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Abstract. We use the dyadic trace to define the concept of slope for integral lattices. We

present an introduction to the theory of the slope invariant. The main theorem states that

a Siegel modular cusp form f of slope strictly less than the slope of an integral lattice with

Gram matrix s satisfies f(sτ) = 0 for all τ in the upper half plane. We compute the dyadic

trace and the slope of each root lattice and we give applications to Siegel modular cusp forms.

§0. Introduction.

For a Siegel modular cusp form f ∈ Sk
n with f(Ω) =

∑
T aT e (tr (ΩT )) as its Fourier

expansion define µ(f) = min{m(T ) : aT �= 0} wherem(T ) = minx∈Zn\{0} x
′Tx is Hermite’s

function. The integer µ is a measure of the order of vanishing of f on the boundary of
moduli space and the ratio k/µ is called the slope of f . Cusp forms of small slope necessarily
vanish on certain geometric loci of An, the moduli space of principally polarized abelian
varieties. For example all cusp forms of slope less than 8 + 4

n vanish on the hyperelliptic
locus inside An. This follows from the work of Igusa [7] and may also be found in the
work of Harris and Morrison [6]. Here one also finds a result on the trigonal locus and an
elegant conjecture for the Jacobian locus. Cusp forms of slope less than

72(2n+ 3)(32n+2 − n)
(2n+ 3)(32n+4 + 2 · 32n+2 − 27)− (32n+5 − 27)

vanish on the trigonal locus. As n increases this formula monotonically decreases to 72/11.
The conjecture of Harris and Morrison would imply that cusp forms of slope less than
6 + 12

n+1 vanish on the Jacobian locus and their conjecture has been verified for n ≤ 6.
These interesting results compute “critical slopes” for natural geometric loci inside of

An. In this paper we compute critical slopes for an extensive family of modular curves
embedded in An. In the process we exhibit homomorphisms that can profitably be used
to study all Siegel modular cusp forms, see [15]. Let Λ be an integral lattice of rank n and
let s be any Gram matrix for Λ. Let 
 be the unique positive integer with 
s−1 integral
and primitive; 
 is the exponent of the abelian group Λ∗/Λ. The map φs : H1 → Hn given
by τ �→ sτ descends to a map φΛ : X0(
) → An that does not depend upon the choice of
Gram matrix s. Our main result is the following: if a cusp form f ∈ Sk

n has slope less than

(0.1)
12
n

1
[Γ1 : Γ0(
)]

∑
[(
a b
c d

)]∈Γ0(�)\Γ1

w (cΛ∗ + Λ)
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then f vanishes on the modular curve φΛ (X0(
)). We explain the notation: The Riemann
surface X0(
) is constructed as X0(
) = Γ0(
)\H1. Let Pn(R) be the cone of n × n
symmetric positive definite real matrices. The dyadic trace [14] w : Pn(R) → R≥0 is a
class function defined by w(s) = infY ∈Pn(R) tr(sY )/m(Y ) and so is dual to m in the sense
of convexity theory [16]. The dyadic trace of a lattice Λ is given by w (Λ) = w (Gram(Λ))
for any choice of Gram matrix associated to Λ. Note that for α > 0 we have w(αΛ) =
w(α2 Gram(Λ)) = α2w(Λ). We refer to the rational number in 0.1 as the slope of Λ or
of Gram(Λ) and we compute the slopes of the lattices Ar

n, Dn, Ei and their duals. For
example, we have slope(Dn) = 8 and so any Siegel modular cusp form of slope less than
8 must vanish on Gram(Dn)τ for all τ ∈ H1. As a consequence of this we show that for
n ≥ 5 the principally polarized abelian variety defined by Cn/(Gram(Dn)τZn +Zn) has a
singular theta locus. Other examples and comments may be found in the Conclusion.

§1. Notation.

Let Mm×n(F) denote m× n matrices with coefficients in F for F = C, R, Q or Z. Let

M sym
n×n(F) = {M ∈ Mn×n(F) : M ′ = M}. Let M =

(
A B
C D

)
be a typical element of

Spn(F) = {M ∈ M2n×2n(F) : M ′JM = J} where A, B, C, D ∈ Mn×n(F) and J =(
0 In
−In 0

)
. Elements in Spn(Q) are called rational; elements in Spn(R)∩R+M2n×2n(Q)

are called projective rational. Let Γn = Spn(Z) and for positive integers 
 let Γn,0(
) =
{M ∈ Γn : C ≡ 0 mod 
In}. Let ∆n(F) = {M ∈ Spn(F) : C = 0} and let ∆n = ∆n(Z).
For n = 1 we write Γ0(
) = Γ1,0(
). For σ ∈ Γ1, width�(σ) is the number of cosets of
Γ0(
)\Γ1 contained in the double coset Γ0(
)σ∆1 and we have width�(σ) = 
/(
, c2). We
set γ(
) = [Γ1 : Γ0(
)] and note that γ(
) = 


∏
(1 + 1

p ) where the product is over the
primes p dividing 
. For U ∈ GLn(F) let U∗ denote the transpose inverse and define a

homomorphism u : GLn(R)→ Spn(R) by u(U) =
(
U 0
0 U∗

)
. Similarly let t : M sym

n×n(R)→

Spn(R) be defined by t(T ) =
(
In T
0 In

)
. For any s ∈ Pn(R) there is a homomorphism

αs : Sp1(R)→ Spn(R) given by: for σ =
(
a b
c d

)
∈ Sp1(R) define αs(σ) =

(
aIn bs
cs−1 dIn

)
.

Let Hn = {Ω ∈M sym
n×n(C) : �Ω ∈ Pn(R)} be the Siegel upper half space. Let M ∈ Spn(R)

act on Ω ∈ Hn by linear fractional transformations: M〈Ω〉 = (AΩ + B)(CΩ + D)−1; we
have φs ◦ σ = αs(σ) ◦ φs as maps from H1 to Hn, see [5, p. 301]. We set An = Γn\Hn.

Fix n, k ∈ Z, n ≥ 1, k ≥ 0. For a function f : Hn → C and M ∈ Spn(R) define
f |
k

M : Hn → C by (f |
k

M)(Ω) = det(CΩ + D)−kf(M〈Ω〉). We then have a right action

of the group Spn(R) on functions from Hn to C. For any s ∈ Pn(R), σ ∈ Sp1(R) and
function f : Hn → C the following equation is demonstrated in [5, pp. 300-301]

(1.1 ) (φ∗
sf) |

nk

σ = φ∗
s

(
f |
k

αs(σ)
)
.
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Let Γ ⊆ Γn be a subgroup of finite index. The C-vector space Mk
n(Γ) of Siegel modular

forms of degree n and weight k for Γ is the set of holomorphic f : Hn → C such that
for all M ∈ Γ we have f |M = f and for all projective rational M ∈ Spn(R) we have
f |M bounded on domains of type {Ω ∈ Hn : �Ω > Y0}. The C-vector space Sk

n(Γ) of
Siegel modular cusp forms consists of the elememts of Mk

n(Γ) which satisfy Φ0(f |M) = 0
for all projective rational M , where Φ0 is the standard Siegel operator, see [5, p.45].
For F ⊆ R let Psemi

n (F) = {T ∈ M sym
n×n(F) : T ≥ 0}. For z ∈ C let e(z) = e2πiz.

For A, B ∈ M sym
n×n(F) let 〈A,B〉 = tr(AB). Any f ∈ Mk

n(Γ) has a Fourier expansion
f(Ω) =

∑
T∈Psemi

n (Q) aT e (〈T,Ω〉). Let supp(f) = {T ∈ Psemi
n (Q) : aT �= 0}. We know that

2
 supp(f) are all even forms in Psemi
n (Z) when we have t

(

M sym

n×n(Z)
)
⊆ Γ. The function

f is a cusp form precisely when supp(f) ⊆ Pn(Q).
By a lattice Λ we mean a free Z-module contained inside a Euclidean inner product

space. If Λ has a Z-basis of n elements we write rank(Λ) = n. Write ΛF = Λ⊗ZF; then ΛQ

is a Q-vector space and rank(Λ) = dimQ(ΛQ). In this paper we always choose the Euclidean
space containing a rank n lattice to be the column vectors in Rn with the standard dot
product. If M ∈ GLn(R) is a basis of column vectors for Λ then we have Λ = MZn and
s = M ′M is called a Gram matrix for Λ. A Gram matrix s is not unique but the GLn(Z)
equivalence class [s] is. The following are class properties of s and so apply to the lattice
Λ as well: s is integral (rational) if its coefficients are in Z (Q), an integral s is primitive
if the gcd of its coefficients is 1, s is even if for all v ∈ Zn we have v′sv ∈ 2Z. The dual
lattice Λ∗ = {ξ ∈ Rn : ∀x ∈ Λ, x · ξ ∈ Z} also has rank n and is rational precisely when Λ
is. We have that Λ is integral if and only if Λ ⊆ Λ∗. If Λ = MZn then Λ∗ = M∗Zn. Given
an abelian group (G,+) we set exp(G) = min{j ∈ Z+ : ∀g ∈ G, jg = 0}. The minimal
vectors of s are the v ∈ Zn satisfying v′sv = m(s). The minimal vectors of Λ are the x ∈ Λ
satisfying x · x = m(Λ).

Consider a Siegel modular form f ∈ Mk
n . For a rank n lattice we pick a basis Λ =

MZn with Gram matrix s = M ′M and define φ∗
Λf = φ∗

sf = f ◦ φs. Since f is a Siegel
modular form, φ∗

Λf is independent of the choice of M . Occasionally a more complicated
construction is requisite: Let X ∈ Extsym (Λ,Λ∗;R) = Sym (Λ∗ ⊗ Λ∗)R /Sym (Λ∗ ⊗ Λ∗)Z
be given along with Λ. Pick a representative X̄ ∈ Sym (Λ∗ ⊗ Λ∗)R so that X = [X̄]. Let
j : Rn⊗Rn →Mn×n(R) be the isomorphism of vector spaces given by j(x⊗ y) = xy′. We
may define φ∗

Λ,Xf by
(
φ∗

Λ,Xf
)
(τ) = f(M ′(Inτ + jX̄)M); since f is a Siegel modular form

φ∗
Λ,Xf is independent of the choice of basis M and representative X̄. We then have φ∗

Λ,0f
= φ∗

Λf = φ∗
sf .

§2. The � operation.

We now explain the operation of the cusps on lattices Λ with rational Gram matrices.
Motivation for the definitions in this section may be found in the proof of Lemma 5.3.

Definition 2.1. Let σ =
(
a b
c d

)
∈ Γ1. Let Λ be a rational lattice. Define the rational

lattice Λ�σ by Λ�σ = cΛ∗ + aΛ.

As examples of this operation we have: Λ�I = Λ, Λ�J = Λ∗ and Λ�(Jσ)∗ ⊇ (Λ�σ)∗.
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There is another invariant that we can extract from Λ and σ, it is an element X ∈
Extsym (Λ�σ, (Λ�σ)∗;Q). First we need the following two Lemmas. By treating the
elements of Λ⊕Λ∗

Q as 2×1 column vectors we may let Γ1 act on Λ⊕Λ∗
Q from the left. For

a lattice Υ, we may also let X̄ ∈ (Υ∗ ⊗Υ∗)Q map Υ to Υ∗
Q via X̄x = (jX̄)x for x ∈ Υ.

Lemma 2.2 recounts the standard properties of Ext and we omit the proof.

Lemma 2.2. Let Υ be a lattice. The lattices L such that 0 ⊕ Υ∗ ⊆ L ⊆ Υ ⊕ Υ∗
Q

which make the sequence 0 ↪→ Υ∗ ι2
↪→L π1−→Υ −→ 0 exact are in one-to-one correspon-

dence with the elements of Ext (Υ,Υ∗;Q) = (Υ∗ ⊗Υ∗)Q / (Υ∗ ⊗Υ∗)Z. The elements
of Extsym (Υ,Υ∗;Q) = Sym (Υ∗ ⊗Υ∗)Q /Sym (Υ∗ ⊗Υ∗)Z are in one-to-one correspon-
dence with the lattices L such that L = JL∗. The correspondence is as follows: For any
X̄ ∈ (Υ∗ ⊗Υ∗)Q define FX̄ : Υ⊕Υ∗ → Υ⊕Υ∗

Q by FX̄(x, ξ) = (x, X̄x + ξ). An element
[X̄] ∈ Ext (Υ,Υ∗;Q) determines the lattice L = FX̄ (Υ⊕Υ∗). For any lattice L choose
a rectraction r1 : Υ → L; r1 is a homomorphism such that π1 ◦ r1 = idΥ. Choose any
basis {mi} for Υ and let {m∗

i } be the corresponding dual basis for Υ∗, then we may select
X̄ =

∑
i(π2r1mi)⊗m∗

i .

Lemma 2.3. Let σ ∈ Γ1. Let Λ be a rational lattice. Let L = σ′ (Λ⊕ Λ∗). We have
0 ⊕ (Λ�σ)∗ ⊆ L ⊆ (Λ�σ) ⊕ (Λ�σ)∗Q, the sequence 0 ↪→ (Λ�σ)∗

ι2
↪→L π1−→(Λ�σ) −→ 0 is

exact and L = JL∗.

Proof. We have L = σ′ (Λ⊕ Λ∗) = {(ax + cξ, bx + dξ) : x ∈ Λ, ξ ∈ Λ∗} ⊆ (aΛ + cΛ∗) ⊕
(bΛ + dΛ∗) = (Λ�σ)⊕ (Λ�(Jσ)∗) ⊆ (Λ�σ)⊕ (Λ�σ)Q. To show that 0⊕ (Λ�σ)∗ ⊆ L so
that the range of the injective ι2 is as stated pick any θ ∈ (Λ�σ)∗. From θ ∈ (aΛ + cΛ∗)∗

we have cθ ∈ Λ and aθ ∈ Λ∗. Selecting x = −cθ and ξ = aθ we have (0, θ) ∈ L. To show
that kerπ1 = Im ι2 suppose we have that ax+cξ = 0 for some x ∈ Λ, ξ ∈ Λ∗. We must show
that bx + dξ ∈ (Λ�σ)∗ or equivalently that 〈bx + dξ, ay + cη〉 ∈ Z for any y ∈ Λ, η ∈ Λ∗.
Using ax = −cξ and ad − bc = 1 we have 〈bx + dξ, ay + cη〉 = 〈ξ, y〉 − 〈x, η〉 ∈ Z.
To show that L = JL∗ we simply calculate: JL∗ = Jσ−1 (Λ∗ ⊕ Λ) = σ′J (Λ∗ ⊕ Λ) =
σ′ (Λ⊕ Λ∗) = L. �

Definition 2.4. Let σ ∈ Γ1. Let Λ be a rational lattice. Let X[Λ, σ] be the element of
Extsym (Λ�σ, (Λ�σ)∗;Q) determined by L = σ′ (Λ⊕ Λ∗) in the one-to-one correspondence
of Lemma 2.2 with Υ = Λ�σ.

Theorem 2.5. Let σ ∈ Γ1. Let Λ be a rational lattice of rank n. Choose any basis
M ∈ GLn(R) for Λ so that we have Λ = MZn and s = M ′M is the Gram matrix associated

to the basis M . Let M1 ∈ Γn and T =
(
K∗ β
0 K

)
∈ ∆n(Q) be any choices giving the fac-

torization αs(σ) = M1T . We have Λ�σ = MK−1Zn and X[Λ, σ] = [j−1
(
M∗β′KM−1

)
].

Proof. Write αs(σ) = M1T as

(
aIn bs
cs−1 dIn

)
=

(
A B
C D

) (
K∗ β
0 K

)
.
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Transposing this equation and multiplying on the left by u (M) we have

(
aM cM∗

bM dM∗

)
=

(
MK−1 0
M∗β′ M∗K ′

) (
A′ C ′

B′ D′

)
.

Apply Z2n on the right of the equation ( aM cM∗ ) = (MK−1 0 ) ( unimodular ) and
obtain aΛ + cΛ∗ = MK−1Zn or Λ�σ = MK−1Zn.

Now let X̄ = j−1
(
M∗β′KM−1

)
and rewrite our basic relation in the form:

(
aIn cIn
bIn dIn

) (
M 0
0 M∗

)
=

(
In 0
jX̄ In

) (
(MK−1) 0

0 (MK−1)∗

) (
A′ C ′

B′ D′

)
.

The fact that M ′
1 is unimodular gives σ′ (Λ⊕ Λ∗) = FX̄ ((Λ�σ)⊕ (Λ�σ)∗) so that [X̄] =

[j−1
(
M∗β′KM−1

)
] gives the class of X[Λ, σ] by Definition 2.4. �

§3. Dyadic traces of Root Lattices.

Let C∗
n be the cone inside Psemi

n (R) generated by all vv′ for v ∈ Zn. C∗
n can be character-

ized as the elements of Psemi
n (R) whose radical is defined over Q and C∗

n contains Pn(R) as
the elements of radical zero. The dyadic trace w is a class function w : C∗

n → R≥0 defined
by w(s) = infY ∈Pn(R)

〈s,Y 〉
m(Y ) . The dyadic trace may also be characterized as a supremum. A

dyadic representation of s ∈ C∗
n is an equation s =

∑
αiviv

′
i where αi ≥ 0 and vi ∈ Zn\{0}.

We have w(s) = sup
∑

αi where the supremum is over all the dyadic representations of s.
Both the supremum and infimum are attained. The inequality 〈t, u〉 ≥ m(t)w(u) holds for
all u ∈ C∗

n, t ∈ Pn(R) and equality holds precisely when u has a dyadic representation in
the minimal vectors of t. If we let 7(t) be the cone in C∗

n generated by the minimal vectors
of t then equality in 〈t, u〉 ≥ m(t)w(u) holds precisely when u ∈ 7(t). A form s ∈ Pn(R)
is called semieutactic when s−1 ∈ 7(s) and eutactic when s−1 is in the relative interior
of 7(s). Since 〈s, s−1〉 = n an s ∈ Pn(R) is semieutactic if and only if n = m(s)w(s−1).
According to Coexeter [2] all of the lattices R = Ar

n, Dn, En and their duals are eutactic
so that we may compute w(R∗) = n/m(R) and w(R) = n/m(R∗).

Proposition 3.1. The minimal norms of the irreducible root lattices and their dual lattices
are as follows:

(1) m(A∗
n) = n/(n+ 1) for n ≥ 2.

(2) m(D∗
n) = 1 for n ≥ 4.

(3) m(E∗
6 ) = 4

3 , m(E∗
7 ) = 3

2 , and m(E8) = 2.
(4) In the above cases the minimal norm of the dual lattice is 2.
(5) m(Ar

n) = min(2, r(q−1)
q ) for rq = n+ 1 and for n, q > 1.

Proof. See [1] and [2]. �
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Corollary 3.2. The dyadic traces of the irreducible root lattices and their dual lattices are
as follows:

(1) w(An) = n+ 1 for n ≥ 2.
(2) w(Dn) = n for n ≥ 4.
(3) w(E6) = 9

2 , w(E7) = 14
3 , and w(E8) = 4.

(4) In the above cases the dyadic trace of the dual lattice is n
2 , where n is the corre-

sponding dimension.
(5) w(Ar

n) = max(n2 ,
nq

r(q−1) ) for rq = n+ 1 and for n, q > 1.

The dyadic traces just computed are rational and the dyadic trace has the following
general rationality property.

Theorem 3.3. Let K ⊆ R be a Q-vector space. We have w : C∗
n ∩Psemi

n (K) \ {0} → K+.

Proof. Let s ∈ C∗
n ∩ Psemi

n (K) \ {0}; that is, the entries of s satisfy sij ∈ K. There
exists a dyadic representation [14] s =

∑N
i=1 αi vi v

′
i, such that αi ≥ 0, vi ∈ Zn \ {0},

and w(s) =
∑

i αi. Now consider the region in RN defined by D = {x ∈ RN : s =∑N
i=1 xi viv

′
i, and xj ≥ 0 each j = 1, . . . , N}. It is a region defined by a finite system

of linear equations and linear inequalities. Note that D is bounded since it is in the first
“quadrant” and every x ∈ D satisfies x1+· · ·+xN ≤ w(s). Note also that D is convex since
if x, x′ ∈ D then px+ qx′ ∈ D, for p, q ≥ 0 with p+ q = 1. Note also that D is nonempty
since α ∈ D, where α has components αi. Then the linear function f(x) =

∑N
i=1 xi

must attain its maximum at some vertex of the region D. Since a vertex y ∈ D is the
unique solution to a system of linear equations given by s =

∑N
i=1 xi viv

′
i and xj = 0

for j belonging to a subset of {1, . . . , N}, Cramer’s Rule shows that the coordinates of
y must be rational expressions in the coefficients of this system of equations. Since the
coefficients of the matrix being inverted are all integers and since K is a Q-vector space,
then the coordinates of y are also in K. So we have f(y) = y1 + · · · + yN ∈ K. Since we
know a priori that this maximum value is w(s), then w(s) = f(y) ∈ K. Since w(s) > 0
automatically for s �= 0, we have w(s) ∈ K+. �

§4. Slopes of Root Lattices.

When Λ is integral and σ ∈ Γ1 we have Λ�σ = cΛ∗ + aΛ = cΛ∗ + Λ because Λ ⊆ Λ∗

and (a, c) = 1. Similarly, for Λ with 
Λ∗ ⊆ Λ we have cΛ∗ + Λ = (
, c)Λ∗ + Λ. This
shows that Λ�σ depends only upon Λ and upon the double coset Γ0(
)σ∆1 because (
, c)
has the same value for every element of Γ0(
)σ∆1. We use this fact to make the following
definition.

Definition 4.1. Let Λ be an integral lattice of rank n with 
 = exp (Λ∗/Λ). Define:

slope(Λ) =
12
n

1
[Γ1 : Γ0(
)]

∑
[σ]∈Γ0(�)\Γ1/∆1

width�(σ)w (Λ�σ) .

Note that slope(Λ) is also 12/n times the average of w (Λ�σ) over [σ] ∈ Γ0(
)\Γ1. The
next Proposition is an immediate consequence of Theorem 3.3.
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Proposition 4.2. If Λ is an integral lattice then slope(Λ) ∈ Q+.

By a good choice of coset representatives for Γ0(
)\Γ1/∆1 we can rewrite the formula
for the slope of an integral lattice as a number theoretic sum over the divisors of 
. Here
φ is Euler’s function φ(
) = card (Z/
Z)×.

Lemma 4.3. Let Λ be an integral lattice of rank n with 
 = exp (Λ∗/Λ). We have

slope(Λ) =
12
n

1
[Γ1 : Γ0(
)]

∑
q,r∈Z+: qr=�

r

(q, r)
φ ((q, r))w (qΛ∗ + Λ) .

Proof. We use coset representatives for Γ0(
)\Γ1/∆1 that are given by σu,q =
(
u ∗
q ∗

)

of width 
/(
, q2) for each q|
 and where for each class [u] ∈ (Z/(q, 
/q)Z)∗ we pick a
representative u with (u, q) = 1, see [9, pp. 35-37]. Then Definition 4.1 reads

slope(Λ) =
12
n

1
[Γ1 : Γ0(
)]

∑
q:q|�


 ∑

u:1≤u≤(q, �q ) and (u,(q, �q ))=1




(
, q2)
w (qΛ∗ + uΛ)


 .

Since Λ ⊆ Λ∗ and (u, q) = 1 we have qΛ∗ + uΛ = qΛ∗ + Λ so that the summand is
independent of u. Setting r = �

q this renders the double sum as
∑

q,r∈Z+: qr=�

φ ((q, r))
r

(r, q)
w (qΛ∗ + Λ) . �

Proposition 4.4. We have slope(E6) = 27
4 , slope(E7) = 20

3 and slope(E8) = 6.

Proof. When 
 = 1 we have slope(Λ) = 12
n w(Λ) and hence slope(E8) = 12

8 ·4 = 6. When 
 is
prime we have slope(Λ) = 12

n
1

�+1 (w(Λ) + 
w(Λ∗)) since the only two cusps are [I] and [J ].
We have slope(E7) = 12

7
1

2+1

(
14
3 + 2 · 7

2

)
= 20

3 and slope(E6) = 12
6

1
3+1

(
9
2 + 3 · 6

2

)
= 27

4 . �

Proposition 4.5. We have slope(Dn) = 8 for n ≥ 4.

Proof. When n is even exp (D∗
n/Dn) is the prime 
 = 2 so that we have

slope(Dn) =
12
n

1
[Γ1 : Γ0(2)]

(w(Dn) + 2w(D∗
n)) =

12
n

1
3

(
n+ 2 · n

2

)
= 8.

When n is odd 
 = exp (D∗
n/Dn) = 4 and Γ0(4)\Γ1/∆1 has 3 cusps represented by:(

1 0
0 1

)
,
(

1 0
2 1

)
,
(

0 1
−1 0

)
of widths 1, 1, 4 respectively. When the rank n is odd we

have Dn�

(
1 0
2 1

)
= 2D∗

n +Dn = In and therefore we have

slope(Dn) =
12
n

1
[Γ1 : Γ0(4)]

(w(Dn) + w(In) + 4w(D∗
n)) =

12
n

1
6

(
n+ n+ 4 · n

2

)
= 8. �
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Proposition 4.6. Let n ≥ 2 and β = 4/(4, n+ 1). The slope of An is

slope(An) =




77
10 if n = 5

6 + 6
γ(n+1)

(
n+2
n

)
if n is even

6 + 6
γ(n+1)

(
n2+2βn+n−2

n(n−1)

)
if n is odd, n �= 5.

Proof. We have 
 = exp (A∗
n/An) = n + 1. Set γ = γ(
) for simplicity. Since we have

qA∗
n + An = qAn[1] + An = An[q] = Ar

n the formula from Lemma 4.3 for the slope of An

reads:

slope(An) =
12
n

1
γ

∑
qr=n+1

r φ((q, r))
(q, r)

w (Ar
n) .

Most of the w(Ar
n) will be n

2 as can be seen if we rewrite Corollary 3.2 (5) as follows:

w(Ar
n) =




n+ 1 if r = 1
n(n+1)
2(n−1) if r = 2
10
3 if (r, q) = (3, 2)
n
2 otherwise

We need to consider the three possible cases.
Case n = 5. Then we have n + 1 = 6 and this is the case where (r, q) = (3, 2) can

happen. The enumeration of (r, q) is (6, 1), (3, 2), (2, 3), (1, 6). Thus we have

w(A5) =
12
5

1
12

(
6
1
w(A6

5) +
3
1
w(A3

5) +
2
1
w(A2

5) +
1
1
w(A5)

)

=
12
5

1
12

(
6
1
· 5
2

+
3
1
· 10

3
+

2
1
· 15

4
+

1
1
· 6

)
=

77
10
.

Case n is even. Then n+1 is odd. Then for all r > 1 with r|(n+1), we have w(Ar
n) = n

2 .
The only dyadic trace that is not n

2 is when (r, q) = (1, n + 1), which has r φ((r,q))
(r,q) = 1.

Thus we have

w(An) =
12
n

1
γ

(
1w(An) + (γ − 1)

n

2

)
=

12
n

1
γ

(
1(n+ 1) + (γ − 1)

n

2

)
= 6 +

6
γ

(
n+ 2
n

)
.

Case n is odd, n �= 5. Then n + 1 is even. Then for all r > 1 with r|(n + 1), we have
w(Ar

n) = n
2 , unless r = 2 and q = n+1

2 . So the only dyadic traces that are not n
2 are

when (r, q) = (1, n + 1), which has r φ((r,q))
(r,q) = 1, and when (r, q) = (2, n+1

2 ), which has
r φ((r,q))

(r,q) = 2
(2,n+1

2 )
= 4

(4,n+1) = β. Thus we have

w(An) =
12
n

1
γ

(
1w(An) + βw(A2

n) + (γ − 1− β)
n

2

)

=
12
n

1
γ

(
1(n+ 1) + β

n(n+ 1)
2(n− 1)

+ (γ − 1− β)
n

2

)
= 6+

6
γ

(
n2 + 2βn+ n− 2

n(n− 1)

)
�
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Here is a table of the slopes of the first few An, along with decimal approximations
truncated to two decimal places.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15

slope(An) 9 26
3

15
2

77
10 7 143

21
53
8

355
54

33
5

349
55

13
2

497
78

44
7

1327
210

approx 9 8.66 7.5 7.7 7 6.80 6.62 6.57 6.6 6.34 6.5 6.37 6.28 6.31

A similar computation to that for An will give the slope of Ar
n.

Proposition 4.7. Let rq = n+ 1, r̄ = r/(r, q) and 
 = (n+ 1)/(r, q)2. We have

slope(
√
r̄Ar

n) =




slope(An) if (r, q) = 1
6 + 12

(n−1)γ(�) if (r, q) = 2

6 if (r, q) ≥ 3.

We have casually referred to the slope of lattices such as Ar
n which are rational but not

integral. The following Proposition shows that we may define the slope of a rational lattice
to be the slope of any integral rescaling.

Proposition 4.8. Let Λ be an integral lattice. Let α be a positive real number. If αΛ is
integral then we have slope(αΛ) = slope(Λ).

Proof. Since both αΛ and Λ are multiples of the same primitive lattice we may reduce
to the case where α =

√
N for some integer N . By induction, we only need to prove

that slope(
√
pΛ) = slope(Λ) where p is prime. If we denote 
 = exp(Λ∗/Λ) then we have

exp((
√
pΛ)∗/(

√
pΛ)) = p
. We first consider the case p � |
. Then γ(p
) = (p + 1)γ(
) and

we have

slope(
√
pΛ) =

12
n

1
γ(p
)

∑
qr=p�

φ((q, r))r
(q, r)

w(
q√
p
Λ∗ +

√
pΛ)

=
12
n

1
(p+ 1)γ(
)

∑
qr=p�

φ((q, r))r
(q, r)

1
p
w(qΛ∗ + pΛ)

=
12
n

1
(p+ 1)γ(
)

∑
uv=�

(
φ((pu, v))v

(pu, v)
1
p
w(puΛ∗ + pΛ) +

φ((u, pv))pv
(u, pv)

1
p
w(uΛ∗ + pΛ)

)

=
12
n

1
(p+ 1)γ(
)

∑
uv=�

(
φ((u, v))v

(u, v)
1
p
p2w(uΛ∗ + Λ) +

φ((u, v))pv
(u, v)

1
p
w(uΛ∗ + Λ)

)

=
12
n

1
γ(
)

∑
uv=�

φ((u, v))v
(u, v)

w(uΛ∗ + Λ) = slope(Λ).

We then consider the case p|
. Then γ(p
) = pγ(
). Let 
 = ptm with (p,m) = 1. We
first write out the summation for slope(Λ). Instead of summing over q and r such that
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qr = ptm, we let q = pju, r = pt−jv and sum over j, u and v such that 0 ≤ j ≤ t and
uv = m. Thus we get

slope(Λ) =
12
n

1
γ(
)

∑
uv=m

t∑
j=0

φ((pju, pt−jv))
pt−jv

(pju, pt−jv)
w(pjuΛ∗ + Λ)

=
12
n

1
γ(
)

∑
uv=m

vφ((u, v))
(u, v)

t∑
j=0

pt−jφ((pj , pt−j))
(pj , pt−j)

w(pjuΛ∗ + Λ)

=
12
n

1
γ(
)

∑
uv=m

vφ((u, v))
(u, v)

t∑
j=0

pt−jφ(pmin(j,t−j))
pmin(j,t−j)

w(pjuΛ∗ + Λ).

Here we have used the fact that p � |u and p � |v, and the multiplicative property of φ. Using

that φ(pi)
pi =

{ 1 if i = 0
p−1
p if i > 0

we have

(4.9) slope(Λ) =
12
n

1
γ(
)

∑
uv=m

vφ((u, v))
(u, v)

t∑
j=0

pt−j

{ 1 if j = 0, t
p−1
p otherwise

}
w(pjuΛ∗ + Λ).

Similarly, we have slope(
√
pΛ) =

12
n

1
pγ(
)

∑
uv=m

vφ((u, v))
(u, v)

t+1∑
j=0

pt+1−j

{ 1 if j = 0, t+ 1
p−1
p otherwise

}
w(

pju√
p

Λ∗ +
√
pΛ).

=
12
n

1
pγ(
)

∑
uv=m

vφ((u, v))
(u, v)

t+1∑
j=0

pt+1−j

{ 1 if j = 0, t+ 1
p−1
p otherwise

}
pw(pj−1uΛ∗ + Λ).

=
12
n

1
γ(
)

∑
uv=m

vφ((u, v))
(u, v)

t∑
j=−1

pt−j

{ 1 if j = −1, t
p−1
p otherwise

}
w(pjuΛ∗ + Λ).

In the inner sum, when j = −1, we have pt+1 · w( 1
puΛ∗ + Λ) = pt−1w(uΛ∗ + pΛ) =

pt−1w(uΛ∗ + Λ) because (u, p) = 1. Thus in the inner sum, combining j = −1, 0 yields
pt−1w(uΛ∗ + Λ) + pt p−1

p w(uΛ∗ + Λ) = ptw(uΛ∗ + Λ). This is the j = 0 term in the inner
sum of equation 4.9 and so by comparison with equation 4.9, we are done. �

Theorem 4.10. Let Λ be an integral lattice with 
 = exp (Λ∗/Λ). We have the equality:
slope(

√

Λ∗) = slope(Λ).

Proof. We first reduce the Theorem to the case where Λ is primitive. Any integral lattice
Λ̃ may be written as Λ̃ =

√
NΛ where Λ is primitive. If Λ has exp (Λ∗/Λ) = 
 then Λ̃ has

exp(Λ̃∗/Λ̃) = 
̃ = N
. Assuming the Theorem for primitive lattices we have slope(
√

̃Λ̃∗) =

slope(
√
N
 1√

N
Λ∗) = slope(

√

Λ∗) = slope(Λ). On the other hand using Proposition 4.8

we also have slope(Λ̃) = slope(
√
NΛ) = slope(Λ).
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For a primitive Λ both Λ and
√

Λ∗ have glue groups of exponent 
. From Lemma 4.3

we have

slope(
√

Λ∗) =

12
n

1
[Γ1 : Γ0(
)]

∑
q,r∈Z+: qr=�

r

(q, r)
φ ((q, r))w

(
q

(√

Λ∗

)∗
+
√

Λ∗

)
.

Now we have w
(

q√
�
Λ +

√

Λ∗

)
= q2

� w
(
Λ + �

qΛ
∗
)

= q
rw (rΛ∗ + Λ). Hence, if we switch q

and r, the above sum is the formula of Lemma 4.3 for slope(Λ). �

With this Theorem we complete the computation of the slopes of the irreducible root
lattices and their duals. The slopes of reducible lattices may be computed using the
following Proposition whose proof we omit.

Proposition 4.11. Let Λ1, Λ2 be integral lattices with ranks n1, n2, respectively. We
have the equaltity: slope(Λ1 ⊕ Λ2) = n1

n1+n2
slope(Λ1) + n2

n1+n2
slope(Λ2).

§5. Main Theorem.

Our goal in this section is to prove that a Siegel modular cusp form f vanishes on all
sτ for τ ∈ H1 when we have slope(f) < slope(s). We first introduce homomorphisms from
rings of Siegel modular forms to elliptic modular forms.

Theorem 5.1. Let 
, n, N ∈ Z+. Let Λ be an integral lattice of rank n with 
 =
exp(Λ∗/Λ). The map φ∗

Λ is a graded ring homomorphism

φ∗
Λ : Mn (Γn,0(N))→M1 (Γ1,0(N
))

that multiplies weights by n and takes cusp forms to cusp forms.

Proof. Let f ∈ Mk
n (Γn,0(N)) for integral weight k. Let s be a Gram matrix for Λ. For

τ ∈ H1 we have (φ∗
Λf) (τ) = (φ∗

sf) (τ) = f(sτ) so that φ∗
sf is a composition of holomorphic

functions. For σ ∈ Γ1,0(N
) we have (φ∗
sf) |

nk

σ = φ∗
s

(
f |
k

αs(σ)
)

by equation 1.1 and

φ∗
s

(
f |
k

αs(σ)
)

= φ∗
s (f) because αs(σ) ∈ Γn,0(N). For projective rational σ ∈ Sp1(R) the

boundedness of (φ∗
sf) |σ = φ∗

s (f |αs(σ)) on domains of type {τ ∈ H1 : �τ > y0} follows
from the boundedness of f |αs(σ) on domains of type {Ω ∈ Hn : �Ω > y0s}, αs(σ) being
projective rational when σ is. These conditions show φ∗

sf ∈ Mnk
1 (Γ1,0(N
)) so that φ∗

s

multiplies weights by n; substitution always defines a homomorphism.
To show that φ∗

s takes cusp forms to cusp forms let f ∈ Sk
n (Γn,0(N)) and let σ be

projective rational. Using equation 1.1 we have

Φ0 ((φ∗
sf) |σ) = Φ0 (φ∗

s (f |αs(σ))) = lim
λ→+∞

φ∗
s (f |αs(σ)) (iλ) = lim

λ→+∞
(f |αs(σ)) (iλs).

The eigenvalues of λs go to infinity so this equals Φn
0 (f |αs(σ)) = 0, compare [10, p54]. �

Let ν∞(f) be the order of the Fourier series of f in powers of e (τ).
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Lemma 5.2. Let Λ be an integral lattice of rank n and let X ∈ Extsym (Λ,Λ∗;R). Let
f ∈Mk

n . We have ν∞
(
φ∗

Λ,Xf
)
≥ µ (f)w (Λ) .

Proof. We have
(
φ∗

Λ,Xf
)
(τ) = f (sτ +R) where for some basis M with Λ = MZn we

have s = M ′M and R = M ′jX̄M . If f(Ω) =
∑

T∈supp(f) aT e (〈T,Ω〉) then f (sτ +R) =∑
T aT e (〈T,R〉) e (τ)〈T,s〉 so that ν∞

(
φ∗

Λ,Xf
)
≥ minT∈supp(f) 〈T, s〉. Since we have 〈T, s〉

≥ m(T )w(s) we also have minT∈supp(f)〈T, s〉 ≥ minT∈supp(f) m(T )w(s) = µ(f)w(s). �

The next Lemma allows us to compute the Fourier expansion of φ∗
Λf at each cusp of

X̂0(
) in terms of the Fourier expansion of f .

Lemma 5.3. Let Λ be an integral lattice of rank n. Let f ∈Mk
n and σ ∈ Γ1. We have

(φ∗
Λf) |σ =

1
[Λ�σ : Λ]k

φ∗
Λ�σ,X[Λ,σ]f.

Proof. Write Λ = MZn and s = M ′M . We have (φ∗
Λf) |σ = (φ∗

sf) |σ = φ∗
s[f |αs(σ)].

As in [5, p. 125] factor αs(σ) = M1T where M1 ∈ Γn and T =
(
K∗ β
0 K

)
∈ ∆n(Q).

Then we have ((φ∗
Λf)|σ) (τ) = (φ∗

s[f |T ]) (τ) = [f |T ](sτ) = det(K)−kf
(
(K∗sτ + β)K−1

)
= det(K)−kf

(
K∗sK−1τ + βK−1

)
.

On the other hand, using the basis Λ�σ = MK−1Zn and the representative jX̄[Λ, σ] =
M∗β′KM−1 from Theorem 2.5 we also have

(
φ∗

Λ�σ,X[Λ,σ]f
)

(τ) = f
(
(MK−1)′τ(MK−1) + (MK−1)′jX̄[Λ, σ](MK−1)

)
= f

(
K∗M ′MK−1τ +K∗M ′M∗β′KM−1MK−1

)
= f

(
K∗sK−1τ +K∗β′)

= f
(
K∗sK−1τ + βK−1

)
.

We have K∗β′ = βK−1 since T is symplectic. Clearly we have [Λ�σ : Λ] = det(K). �

Let Γ be any Fuchsian group of the first kind contained in Γ1. We recall [18] the
construction of the compact Riemann surface X̂(Γ). Let H1 have the standard topology
and let Ĥ1 = H1∪P1(Q) have a basis of deleted neighborhoods about each point x ∈ P1(Q)
given by the open horodisks in H1 tangent to R at x. We define X̂(Γ) = Γ\Ĥ1 and choose
the minimal topology on X̂(Γ) such that the orbit map π : Ĥ1 → X̂(Γ) is open. With
this topology X̂(Γ) is compact. The complex manifold structure on X̂(Γ) is given by the
following charts: For generic points π(τ0) with IsoΓ(τ0) = e and any neighborhood N of
τ0 with the {γN : γ ∈ Γ} all disjoint a chart ψN,τ0 is given by the bijection: π(N)←→ N .
For exceptional points π(τ0) with IsoΓ(τ0) cyclic of order m > 1 and any neighborhood N
of τ0 stable under IsoΓ(τ0) with the {γN : [γ] ∈ Γ/ IsoΓ(τ0)} all disjoint choose σ ∈ Sp1(C)
with σ(τ0) = 0 and σ(τ̄0) = ∞; the chart ψN,σ,τ0 is given by the bijection: π(N) ←→
{σ(τ)m : τ ∈ N}. For cusps π(x) choose σ ∈ Sp1(Z) with σ(∞) = x and note that
width�(σ) = [IsoΓ1(x) : IsoΓ(x)]. For any neighborhood N of x stable under IsoΓ1(x)
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with the {γN : [γ] ∈ Γ/ IsoΓ(x)} all disjoint the chart ψN,σ,x is given by the bijection:
π(x) ∪ π(N∗) ←→ {0} ∪ {e

(
σ−1(τ)/width�(σ)

)
: τ ∈ N∗}; here N∗ = N \ {x}. One

checks that the images of the charts are open in C and that the transition functions form
an analytic atlas. Hence X̂(Γ) = Γ\Ĥ1 is a compact Riemann surface and X(Γ) = Γ\H1

is obtained from X̂(Γ) by removing the finite number of cusps Γ\P1(Q). The set Γ\Γ1/∆1

is in bijection with the set of cusps Γ\P1(Q); we send Γσ∆1 to Γσ(∞).
For every p ∈ X̂(Γ) define [18, p. 38] valuations νp : M even

1 (Γ) → Q as follows: For
generic π(τ0), νπ(τ0)(f) is the order of the Taylor series of f in powers of (τ − τ0). For
exceptional π(τ0) with IsoΓ(τ0) cyclic of order m, νπ(τ0)(f) is 1

m times the order of the
Taylor series of f in powers of (τ − τ0). For cusps π(x) and σ ∈ Sp1(Z) with σ(∞) = x,
νπ(x)(f) is the order of the Fourier series of f |σ in powers of e (τ/width�(σ)). This notation
almost coincides with our earlier notation when x = ∞ because νπ(∞)(f) = ν∞(f) is the
order of the Fourier series of f in powers of e (τ). The importance of these valuations
lies in the following bound on the total vanishing order of a nontrivial g ∈Mk

1 (Γ) of even
weight k (combine [18, p. 39] Proposition 2.16 and [18, p. 23] Proposition 1.40):

(5.4) [Γ1 : Γ]
k

12
=

∑
p∈X̂(Γ)

νp(g).

Theorem 5.5 (Main Result). Let f ∈ Sk
n be a Siegel modular cusp form and let Λ be

an integral lattice of rank n. If we have slope(f) < slope(Λ) then we have φ∗
Λf = 0.

Proof. By restricting the summation in equation 5.4 to the cusps of X̂(Γ0(
)) we have for
nontrivial g ∈Mk

1 (Γ0(
)) and for even k:

[Γ1 : Γ0(
)]
k

12
≥

∑
[σ]∈Γ0(�)\Γ1/∆1

νπ(σ(∞))(g).

We apply this inequality to φ∗
Λf ∈Mnk

1 (Γ0(
)) noting that nk is even for nontrivial f :

[Γ1 : Γ0(
)]
nk

12
≥

∑
[σ]∈Γ0(�)\Γ1/∆1

νπ(σ(∞))(φ∗
Λf).

We now apply νπ(σ(∞))(φ∗
Λf) = width�(σ)ν∞ (φ∗

Λf |σ) = width�(σ)ν∞
(
φ∗

Λ�σ,X[Λ,σ]f
)
≥

width�(σ)µ (f)w (Λ�σ). The first equality is the definition of νπ(σ(∞)), the second equality
is given by Lemma 5.3 and the inequality is given by Lemma 5.2.

Therefore we have

[Γ1 : Γ0(
)]
nk

12
≥

∑
[σ]∈Γ0(�)\Γ1/∆1

width�(σ)µ(f)w(Λ�σ)

and
k

µ(f)
≥ 12

n

1
[Γ1 : Γ0(
)]

∑
[σ]∈Γ0(�)\Γ1/∆1

width�(σ)w(Λ�σ)

or slope(f) ≥ slope(Λ) for nontrivial φ∗
Λf . �
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§6. Conclusion.

To see that our results can be sharp consider S8
4 . The Schottky modular form J spans

S8
4 , see [17][13][3], and has slope 8. The lattice D4 also has slope 8 and from the following

definition [8] of J (write 1
2 = x):

J(Ω) = r200 + r20x + r2x0 − 2 (r00r0x + r00rx0 + r0xrx0) ,

rµν =
8∏

α,β,γ∈{0,x}
θ[µ 0 0 0
ν α β γ

](0,Ω) for µ, ν ∈ {0, x}

one can show that
(
φ∗
D4
J
)
(τ) = 2−16θ[ 00 ](τ)16θ[ 0

x
](τ)16θ[x0 ](τ)32

and so φ∗
D4
J ∈ S32

1 (Γ0(2)) is not zero. Since φ∗
D4
J vanishes only at the cusps this inciden-

tally shows that no Gram(D4)τ is a Jacobian.
To give an application to the determination of spaces of cusp forms consider S6

5 . Duke
and Imamoḡlu [3] proved that S6

n = 0 for all n by using L-functions and explicit formulae.
We give a second proof that S6

5 = 0. According to [14, p. 218] an f ∈ Sk
n is determined by

the subset of Fourier coefficients aT that satisfy w(T ) ≤ n 2√
3

k
4π . We have 5 2√

3
6
4π ≈ 2.76

and the only semi-integral class [T ] with w(T ) < 3 is represented by 1
2 Gram(D5). Hence

the map from S6
5 to C given by f �→ a 1

2 Gram(D5)(f) is an isomorphism. By Propositions
4.5 and 4.10 we have slope(2D∗

5) = slope(D5) = 8 whereas an f ∈ S6
5 has slope(f) ≤ 6

so that by Theorem 5.5 we have φ∗
2D∗

5
f = 0. The Fourier expansion of φ∗

2D∗
5
f , however,

is given by
(
φ∗

2D∗
5
f
)

(τ) = a 1
2 Gram(D5)q

10 + O(q11) where q = e (τ) so that a 1
2 Gram(D5)

and hence f itself vanish. This shows that S6
5 = 0. The above Fourier expansion is

an immediate consequence of the arithmetic-geometric inequality 〈4 Gram(D5)−1, T 〉 ≥
5δ(4 Gram(D5)−1)δ(T ) where δ(s) = det(s)1/n, equality holding only when T is a multiple
of Gram(D5). Our results are not as deep as the results mentioned in the Introduction on
the hyperelliptic and trigonal loci because their function fields are not so simple as that
of X̂0(
). However, it is more serviceable to have many simple homomorphisms φ∗

Λ than
to have a few complicated ones. For example, although slope considerations show that
any f ∈ S6

5 must vanish on the hyperelliptic locus in A5 it is not elementary to relate the
Fourier coefficients of f to the image of f in the ring S(2, 12) of binary invariants.

Finally consider the lattice Dn of slope 8. There are interesting Siegel modular cusp
forms of slope less than 8 when n ≥ 5. Following Mumford [11] let N0 denote the divisor
on An containing principally polarized abelian varieties possessing a singular theta locus,
N∗

0 denote the divisor on An containing principally polarized abelian varieties that have
some nontwo-torsion in the singular part of the theta locus and Θnull the divisor on An

containing principally polarized abelian varieties that have two-torsion in the singular part
of the theta locus, i.e., a vanishing even thetanull. In the Picard group Pic(Ā(1),0

n ) of a
partial compactification Ā(1),0

n ofAn the divisor classes are related by [N̄0] = [Θnull]+2[N̄∗
0 ].
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The support of each of these divisors is the zero set of some Siegel modular form by a
result of Freitag [4] and the slope k/µ of a Siegel modular cusp form in our sense equals
the “slope” of its associated divisor class in the sense of Mumford, see comments in [11].
The slope of the divisor class N̄∗

0 is [11, p. 368]

6
1 + 2

n+1 −
2n−1(2n+1)

(n+1)!

1− 22n−6 24
(n+1)!

,

asymptotic to 6 and less than 8 for n ≥ 5. By Theorem 5.5 we have [Gram(Dn)τ ] ∈ N̄∗
0 .

Thus for n ≥ 5 the principally polarized abelian variety Cn/ (Zn + Gram(Dn)τZn) has a
singular theta locus and every deleted neighborhood of Cn/ (Zn + Gram(Dn)τZn) in An

contains principally polarized abelian varieties with nontwo-torsion in the singular part
of the theta locus. This result, achieved through numerical criterion, seems difficult to
approach in any other way. Actually it seems period matrices like Gram(Dn)τ are quite
special. In n = 5 we can show that Gram(D5)τ has 60 vanishing even thetanulls and so
[Gram(D5)τ ] ∈ N̄∗

0 ∩Θnull.
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