major U.S. market indices.9 

Tumminello et al. (2010) use hierarchical clustering and 
Kullback-Leibler distance to analyze 10 U.S. stocks from January 2001 
to December 2003.10 They also discuss the differences between their 
methods and the methods used earlier (i.e. minimum spanning tree and 
planar maximally filtered graph). 

Nicola et al. (2020) who use mutual information and cross entropy to 
study the stock prices of top 74 U.S. large listed banks in a period 
January 2003 to May 2017. They calculate a different graphical model 
for each market day based on the data of the 90 previous days and 
leverage the graphical models information comparing the measures 
extracted from its structure with well known financial stress indexes and 
performed a causality analysis. Their finding confirms the common 
wisdom that during the crisis period (2007–2010) banks are more 
interconnected. 

Zhan et al. (2021) utilizes a wide variety of machine learning (e.g. 
spectral embedding, graphic LASSO, and clustering) methods to study 
stock portfolios. They study tech, financial, and energy stocks in the S&P 
500 index from January 1, 2012 till January 1, 2020. 

Our paper is similar to the literature reviewed in this section. Our 
contributions are the following. First, we focus on how financial firms 
are connected, especially during the crisis period (i.e. 2008 Lehman 
crisis). We differ from Nicola et al. (2020) in that we use different 
graphic methods. Secondly, we use a liquidity index by Chen (2012). As 
documented by Chen et al. (2013), 2016), Chen’s liquidity index has a 
strong explanatory power of the crisis. Thirdly, we also compare the KG 
from the liquidity index with the volatility (Ahelegbey (2016)). 

Finally, omitted here due to limitation of space and yet highly 
important is the broad literature of how machine learning in general has 
impacted the financial research in the past 20 years. These studies may 
or may not directly adopt graphs or networks and yet do relate in various 
degrees to our paper here. Given the extremely large volume of studies, 

3 See Caccioli et al. (2018) for an extensive review of how graphic models are 
used in systemic risk.  

4 A Gaussian PGM is a natural extension to the classical Markowitz-Sharpe 
portfolio theory in that they share the basic mean-variance assumption and 
PGM can “better identify” (or “clean up”) the relationships between stocks. This 
is because the inverse of the variance-covariance matrix, known as the precision 
matrix, can detect conditional independence between any two stocks. A 
Gaussian PGM (with regularization such as LASSO) can identify conditional 
independence (a.k.a. partial correlation) and hence can more clearly and 
cleanly describe the relationships (in some cases, dependencies) among stocks. 
This helps isolate out those stocks that are actually not connected even though 
they have non-zero correlations. As a result, a better portfolio can be 
constructed. 

5 More recent such work can be found in Ahelegbey (2015, 2016), Cerchiello 
and Giudici (2016), Engel (2019), Denev et al. (2020), Zhou (2020), Smitshoek 
(2021),  

6 They also provide empirical evidence on partial correlation in the two crisis 
periods of the EU nations, using various government and corporate interest 
rates between 2003 and 2015.  

7 We also exclude the theoretical network models such as Eboli (2007), Tabak 
et al. (2011), Benazzoli and Di Persio (2016), Detering et al. (2019), Dolfin et al. 
(2019), and Yu and Zhao (2020), among others.  

8 Zhou, H (2003), “Distance, Dissimilarity Index, and Network, Community 
Structure," e-print: arXiv:physics/0302032.  

9 Real Estate, High Yield, S&P, Gold, VIX, and Euro-USD, Fixed Income.  
10 AIG, IBM, BAC, AXP, MER, TXN, SLB, MOT, RD, and OXY. 
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we can only cite an extremely few as examples. Broadly speaking, ma-
chine learning has been used in the following four areas: 

• Portfolio Optimization: Machine learning methods, such as clus-
tering algorithms and neural networks, have been used to optimize 
portfolios by identifying asset relationships and predicting returns. 
For instance, Ravi and Ravi (2015) surveyed machine learning 
techniques to predict stock prices and optimize portfolios based on 
the predicted prices.  

• Algorithmic Trading: Reinforcement learning algorithms and deep 
learning models have been applied to develop algorithmic trading 
strategies. For example, see Kissell (2020) of how machine learning 
is used in algorithmic trading. 

• Credit Risk Assessment: Machine learning techniques, such as deci-
sion trees, support vector machines, and neural networks, have been 
employed to assess credit risk by analyzing credit data and predicting 
default probabilities. A notable example is the work by Yeh and Lien 
(2009), which compared the performance of various machine 
learning methods for credit scoring. 

• Fraud Detection: Machine learning algorithms, including unsuper-
vised and supervised techniques, have been used to detect financial 
fraud by analyzing transaction data and identifying anomalous pat-
terns. For instance, Phua et al. (2010) surveyed the application of 
machine learning methods for fraud detection in credit card trans-
actions, insurance claims, and securities trading. 

3. Knowledge graph 

A knowledge graph (KG) is a graph where it displays (usually in a two 
dimensional diagram) how each node (vertex) is connected with other 
nodes. The line connecting two nodes is known as an edge whose value 
represents how close the two nodes are related (higher value represents 
closer relationship). The main advantage of KG is its visualization. It 
allows the users to see visually how each node is connected to other 
nodes. Fig. 1 is an example taken from a blog of neo4j which is a popular 
KG database.11 In Fig. 1, all the characters in J.K. Rowling’s first four 
Harry Potter books are displayed in a graph. Each character is a node 
(vertex) and each line is an edge. The size of the bubble of each node 
represents how important a character is and the distance between any 
two nodes measures how close the relationship is. It is obvious that 
Harry Potter is the most important character in the 4-book series and 
therefore is placed in the center of the graph (and hence it is to be noted 
that the coordinates (i.e. x-y axis) in the graph carries no meaning in 
Fig. 1, which is not necessarily so in other KGs). 

By its name, a KG must contain “knowledge”. Knowledge is just a 
model that creates the connections. In Fig. 1, the knowledge used is all 
the texts in the first four Harry Potter books. By going through the entire 
four books, the connection of any two characters (e.g. Hermione 
Granger and Ron Weasley) is determined by how many times they are 
mentioned together. This requires use of models in NLP (natural lan-
guage processing).,12.13 

There are various ways to generate a KG. If the location (i.e. co-
ordinates) on the graph matters (i.e. the axes have meaning – this is 
usually the case where dimension reduction techniques are applied and 

hence the axes represent the most important features (or linear combi-
nations of all features, e.g. PCA)),14 then the distance between any two 
vertices represents the “closeness” of the two vertices. If the location has 
no meaning (i.e. vertices are randomly placed by the graphic software 
for the sake of a nice visual), then there are two ways to present close-
ness. First, edges are drawn with different degrees of thickness – a 
thicker edge representing a closer relationship. In such a case, various 
machine learning methods (such as LASSO, clustering, K-means, among 
numerous others) can be used to gauge the “closeness” of the vertices. 
Secondly, distance can be used in measuring closeness as in Fig. 1. In 
such graphs, vertices are arranged optimally15 for visualization (i.e. 
closer vertices are more connected than farther vertices and yet where 
they are located in the x-y plane is not important). 

As mentioned earlier, one can use various machine techniques to 
describe vertices and edges. These machine learning techniques may not 
be related, which provides one a large amount of flexibility in build a 
KG. This is drastically different from PGMs which must obey a para-
metric structure. 

In sum, there is no standard way to present a KG. Authors can choose 
any visualization as numerous packages are available for selection. 
Apparently this raises issues such as robustness, stability (stationarity), 
and other statistical concerns. We shall discuss this matter in Conclu-
sion. In the remainder of this section, we briefly describe directed and 
undirected graphs which are mostly concerned by PGMs (a standard KG 
is usually an undirected graph) and a Gaussian PGM which is the most 
popular PGM. These are all parametric (or semi-parametric) models and 
not directly related to this paper. 

3.1. Directed and undirected graphs 

As the names suggest, a directed or undirected graph is to present a 
relationship in a symmetrical (latter) or asymmetrical (former) way. 
Typical examples in finance are joint defaults (former) and return cor-
relations (latter). In the studies of joint defaults, conditional probabili-
ties are used to describe dependencies between two companies. For 
example, company A defaults may lead to the default of company B but 
not vice versa. In such situations a directed graph can be more suitable. 
On the other hand, return correlations are symmetrical and hence an 
undirected graph is more suitable. 

Directed graphs can be modeled via a series of conditional proba-
bilities. The following graph depicts the basic idea of a directed graph: 

1 2

3 4 5

6

where arrows demonstrate dependencies. For example, node #1 depends 
upon nodes #3 and #0 but it is depended upon by nodes #2 and #4. 

11 By Tomaz Bratanic in https://neo4j.com/developer-blog/turn-a-harry- 
potter-book-into-a-knowledge-graph/  
12 For example, the author uses co-reference resolution which replaces the 

pronouns with the referenced entities.  
13 Here, knowledge graph embedding is used. It is a technique used in natural 

language processing and machine learning to represent entities and relations in 
a knowledge graph as low-dimensional vectors in a continuous vector space. 
Details of such embedding is provided in the Appendix. 

14 We use “feature” and “explanatory variable” interchangeably. PCA is 
shorthand for principal component analysis.  
15 That is, the chosen graphic software will place the vertices optimally for a 

nice visual. Fig. 1 is a “spring graph” in which least connected vertices will be 
put in the far sides of the graph and the Euclidian distance is not a good 
measure for closeness. In another example, “ graph” will place all vertices on 
the circumference of a circle (given that location has no meaning) and the 
closeness is entirely represented by the thicknesses of the edges. 
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The joint probability of all six nodes can be shown, as a demon-
stration, as: 

p
(
x1,…, x6

)
= p(x1)p

(
x2|x1)p

(
x3|x1)p(x4|x2, x3)p

(
x5|x2)p

(
x6|x4) (1) 

To reflect the dependencies,16 in this example, vertex 2 and vertex 3 
are independent conditional on vertex 1, usually labeled as x2⊥x3|x1. 

In general, a set of vertices have the joint probability as: 

p
(
x1,…, xn

)
=

∏n

i=1
p
(
x1
⃒
⃒xPa(i)

)
(2)  

where Pa(i) represents the parents of i as shown in graph (and i repre-
sents a vertex). For example, Pa(4) = {2,3} and Pa(2) = {1} and Pa(1) =

ϕ. The random variable xA = (x1 : i ∈ A). Hence if A = {2,3}, then xA =

(x2,x3). Let A = Pa(4) = {2,3} and then xPa(4) = (x2,x3). 
Undirected graphs, a.k.a. random fields, are depicted as an example 

as follows: 

1 2

3 4 5

6

. 
Clearly, in an undirected graph, relationships/dependencies are 

symmetrical. As mentioned earlier, the edges can be presented with 
different degrees of thickness (for a better visual). The edges can be 
estimated parametrically (e.g. using a Gaussian graphic model) or via 
machine learning methods (e.g. graphic LASSO).,17.18 

3.2. Embedding 

In machine learning studies, it is customary to use a large amount of 
data with a large number of features. Given the complex nature of (non- 
parametric) these data and features, in many cases, features are not 
linearly related and need to be transformed in order to obtain accurate 
results. This is known as graph embedding. As a result, graph embedding 
is generally understood as a dimension reduction tool to map a complex 
graph into a usually 3- or 2-dimensional drawing for easy visualization. 
It is well known that any finite graph can be embedded in 3-dimensional 
Euclidean space and a planar graph is one that can be embedded in 2- 
dimensional Euclidean space.19 

Formally, an embedding of a graph G on a surface Σ is a represen-
tation of G on Σ in which points of Σare associated vertices and arcs are 
associated with edges in such a way that 

Fig. 1. Harry Potter Knowledge Graph. 
Source: https://neo4j.com/developer-blog/turn-a-harry-potter-book-into-a-knowledge-graph/. 

16 This example is taken from https://www.youtube.com/watch? 
v=A7Ypw5d9580: (ML 13.2) Directed graphical models - introductory exam-
ples (part 2) 

17 Please see the appendix for a short discussion of two types of the undirected 
graph.  
18 Often edges are modeled as partial correlation (inverse of the covariance 

matrix, or precision matrix) or any definition of “distance”.  
19 This is taken from Wikipedia. see Cohen, Robert F.; Eades, Peter; Lin, Tao; 

Ruskey, Frank (1995), "Three-dimensional graph drawing", in Tamassia, Rob-
erto; Tollis, Ioannis G. (eds.), Graph Drawing: DIMACS International Workshop, 
GD ’94 Princeton, New Jersey, USA, October 10–12, 1994, Proceedings, Lecture 
Notes in Computer Science, vol. 894, Springer, pp. 1–11, doi:10.1007/ 
3–540–58950–3_351, ISBN 978–3–540–58950–1. 
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• the endpoints of the arc associated with an edge e are the points 
associated with the end vertices of e,  

• no arcs include points associated with other vertices, and  
• two arcs never intersect at a point which is interior to either of the 

arcs. 

Knowledge graph embedding is a type of representation learning 
between entities and relations in a knowledge base. The entities and 
relations are mapped into a low- dimensional space representing the 
semantic information between entities and relationships. We classify 
knowledge embedding into two broad areas. The first is unfolding. The 
most famous case is the Swiss roll example where a roll is unfolded into a 
plane.20 This includes isomap, locally linear embedding, spectral 
embedding, Hessian eigenmapping, local tangent space alignment, 
multi-dimensional scaling (MDS), t-distributed stochastic neighbor 
embedding (t-SNE), among others. 

The second is to investigate the relation of any two nodes using textual 
data, known as translation distance models. Both entities and relations 
can be represented as vectors in the same space. This includes DistMult, 
TransE, TransH, TransR, ComplEx, ConvE, KG2E, among others. Note that 
these methods use textual data. These knowledge graph embedding 
methods aim to capture the semantic and structural information of en-
tities and relations in knowledge graphs. These embeddings can then be 
used as features for various downstream tasks, such as knowledge graph 
completion, entity recommendation, and question answering. 

In the Appendix, we provide further details of these various 
embedding methods. 

Finally we should note that graphs are often used, like other machine 
learning tools, to perform classification, clustering, regression, anomaly 
detection, feature learning, among others. All of these tasks have their 
counterparts in network analysis. Researchers in network science have 
traditionally relied on user-defined heuristics to extract features from 
complex networks (e.g., degree statistics or kernel functions). However, 
recent years have seen a surge in approaches that automatically learn to 
encode network structure into low-dimensional embeddings, using 
techniques based on deep learning and nonlinear dimensionality 
reduction. These network representation learning (NRL) approaches 
remove the need for painstaking feature engineering and have led to 
state-of-the-art results in network-based tasks, such as node classifica-
tion, node clustering, and link prediction. 

4. Liquidity discount model 

In this paper, we use the liquidity discount model developed by Chen 
(2012). In an empirical study, Chen et al. (2016) summarized how 
various banking sectors react to the crisis. 

In Chen (2012), the liquidity discount is modeled as a put option as  
Fig. 2 demonstrates. The illiquid price (horizontal axis) is lower than the 
liquid price (vertical axis) in a put option style.21 When the liquidity 
squeeze is severe, the curve is higher and when the liquidity squeeze is 
milder, the curve is lower. 

To explicitly carry out the liquid and illiquid evaluations, he adopts a 
functional form of the asset under evaluation with respect to a funda-
mental (or underlying) economic variable. The way to do it, according to 
Chen (2012), is to create two different expectations, one of which is 
under illiquid trading and the other under liquid trading. Let the liquid 
price be X̂(t) and the illiquid price be X(t). The terminal payoff is the 
same for both prices which is a function of a chosen economic variable: 
X(T) = X̂(T) = f(V(T)). The liquid price is computed as: 

X̂(t) = e− r(T − t) Êt
[
X(T)

]
(3)  

under the risk-neutral expectation Êt [⋅] (conditional at time t) where r is 
the risk-free rate. The illiquid price is computed as: 

X(t) = e− ξ(T − t)Et
[
X(T)

]
(4)  

under the physical expectation Et [⋅] (conditional at time t) where ξ is the 
risk-adjusted rate. 

We note that if both expectations are evaluated under continuous 
trading, then they must be equivalent as in continuous trading, no- 
arbitrage condition holds. Equation (3) is known as “certainty equiva-
lent” method and equation (4) is known as the “risk-adjusted” method.22 

Unfortunately, under illiquid trading, equation (4) cannot evaluated in 
continuous time and hence differences occur. 

Chen (2012) then uses the CAPM as follows.23. 

eξ(T− t) = Et

[
X(T)
X(t)

]

= er(T− t) + β
[

Et

[
V(T)
V(t)

]

− er(T − t)
] (5)  

where r is the (continuously compounded) risk-free return and β (beta) is 
the systematic risk: 

β =

cov
[

X(T)
X(t)

,
V(T)
V(t)

]

var
[

V(T)
V(t)

]

=
V(t)
X(t)

cov[X(T),V(T)]
var[V(T)]

(6) 

Substituting (5) back into (4), we obtain: 

X(t) = e− r(T − t)Et
[
X(T)

]
− β$

{
e− r(T − t)Et

[
V(T)

]
− V(t)

}
(7)  

where 

β$ =
cov[X(T),V(T)]

var[V(T)]
(8) 

Chen (2012) shows that if X(T) is linear in V(T), then under illiquid 
trading, there is no liquidity discount: X(t) = X̂(t). Chen and Li (201x) 
assume two explicit non-linear functional forms of X(T) in terms of V(T): 

X(T) = max {K − V(T), 0}
X(T) = aV(T)2

+ bV(T) + c (9) 

In Chen et al. (2016), the former function is used to calculate 
liquidity discounts for financial firms. In Chen, Lin and Wei, a firm’s 
equity is modeled as a call option on its firm (market) value which is 
under liquidity squeeze and the liquidity discount is evaluated via the 
above equations. Details of the implementation can be found in Chen, 
Lin and Wei. We are grateful for their liquidity discount data. 

5. Empirical work 

In this research, we present a series of KGs for all financial firms (551 
firms, according to Chen et al., 2016) as well as the top 25 financial firms 
in the U.S. We generate KGs using both liquidity index and volatility. We 
analyze KGs for the crisis period as well as the non-crisis period as 
comparisons. 

20 See, for example, https://scikit-learn.org/stable/auto_examples/manifold/ 
plot_swissroll.html.  
21 That is, the difference between the liquid and illiquid prices is similar to a 

put option. See the original discussion in Chen (2012). 

22 Discussions on risk-adjusted versus certainty-equivalent methods can be 
found in any standard corporate finance textbook under the “capital budgeting” 
topic.  
23 This is Merton (1973). 
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5.1. Data and Main Methodology 

The main data used in this study is liquidity discount index compiled 
by Chen et al. (2016).24 In their liquidity discount file, there are a total of 
75,331 observations containing 551 financial firms over the period 
monthly 1996 ~ 2013 (216 months). Out of 75,331 observations, 250 
observations have 0 debt and hence cannot compute liquidity discount 
and are removed from the data (resulting 75,081 observations). 4750. 

For the purpose of our study (which is their interconnectedness 
during crisis), we only select there period of 2006–2012 (84 months) 
which is 2 years before and 3 years after the 2008 Lehman crisis. We 
study the whole sample as well as two sub-samples: crisis sub-sample 
(2007–2009) and non-crisis sub-sample (all except for 2007–2009). 
The summary statistics of the liquidity discount index are provided in  
Table 1. 

In Panel (a) of Table 1, it is clear that liquidity risk reached its peak in 
2009 (mean discount is at 74.6% and standard deviation is at 34.0%), 
followed by 2008 (mean discount 95.3% and standard deviation 16.3%) 
which is when crisis began. The monthly time series plots in Chen et al. 
(2016)25 depict how liquidity discounts start to appear in late 2007 and 
last till end of 2009. This is why we define the crisis sub-period to be 
2007–2009. 

Volatility (Panel (b) of Table 1) tells a similar story. The peak of the 
volatility is in 2009 (and also the highest variation). The difference is in 
the relative magnitudes. This can be seen in the measure of coefficient of 
variation (or CoV which is standard deviation divided by the mean). The 
CoV for liquidity discounts is more than 3-fold (0.2668 for the crisis 
period versus 0.0888 for the non-crisis period) and yet it is only 30% for 
the volatility (0.6906 versus 0.5307 for the crisis and non-crisis 
respectively). In essence, both volatility and liquidity discounts tell the 
same story about the crisis. They both reflect the market turmoil during 
the crisis period. The difference is merely a non-linear transformation 

from one measure to another. Yet this is what a model is meant for. The 
basic phenomenon can always be observed from the raw data (in this 
case volatility) and yet a model can better gauge the severeness of the 
problem. In this case, the raw data (volatility) apparently does not 
reflect the severeness of a global crisis (from 30% to 300%).26 

We finally compare the two indices in Panel C.27 For the top 25 
banks, the correlation between their volatility and liquidity discount is 
quite substantial. They are highly negatively correlated. The smallest (in 
absolute value) correlation is –0.4533 (Franklin Resources, Inc. (BEN)) 
and the highest is –0.9882 (Citi Bank (C)). The average is –0.8427 with a 
standard deviation of 0.1327. The median is –0.8652 suggesting that the 
distribution is quite symmetric. 

To draw KGs, we follow the suggestions by Zhan et. al. (2021) that 
we first implement an embedding method to remove any non-linearity 
in the data. Then we use the precision matrix (combined with LASSO 
– known as graphic LASSO in Python) to detect any conditional inde-
pendence. Finally, a clustering method is used to highlight the re-
lationships among the firms (represented by various colors). We should 
note that the clustering method is not necessarily consistent with the 
precision matrix and yet it is a useful auxiliary method to validate the 
result from the precision matrix. This is common in generating KGs in 
that various machine learning methods are used in combinations. 

In the following, we briefly describe our methodologies and then 
report our empirical findings. 

5.2. Embedding 

Embedding in graph theory means that a complex (non-linear) data 
structure in a high dimension might “embed” a simpler (linear) structure 
in a lower dimension. Hence, embedding refers to techniques that 

severe liquidity squeeze light liquidity squeeze

illiquid price

liquid price

Fig. 2. Liquidity Discount Model of Chen (2012). This is Exhibit 8 in Chen (2012).  

24 We thank Chen et al. (2016) for providing us their data.  
25 Exhibit 2 in Chen et al. (2016). 

26 We should note that comparing means or standard deviations (but not 
combined) separately is meaningless in that the two measures have different 
units and magnitudes.  
27 We thank the referee for suggesting this, as the high correlation between 

variables could suggest bias in either variable. 
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“unfold” the original data from a non-linear structure to an approxi-
mation of linear structure in a lower dimension. One advantage is that it 
is then able to present the structure in low (2 or 3) dimensions via a 
graph. This allows human eyes to easily recognize the relationships 
among the vertices. 

We try various embedding methods. Various methods yield different 
results. As a consequence, we experiment with two popular methods – 
locally linear embedding and spectral embedding. We also compare 
these two embedding methods with a popular dimension reduction 
method – principle component analysis (PCA). Note that not only do 
different embedding methods apply different unfolding techniques, they 
also apply different graphic methods. Graphs generated by locally linear 
embedding and spectral embedding are (Laplacian) eigenmaps and 
isomaps respectively, in which the coordinates are generated in such a 
way that is best matched with the unfolding techniques. PCA can be 
regarded as a linear embedding method in that principle components 
(PC) are linear transformations of original coordiates. The first two or 
three PCs carry the most relevant information among vertices. Each 
method is briefly explained in the Appendix. 

5.3. Precision matrix 

Usually it is via the inverse of the covariance matrix (known as the 
precision matrix). However, edges can be estimated via other methods. 
Edges measure the closeness of two vertices. Normally an edge is 
regarded as “distance” between any two adjacent vertices. This “dis-
tance” can be viewed as Euclidian distance or any other measure (such 
as “precision” in portfolio analysis). 

5.4. Clustering 

A KG usually gets help from clustering analysis. Clustering puts 
vertices in groups (clusters). As a result, vertices are color-coded to 
represent their closeness. Note that a standalone clustering analysis 
frequently outputs a tree diagram. Yet, combined with KG, it puts colors 

on vertices where each color represents a cluster. 
There could be contradictions between the result of clustering 

analysis and the precision matrix. Hence, clustering used KG is often 
serves as an auxiliary tool whose quantitative results are not used by the 
model. There are various methods in clustering and we use k-nearest 
neighbors (KNN). 

6. Results 

We have two sets of results. The first set of graphs is plots of the 
results generated by various embedding methods. We draw KGs for all 
firms in our sample. The second set of graphs is a spring graph (or force- 
directed graph). The reason to choose different methods for graphs when 
different data are involved is that we would like to reach maximum 
visual effect so how these financial firms are connected can be easily 
seen. In a large dataset, the number of edges is large and hence the best 
presentation of the connectedness is to use firms’ geographic locations to 
present their closeness. When the sample size is small, then edges can be 
added. With edges measuring connectedness, locations do not matter 
and hence spring graph is a better choice. Details are given below. 

Our first empirical result is to show how all financial firms in our 
dataset are connected. We compare three different embedding methods 
– locally linear embedding in Panel (a); spectral embedding in Panel (b); 
and principle component analysis (PCA) in Panel (c). As mentioned in 
the previous section, embedding is a method that “unfolds” the data (in 
other words, to transform non-linear data to linear data so linear models 
can be applied). Furthermore, the processed data can be plotted in a 
lower dimension (e.g. 2d or 3d) for a nice visual. In this step, edges are 
not computed. This is given in Fig. 3. 

Given a large number of vertices and for the sake of a nice visual, 
edges are not computed for the graphs in Fig. 3 (while edges are 
computed for top 25 financial firms later). Also these graphs are 2d 
graphs (top 2 features). Finally, clustering is performed and 10 clusters 
are chosen. Vertices with the same color belong to the same cluster. The 
clustering analysis is an auxiliary analysis to cross-check the embedding 

Table 1 
Summary Statistics of Liquidity Discounts and Volatility.  

a) Liquidity Discount       

mean median std.dev # of obs. coef.var.  

2006 0.9982 1.0000 0.0050 4313 0.0050  
2007 0.9973 0.9935 0.0099 4162 0.0099  
2008 0.9530 0.9972 0.1626 4041 0.1706  
2009 0.7462 0.9830 0.3404 3882 0.4562  
2010 0.9645 0.9845 0.1347 3786 0.1396  
2011 0.9880 1.0000 0.0749 3739 0.0758  
2012 0.9855 0.9955 0.0850 3694 0.0862  
all 0.9483 0.9988 0.1770 27617 0.1866  
2007–2009 0.9018 0.9970 0.2406 12085 0.2668  
all but 07–09 0.9845 0.9995 0.0875 15532 0.0888  
b) Volatility        

mean median std.dev # of obs. coef.var.  
2006 0.2303 0.2138 0.0727 4313 0.3155  
2007 0.2581 0.3236 0.0917 4162 0.3553  
2008 0.5468 0.3690 0.2851 4041 0.5215  
2009 0.9470 0.7460 0.3898 3882 0.4116  
2010 0.4667 0.4072 0.2511 3786 0.5381  
2011 0.3519 0.2874 0.1474 3739 0.4189  
2012 0.3627 0.3727 0.1427 3694 0.3934  
all 0.4481 0.3104 0.3181 27617 0.7099  
2007–2009 0.5759 0.4064 0.3977 12085 0.6906  
all but 07–09 0.3487 0.2872 0.1850 15532 0.5307   

c) Correlation between Liquidity Discounts and Volatility 
mean  -0.8427 
median  -0.8652 
std.dev.  0.1327 
maximum  -0.9882 
minimum  -0.4533 

The minimum correlation is Franklin Resources, Inc. (BEN) and the maximum is Citi Bank (C)). 
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result. We select only 10 clusters using KNN (we also select 30 clusters 
due to high similarity in 10 clusters and the result is available upon 
request). 

At the first glance of the graphs, it is quite surprising that (1) the 
graphs are not like a typical spring graph (such as Fig. 1) where a spider- 
web is observed and (2) different embedding methods yield very 
different graphs. Panel (a) of Fig. 3 presents two approximately linear 
lines. Given that Euclidian distances here are meaningful, this graph 
indicates that the first two most important explanatory factors are 
orthogonal and all the firms can be categorized into two groups. Panel 
(b) of Fig. 3 presents a very different graph. Instead of two lines, it is now 
triangular. The clustering analysis (similar colors belong to one cluster) 
indicates that closely connected firms are also physically located closer 
together. The graph in Panel (c) of Fig. 3 presents a more scattered plot. 
This could be because the two axes under PCA are orthogonal. Different 
from the two previous graphs, the majority of firms under PCA belong to 
cluster #3 (green). 

For a comparison, we also use volatility to generate KGs. The results 
are presented in Fig. 4. 

The results are just as surprising as those of the liquidity index. Panel 
(a) of Fig. 4 presents the graph of a hyperbola-like shape. Firms in 
different parts of hyperbola do show different colors indicating that the 
clustering analysis is consistent with the embedding method. Panel (b) 
of Fig. 4 is a circle with different clusters mixed together, although 
within a cluster, firms do have similar locations. Panel (c) of Fig. 4 
presents several rings. It is like an expanded Panel (a). Now we can see 
more clearly how similar (more connected) firms cluster together with 
the clustering analysis. 

In summary, three conclusions are drawn. First, the graphs are 
different with different embedding methods This is true with both 
liquidity index data and volatility data. Secondly, graphs using liquidity 
index data are also quite different from those using the volatility data. 
Thirdly, the independent clustering analysis verifies the results of the 
graphs – similar firms do stay together, confirming that geographical 
locations of the firms represent the closeness of these financial firms. 

The next set of results focus on top 25 firms by their market capi-
talization, since there is a substantial interest in only large firms during 
the 2008 Lehman crisis. We select the top 25 firms which are given in  
Table 2. 

Fig. 5 plots the KGs of top 25 firms. We look at the whole sample 
(2006–2012) as well as two sub-samples (crisis period of 2007–2009 and 
the non-crisis period of 2006, 2010–2020) in order to examine any 
change in interconnectedness in these large firms during the crisis. As 
noted earlier, spring graphs are used for these firms. It is a force directed 
layout that uses a spring and electrical forces. “The spring force tries to 
enforce a certain distance between connected vertices. The electrical 
force repels the vertices which are close to each other.”28 “. [The] pur-
pose is to position the nodes of a graph in two-dimensional or three- 
dimensional space so that all the edges are of more or less equal 
length and there are as few crossing edges as possible, by assigning 
forces among the set of edges and the set of nodes, based on their relative 
positions, and then using these forces either to simulate the motion of 
the edges and nodes or to minimize their energy.”29 

We also examine two cut-offs (low and high). The reason for doing so 
is that spring graphs will reinforce both strong (pulling) and weak 
(pushing) edges, which is then presents a much clearer picture for the 
graph. Note that the cutoffs are different in different graphs. This is 
because same cutoffs produce inconsistent graphs. In different samples, 
data (i.e. liquidity index and volatility) are different and hence same 
cutoff will generate very different graphs. As a result, we vary the cutoffs 
so the visuals of the graphs are relatively similar to each other. Panels in 

Fig. 3. All Banks Knowledge Graph (Liquidity Discount) – Whole Period 
(2006–2012), All Banks. Note: These graphs are generated using sklearn. 
manifold.[embedding method]. For example, in spectral embedding, a Lap-
lacian eigenmap is plotted. 

28 https://www.nevron.com/products-dot-net-diagram-gallery-automatic-lay-
outs-spring-graph-layout.aspx  
29 https://en.wikipedia.org/wiki/Force-directed_graph_drawing 
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Fig. 5 present the following KGs: 
Panel (a) of Fig. 5 (whole sample period, 2006–2012) presents a 

fairly complex web. All firms are well-connected except for Chubb 
Limited (CB) and Bankers Trust (BBT). Within the web, we can find two 
sub-webs (located left and right) and they are connected via American 
Tower (AMT), Bank of New York (BK), Healthcare Property Investors 
(HCP), and PNC bank (PNC). 

Panel (b) of Fig. 5 presents the KG of firms during the crisis period 
(2007–2009). It is clear that all firms now are more closely connected. 
There are no longer two sub-webs. The outliers in this period are Metlife 
(MET), State Street (STT), and Berkshire Hathaway (BRK.B). 

Lastly is Panel (c) of Fig. 5 which presents the KG for the non-crisis 
sub-period (2006 and 2010–2012). Immediately we can see that firms 
are not as connected. Only a few (such BlackRock (BLK), Bank of 
America (BAC), and Bankers Trust (BBT)) are closely connected while 
the remaining firms are not. 

Fig. 6 presents the same set of graphs but with volatility. Ahelegbey 
(2015, 2016) provides a similar graph for the top European banks. We 
try to be conservative and use either same or lower cutoffs than the 
cutoffs used in the liquidity KGs. 

Two observations are made. First, the non-crisis period (2006 and 
2010–2012) has a more complex web than both the whole period 
(2006–2012) and the crisis period (2007–2009). This is counter intui-
tive. One would expect financial firms are more connected during the 
crisis and during normal times. Secondly, for the crisis period, firms not 
connected. More than half of the firms are not connected to the web. 

This result is understandable in that volatility does not reflect 
properly how firms are connected. During a crisis, firms have very high 
volatility and the magnitudes of their volatility may not move together 
as much as liquidity indices do. In other words, volatility may be more 
idiosyncratic than liquidity index does, hence resulting a counter intu-
itive graph for the crisis period. 

We also lower the cutoffs as a robust check. Lower cutoffs lead to 
more complex webs. We find the results are similar. These graphs are 
presented in an appendix and attached at the end of the paper. 

Fig. 4. All Banks Knowledge Graph (Volatility) – Whole Period (2006–2012), 
All Banks. 

Table 2 
Top 25 Banks.  

Name Ticker 

ACE ACE LIMITED 
AFL A F L A C INC 
AIG AMERICAN INTERNATIONAL GROUP INC 
AMT AMERICAN TOWER CORPORATION 
AXP AMERICAN EXPRESS CO 
BAC BANK OF AMERICA CORP 
BBT TRUIST FINANCIAL CORP 
BEN FRANKLIN RESOURCES INC 
BK BANK NEW YORK INC 
BLK BLACKROCK INC 
BRK.B1 BERKSHIRE HATHAWAY INC DEL 
C CITIGROUP INC 
CB CHUBB LIMITED 
COF CAPITAL ONE FINANCIAL CORP 
HCP HEALTH CARE PROPERTY INVESTORS INC 
JPM JPMORGAN CHASE & CO 
MET METLIFE INC 
PNC P N C FINANCIAL SERVICES GRP INC 
PRU PRUDENTIAL FINANCIAL INC 
PSA PUBLIC STORAGE (PSA) 
SPG SIMON PROPERTY GROUP INC NEW 
STT STATE STREET CORPORATION (STT) 
TRV ST PAUL TRAVELERS COS INC 
USB U S BANCORP DEL 
WFC WELLS FARGO & CO NEW 

Note that ACE and CB merged on January 14, 2016. Hence they are two 
different insurance companies in our sample. BBT was formerly known as 
Bankers Trust and merged with SunTrust Bank in December 2019. 
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Fig. 5. Selected Banks Knowledge Graph (Spring Graph Network).  
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Fig. 6. Knowledge Graphs (Volatility).  
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7. Conclusion, deficiencies and future research 

In this paper, we present a set of knowledge graphs (KG) for the 
financial firms during the 2008 Lehman crisis. KG is particularly useful 
in visualizing how firms are connected and hence perfectly suitable for 
studying the systemic risk during a crisis time. We use two different 
types of KG – embedding and spring graph. 

Our results (spring graphs of top 25 firms) verify the literature and 
the common wisdom that during crises, firms are more connected than 
non-crisis times. In addition, we also present results under various 
embedding methods (all 551 firms) and examine the sensitivity of how 
KG reacts to embedding. We discover mixed results: (1) closely con-
nected firms are located close to each other but (2) Euclidian distances 
from one another are not necessarily measure properly their 
connectedness. 

KG, like any other machine learning methods, is static. It is very 
difficult to analyze the dynamic behavior of a KG and also hard to 

establish any meaningful statistical inferences. That said, a certain 
number of hypotheses can still be established and tested. For example, 
can a feature (features can be ranked using, e.g., random forest) be 
statistically significant in connecting financial firms? In other words, 
this paper can be extended to include other features (Cerchiello and 
Giudici, 2016 use balancesheet data) but this is left to future research. 

Due to space limitations, we left off interesting investigations for 
future research. First, data limitation prevents us from examining how 
graphs look like in recent episodes after 2008 (such as European crisis in 
2015 and the pandemic crisis in 2020). Second, we are not able to 
compare various distress indices such as, for example, dissimilarity 
index, stress index, and non-performing loans. Both of these deficiencies 
are due to lack of easy access to data. Note that such indices are easily 
accessible (they are not raw data but rather require complex models to 
compile). Third, we are not able to experiment other embedding 
methods in that we need relevant textual data. All of these interesting 
further work is left for future research.  

Appendix 

A short discussion of undirected graph 

Even though the relationships in an undirected are two-way, they are not necessarily symmetrical. In parametric estimations, one can distinguish 
between the dependencies of two vertices. For example, vertex 4 is connected to both vertices 3 and 6 and hence the probabilities from vertex 4 to 
vertices 3 and 6 must be both non-negative and sum to 1. On the other hand, the probability from vertex 6 to vertex 4 is 100% since other than vertex 4, 
vertex 6 has nowhere else to go.

1 2

3 4 5

6

. 
In non-parametric estimations, the situations are entirely different. Edges now only measure how tightly any two vertices are related. They do not 

represent probabilities. Hence, the edges are symmetrical. In many cases, edges are calculated as correlation or any definition of “distance”. 
In the parametric case, edges are often formulated as a Markov process with the following transition matrix (numbers in the table are probabilities 

and are arbitrarily given):     

1  2  3  4  5  6 
1    0.6  0.4       
2        0.5  0.5   
3  0.4      0.6     
4      0.6      0.4 
5    1         
6        1      

If the underlying distribution assumption is Gaussian, then many desirable statistical inferences can be drawn in a dynamic setup. 

Embedding 

In this appendix, we briefly discuss two (rough) groups of embedding techniques: one that is based upon only numeral data and is used to unfold a 
complex network (into a lower dimension) and the other that is based upon textual data where connections (i.e. edges) of features are retrieved. This 
appendix is only to provide a high level description and interested readers can trace the references given here for more details. 

The first group of methods includes local linear embedding and spectral embedding. Embedding is meant to find a lower dimension representation 
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of a highly dimensional data structure. This often involves “unfolding” a highly non-linear data structure (residing in a high dimensional space) to its 
linear (hence lower dimensions) equivalent. The second group30 of methods includes various translation tools which take advantage of textual data 
(via natural language processing algorithms) to explain the relations of features. We shall describe each method as follows. 

Locally Linear Embedding (LLE) is a method of non-linear dimensionality reduction proposed by Roweis and Saul (2000). LLE seeks a 
lower-dimensional projection of the data which preserves distances within local neighborhoods. It can be thought of as a series of local Principal 
Component Analyses which are globally compared to find the best non-linear embedding.31 It performs the nearest neighbors search using Isomap. 
There are three different nearest neighbor searches – BallTree, KDTree, and brute-force (available in scikit-learn). It constructs the weight matrix 
involving the solution to a k × k linear equation for each of the N local neighbors. 

Spectral Embedding is Laplacian Eigenmaps in action. Laplacian Eigenmaps is considerably similar to Isometric Feature Mapping (also referred to 
as Isomap). The primary difference between Isomap and Laplacian Eigenmaps is that the goal of Isomap is to directly preserve the global (non-linear) 
geometry, but the goal of Laplacian Eigenmaps is to preserve the local geometry (i.e., nearby points in the original space remain nearby in the reduced 
space). There are crucial three steps in achieving spectral embedding:  

• Constructing the adjacency graph  
• Choosing the weights  
• Obtaining the eigenmaps 

Finally an Isomap (Isometric Mapping) uses graph distance to the approximate geodesic distance between all pairs of points. Through eigenvalue 
decomposition of the geodesic distance matrix, it finds the low dimensional embedding of the dataset. In non-linear manifolds, the Euclidean metric 
for distance holds good if and only if neighborhood structure can be approximated as linear. If neighborhood contains holes, then Euclidean distances 
can be highly misleading. In contrast to this, if one measures the distance between two points by following the manifold, one will have a better 
approximation of how far or near two points are. 

Translation embedding is often described via a triplet (h, r, t) which represent head entity (i.e. a node), relation (i.e. edge), and tail (a node) 
respectively so that: 

t ≈ h+ r (A1) 

The objective function to be minimized is the margin-based ranking loss: 

L =
∑

(h,r,t)∈S

∑

(h′,r′,t′)∈S′
max

{

γ + d
(
h+ r, t

)
− d

(
h′+ r′, t′, 0

}

(A2)  

where S is the set of observed true triples, S′ = ϕ(h, r, t) is the set of corrupted triples for a given true triple (h, r, t), γ is the margin, and d(a, b) is a 
distance measure between a and b (e.g., Euclidean or Manhattan distance). 

Because translation embedding models includes a one-to-one relation between two entities, in order to build a large-scale knowledge graph 
embedding, the relationship between many entities has to be constantly added. Recently, several methods have been applied in knowledge graph 
completion. Elhammadi (2020) demonstrates how word embedding is extracted from Wikipedia and a knowledge base was trained using the TransE 
model.32 This model makes the word representation corresponding to the entity in the text as close as possible to the entity representation in the 
knowledge base. In addition to TransE, there are others various embedding methods:  

• TransE: Translating Embeddings for Modeling Multi-relational data:  
o TransE represents each entity and relation as vectors.  
o It assumes that relations can be seen as translations in the embedding space.  
o The model learns to minimize the energy of true triples (entities and relations that exist in the knowledge graph) while maximizing the energy of 

false triples (entities and relations that do not exist).  
• TransH: Knowledge Graph Embedding by Modeling Hierarchical Structures of Relations:  

o TransH extends TransE by modeling relations in a hyperplane instead of directly translating them.  
o It introduces a hyperplane for each relation to capture the structural information of the relations.  

• TransR: A Unified Model for Knowledge Graph Embedding and Reasoning:  
o TransR takes a different approach by learning separate projection matrices for entities and relations.  
o It projects entities and relations into different subspaces, allowing for more expressive modeling of complex relationships.  

• ComplEx: Complex Embeddings for Simple Link Prediction:  
o ComplEx extends the idea of complex numbers to knowledge graph embeddings.  
o It represents entities and relations as complex-valued vectors and uses the conjugate operation to model various relationships.  

• ConvE: Convolutional 2D Knowledge Graph Embeddings:  
o ConvE utilizes 2D convolutional neural networks to capture local patterns and dependencies in knowledge graphs.  
o It operates on the 2D matrix representation of entities and relations.  

• KG2E: Knowledge Graph Embedding with Entity Types:  
o KG2E incorporates entity types or categories into the embedding process to enhance the representation of entities.  
o It leverages both entity and type embeddings. 

30 We thank the referee for suggesting this group of embedding methods.  
31 Taken from scikit-learn 1.2.0 documentation.  
32 For a good reference, also see Bordes et. al. (2013). 
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DistMult is another popular model for knowledge graph embedding, not specifically for matrix embedding. The DistMult model is based on the idea 
of bilinear diagonal interactions and is designed to capture the interactions between entities and relations in a knowledge graph. It’s important to note 
that DistMult is designed specifically for knowledge graph embedding and is not a general-purpose method for matrix embedding. If you are looking 
for matrix factorization techniques or methods for embedding matrices, there are other approaches and models available, such as Singular Value 
Decomposition (SVD), matrix factorization, or various neural network-based matrix factorization methods. These methods are used for tasks like 
recommendation systems and matrix completion, which are different from knowledge graph embedding.33 

The scoring function for the triplet (h, r, t) is given by the element-wise product of the head, relation, and tail embeddings, followed by summing the 
results: 

ϕ
(
h, r, t

)
=

∑k

i=1
hi⋅ri⋅ti (A3)  

where hi, ri, and ti are the ith components of the embeddings of the head entity, relation, and tail entity, respectively, and k is the dimension of the 
embedding space. 

The objective function to be minimized is the negative log-likelihood of the true triples: 

L = −
∑

(h,r,t)∈S

ln
[
p
(
h, r, t

)]
(A4)  

where S is the set of observed true triples and p(h, r, t) is the probability of the triplet being true, which can be computed using the softmax function: 

p
(
h, r, t

)
=

exp{ϕ(h, r, t)}
∑

h′,r′,t′exp{ϕ(h′, r′, t′)} (A5)  

Gaussian (Probabilistic) graphical models 

Graphical models are part of the KG family and use probabilistic modeling for the knowledge. Gaussian graphical models are such models that 
further employ Gaussian distributions for the underlying variables. 

The major advantage of the graphical models is convenience to create “partial correlation” or conditional independency, a key feature in KG. 
Formally speaking, a multi-variate Gaussian distribution can be written as: 

p(x) = ((2π)n
|Σ|)− ½exp

(

−
1
2
(
x − μ)′Σ− 1( x − μ

)
)

∝|Φ|
½exp

(

−
1
2
(
x − μ)′Φ

(
x − μ

)
) (10)  

where 

Σ =

[
V1 R
R′ V2

]

and 

Φ = Σ− 1 =

[
K1 H
H′ K2

]

with the following 

K − 1
1 = V1 − RV − 1

2 R′
H = − K1RV − 1

2

K − 1
2 = V2 − R′K − 1

1 R  

and 

μA|B = μA + ΣA,BΣ− 1
B,B

(
xB − μB

)

ΣA|B = ΣA,A − ΣA,BΣ− 1
B,BΣB,A  

33 See Yang et. al. (2015). https://arxiv.org/pdf/1412.6575.pdf 
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Appendix A. Supporting information 

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jfs.2023.101195. 
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