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Abstract. Theorems are given which describe when high enough vanishing at the cusps

implies that a Siegel modular cusp form is zero. Formerly impractical computations become

practical and examples are given in degree four. Vanishing order is described by kernels, a

type of polyhedral convex hull.

§0. Introduction.

This paper extends to Siegel modular forms certain practical computational techniques
available for modular forms on the upper half plane. Two modular forms are equal when
enough of their Fourier coefficients agree; more generally, a linear dependence relation
holds among modular forms when it holds among enough of their Fourier coefficients. For
example, in [30] Schiemann shows that the theta series for two distinct classes of 4 × 4
integral positive definite quadratic forms are equal by showing that their first 375 Fourier
coefficients agree. The type of theorem one requires is that a cusp form is zero if it vanishes
to a sufficiently large order; in the above example the cusp form in question is given by
the difference of the theta series. In the case of Siegel modular forms, Siegel provided a
version of the following result for the full modular group.

Theorem (Siegel). Let f ∈ Skn have the Fourier expansion f(Ω) =
∑

s>0 ase(tr(sΩ)).
The following conditions are equivalent.

(1) f = 0.
(2) For all s such that tr(s) ≤ κn

k
4π , we have as = 0.

(3) For all s such that tr(s) ≤ nµnn
2√
3
k
4π , we have as = 0.

(4) For all s such that det(s)1/n ≤ µnn
2√
3
k
4π , we have as = 0.

Here Skn is the C-vector space of Siegel modular cusp forms of weight k on the Siegel
upper half space, Hn, we denote e2πiz by e(z) and the positive constant κn is defined by
κn = sup tr((Im Ω)−1) where the supremum is taken over Ω ∈ Fn, Siegel’s fundamental
domain. This theorem shows that the vanishing of a finite number of Fourier coefficients
as, those for which tr(s) ≤ κn

k
4π , implies that f ≡ 0. This theorem however is very

impractical for n > 1. First of all, the vanishing of a Fourier coefficient as depends only
upon the GLn(Z) equivalence class of s but when n > 1 the trace is not a class function.
Secondly, the upper bounds known for κn when n > 1 are probably much larger than κn.
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2 C. POOR AND D. S. YUEN

This means that many unnecessary Fourier coefficients must be computed in applications
of Siegel’s Theorem. A result of this paper which remedies both these ills replaces the
trace tr(s) with the dyadic trace w(s).

Theorem 2.9. Let f ∈ Skn have the Fourier expansion f(Ω) =
∑

s>0 ase(tr(sΩ)). The
following conditions are equivalent.

(1) f = 0.
(2) For all s such that w(s) ≤ wn

k
4π , we have as = 0.

(3) For all s such that w(s) ≤ n 2√
3
k
4π , we have as = 0.

(4) For all s such that det(s)1/n ≤ µn
2√
3
k
4π , we have as = 0.

The dyadic trace w is defined and studied in detail in §3, here we just mention the
following characterization:

w(s) = inf
Y >0

tr(sY )
m(Y )

where m is Hermite’s function defined by m(Y ) = minx∈Zn\0
txY x. The optimal constant

µn in m(s) ≤ µn det(s)1/n has been the object of much study [34][4].
Unlike the trace, w is a class function and wn = supΩ∈Hn

infσ∈Γn w
(
{Im(σΩ)}−1

)
has

good known bounds, n ≤ wn ≤ 2√
3
n. Theorem 2.9 is indeed more practical than Siegel’s

theorem for n > 1 as can be seen in many examples. To determine the linear span in S12
4

of the theta series attached to the Niemeier lattices using Theorem 2.9 requires 23 Fourier
coefficients to be computed for each Niemeier lattice whereas the use of Siegel’s Theorem
requires over 48, 000 apiece. See §5 for this example and further comparisons.

Theorems analogous to Theorem 2.9 and Siegel’s Theorem can be obtained for a broad
class of functions φ which we call type two, see Definition 2.3. Besides tr(s) and w(s),
type two functions include m(s) and det(s)1/n. The computation of relevant constants like

mn = supΩ∈Hn
infσ∈Γn m

(
{Im(σΩ)}−1

)
and detn = supΩ∈Hn

infσ∈Γn det
(
{Im(σΩ)}−1

) 1
n

is an interesting question in the symplectic geometry of numbers. For reasons not under-
stood, however, no type two φ seems to give better results than Theorem 2.9 corresponding
to the choice of φ(s) = w(s). Theorem 2.9 can be generalized to apply to half-integral
weights, characters, and subgroups of finite index. The extension to subgroups is the most
interesting. Instead of a vanishing condition on one Fourier expansion we need an average
vanishing condition on the expansions corresponding to each cusp, see Theorem 2.6.

There is an essential reason, of independent interest, why theorems like Theorem 2.9
and Siegel’s Theorem exist for any type two function. Let f ∈ Skn be a nontrivial cusp form
with Fourier expansion f(Ω) =

∑
ase(tr(sΩ)). Let supp(f) = {s : as 
= 0} and let ν(f)

be the closure of the convex hull of R≥1 supp(f) inside Psemi
n (R), the cone of semidefinite,

symmetric, n× n matrices over R. In Lemma 1.1 we see that ν(f) is a kernel in the sense
of [1, p.120]. The function φf (Ω) = det(Im Ω)k/2|f(Ω)| is known to attain a maximum at
some point, say Ω0 = X0 + iY0 ∈ Hn. The essential new result is:

(0.1)
k

4π
Y −1

0 ∈ ν(f) = closure of the convex hull of R≥1 supp(f)

This is the Semihull Theorem 1.2. By applying a type two φ to both sides of 0.1 one
obtains Theorems 2.5 and 2.6. The type two functions φ are thus merely an expedient to
enhance computations. One can avoid type two functions and use 0.1 directly to yield a
Theorem in which high vanishing implies that a cusp form is zero, see Theorem 1.6. For
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n > 1 Theorem 1.6 is not very practical but a description is still worthwhile: Let Γ be a
subgroup of finite index in Γn and f ∈ Skn(Γ). The function φf (Ω) = det(Y )k/2|f(Ω)| has
a maximum which cannot be attained in some deleted neighborhood of each cusp because
f is a cusp form. So any point Ω0 = X0 + iY0 where φf attains its maximum cannot be in
these neighborhoods. Theorem 1.6 gives an explicit description, in terms of the vanishing
of the Fourier expansion corresponding to each cusp, of the deleted neighborhoods of the
cusps forbidden to Ω0. When the vanishing of f at the cusps is high enough that these
forbidden neighborhoods cover a fundamental domain for Γ then no nontrivial cusp forms
with this vanishing can exist. In general these coverings pose delicate questions but when
n = 1 this description can be worked out directly because the forbidden neighborhoods
are horocircles.

Here is an outline of the paper. In §1 we prove our main result, Theorem 1.3, generaliz-
ing 0.1 above to each cusp. We interpret our main result in terms of coverings in Theorem
1.6 which gives an explicit description of the neighborhoods of the cusps forbidden to the
extreme points Ω0. In §2 we use the main result 1.3 of §1 to produce theorems like the
theorem of Siegel mentioned in the Introduction for any type two function. We describe
four such theorems for the type two functions: the trace, Hermite’s function, the dyadic
trace, and the reduced determinant. The dyadic trace version is the most efficient. The
version for Hermite’s function has a relation to the theory of toroidal compactifications of
moduli space. In §3 we describe the properties of the dyadic trace from a computational
point of view. These properties include: the domain of definition, class invariance, char-
acterizations as both an infimum and a supremum which are attained, an inequality with
the reduced determinant, and rationality. In §4 we prove some formulae for the dyadic
trace w(s) when n = 2, 3 and also make tables of quadratic forms with low dyadic trace in
n = 3, 4. In §5 we discuss examples of explicit computations with Siegel modular forms.

We now fix notations and list elementary results. We let Vn(F) = M sym
n×n(F) for F = C, R,

Q, or Z. We let Pn(F) and Psemi
n (F) denote the definite and semidefinite matrices in Vn(F).

We let eij ∈ Mn×n(Z) be the standard basis. For A,B ∈ Vn(C), we set 〈A,B〉 = tr(AB).
A cone in Vn(R) is an R≥0-semigroup. The inclusion reversing duality operation relevant
to cones is:

C∨ = {x ∈ Vn(R) : for all y ∈ C, 〈x, y〉 ≥ 0}.

For any nonempty set C, the set C∨ is always a cone and the set C∨∨ is the smallest closed
cone containing C. So if C is a nonempty closed cone then C∨∨ = C. A cone C contains
an open set if and only if C∨ does not contain a line. Examples of cones are Pn(R) and
Psemi
n (R). We have Psemi

n (R)∨ = Psemi
n (R) and that Psemi

n (R) is the closure of Pn(R).
We define the concept of kernel only for sets which are closed and convex in Psemi

n (R),
for these sets our definition coincides with that in [1, p.120]. A convex, closed set K ⊆
Psemi
n (R) is a kernel if:

(1) R≥1K = K,
(2) 0 
∈ K,
(3) R>0K ⊇ Pn(R).

The inclusion reversing duality operation relevant to kernels is:

K	 = {x ∈ Vn(R) : for all y ∈ K, 〈x, y〉 ≥ 1}.

If K is a kernel then K	 is a kernel and K		 = K. Kernels are R≥1-semigroups. The set
KQ = K ∩Psemi

n (Q) is dense in K and (KQ)	 = K	. We have K∨∨ = R≥0K because each
is the smallest closed cone containing K.
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For any function f on Hn and M ∈ Spn(R) we set (f |M)(Ω) = f(MΩ) det(CΩ+D)−k.
A modular form f in Mk

n(Γ, χ) is a holomorphic function on Hn which satisfies f |M =
χ(M)f for all M in Γ. Here χ is some character, a homomorphism χ : Γ→ e(Q). We also
require f |M to be bounded in regions of the type {Ω : Im Ω > Y0} for all M ∈ Γn. A cusp
form f in Skn(Γ, χ) is an f ∈Mk

n(Γ, χ) which satisfies Φ(f |M) = 0 for all M in Γn, where
Φ is the standard Siegel operator, see [11, p.45]. These definitions make sense when k is an
integer. When k ∈ 1

2Z the usual transformation condition [21, p.200] is that f transforms
like θ(0,Ω) under Γ. The theorems in this paper hold in both cases.

The notation for special subgroups of Γn = Spn(Z) is: Γn(") = {σ ∈ Γn : σ ≡ I2n

mod "}, ∆n = {
(
A B
C D

)
∈ Γn : C = 0}, S∆n = {

(
A B
C D

)
∈ Γn : C = 0,det(A) = 1},

∆n(") = ∆n∩Γn("), S∆n(") = S∆n∩Γn("). We note that the Γn(") are finitely generated
and that, for n ≥ 2, any Γ of finite index in Γn contains some Γn("), [20]. For any Γ ⊆ Γn

we define u(Γ) ⊆ GLn(Z) by u(Γ) = {A ∈ GLn(Z) : ∃
(
A 0
0 tA−1

)
∈ Γ}; in the same way

we define t(Γ) ⊆ Vn(Z) by t(Γ) = {B ∈ Vn(Z) : ∃
(
I B
0 I

)
∈ Γ}. These operations u and

t cannot increase group index, [11, p.128].
In this paper we especially study holomorphic functions f invariant under S∆n(") for

some " ∈ Z+. For example, θ(0,Ω) is invariant under ∆n(2). For n ≥ 2, the Koecher
Principle [11, p.175] provides a Fourier expansion of the form

f(Ω) =
∑

s∈Psemi
n (Q)

ase(〈s,Ω〉).

In the case n = 1 we must use the boundedness hypothesis to obtain the same result. We
let supp(f) = {s ∈ Psemi

n (Q) : as 
= 0}; we note that the above Fourier series need only be
summed over s ∈ supp(f) and that the elements of 2" supp(f) are even quadratic forms
in Psemi

n (Z). For any S ⊆ Psemi
n (R) we define Semihull(S) = closure{ convex hull(R≥1S)}.

Applying this concept to S = supp(f) we define ν(f) = Semihull[supp(f)]. This notion
ν(f) measures the order of vanishing of f at the cusp at infinity. When f and g are
nontrivial cusp forms we have ν(fg) = ν(f) + ν(g). Our first lemma says that ν(f) is a
kernel when f has no constant term in a nontrivial Fourier expansion.

§1. The Semihull Theorem.

1.1 Lemma. (Kernel Lemma) Let f : Hn → C be holomorphic, invariant under S∆n(")
for some " ∈ Z+, and have 0 
∈ supp(f). If n = 1, we further assume that 0 < supp(f).
Then either ν(f) is a kernel or f is identically zero.

Proof. For n ≥ 2, the Koecher principle assures us that supp(f) ⊆ Psemi
n (Q), in the case

n = 1 we must use our assumption that 0 ≤ supp(f) to obtain the same conclusion.
Let K = ν(f). We have K ⊆ Psemi

n (R) = Psemi
n (R) and that K is closed and convex;

K is a kernel if and only if we have (1) R≥1K = K, (2) 0 
∈ K, (3) R>0K ⊇ Pn(R).
Item (1) holds automatically because K is the semihull of a set. Item (2) holds because
f is periodic with respect to the translation lattice t(S∆n(")) so that the elements of
2" supp(f) ⊆ Psemi

n (Z)\{0} are all even quadratic forms. Here we have used the hypothesis
0 
∈ supp(f). This implies that for all s ∈ supp(f) we have tr(s) ≥ 1

� and hence that for all
x ∈ K we have tr(x) ≥ 1

� . Therefore we have item (2). The main condition to be proven
is item (3).
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If we are in the case n = 1 then using our assumption 0 < supp(f) we have either
K = [m� ,∞) for some m ∈ Z+ or K = ∅. If K = [m� ,∞) then item (3) holds because
R>0K = (0,∞) = P1(R); if K = ∅ then f ≡ 0. ¿From now on we assume that n ≥ 2. If
it is true that K∨ ⊆ Psemi

n (R) then we have R≥0K = K∨∨ ⊇
(
Psemi
n (R)

)∨ = Psemi
n (R) so

that R>0K ⊇ Psemi
n (R) \ {0} ⊃ Pn(R) and item (3) holds.

If it is not true that K∨ ⊆ Psemi
n (R) then there is a T ∈ K∨ that is not semidefinite and

we will show that f ≡ 0. Select an A ∈ SLn(Z): such that P = A−1T tA−1 has P11 < 0 [18,
p.45]. Let γ ∈ S∆n be defined by γ(Ω) = AΩ tA; then f |γ is also S∆n(") invariant because
S∆n(") is normal in ∆n. We have supp(f |γ) = tA supp(f)A, ν(f |γ) = tAν(f)A = tAKA,
ν(f |γ)∨ = A−1K∨ tA−1, and P = A−1T tA−1 ∈ A−1K∨ tA−1 = ν(f |γ)∨.

If it is true that supp(f |γ) ⊆ R≥0e11 then we can show that f ≡ 0. Let E = In +
"e11 − "e22 + "e12 − "e21 ∈ u(S∆n(")) and let h ∈ S∆n(") be defined by h(Ω) = EΩ tE.
The invariance f |γ|h = f |γ implies that supp(f |γ|h) = supp(f |γ) or tE supp(f |γ)E =
supp(f |γ). However, for s = λe11 ∈ R≥0e11 we have

tEsE = λ{(1 + 2"+ "2)e11 + ("+ "2)(e12 + e21) + "2e22}

so that we must have λ = 0 if tEsE ∈ R≥0e11. Since 0 
∈ supp(f |γ) we have supp(f |γ) = ∅,
f |γ ≡ 0, and f ≡ 0.

Let us suppose by contradiction that supp(f |γ) 
⊆ R≥0e11. Then there is a σ ∈ supp(f |γ)
with σmm > 0 for m > 1. Let Ek = In + k"e1m ∈ u(S∆n(")) and let δk = Ekσ

tEk. The
δk are all in supp(f |γ) and are in fact distinct for all sufficiently large k because

δk = (In + k"e1m)σ (In + k"em1) = O(k) + k2"2σmme11

so that the (1, 1)-entry is eventually increasing. Let N be such that the δk are distinct for
k > N . Recall that we have a P ∈ ν(f |γ)∨ with P11 < 0. For any ζ ∈ H1, we can let
Ωζ = iIn + ζP ∈ Vn(C). The Fourier series of f |γ converges absolutely at Ωζ in view of
〈P, supp(f |γ)〉 ≥ 0 and the estimate:

∑
s∈supp(f |γ)

|ase(〈s,Ωζ〉)| ≤
∑

s∈supp(f |γ)

|as||e(〈s, iIn〉)|.

We will show the divergence of the subseries∑
k>N

|aδk ||e(〈δk,Ωζ〉)| = |aσ|
∑
k>N

|e(〈δk,Ωζ〉)|.

We compute Im〈δk,Ωζ〉 = Im tr (δk(iIn + ζP )) = O(k) + k2"2σmm(1 + P11 Im ζ). Since
P11 < 0 if we select Im ζ large enough then 1+(Im ζ)P11 < 0 and the subseries diverges. �

Kernels provide the correct point of view for our theorems.

1.2 Theorem. (Semihull Theorem) Let f : Hn → C be holomorphic, not identically zero,
and invariant under S∆n(") for some " ∈ Z+. Assume φf (Ω) = det(Y )k/2|f(Ω)| attains
a maximum at Ω0 = X0 + iY0 ∈ Hn. Then we have k

4πY
−1
0 ∈ ν(f).

Proof. In order to apply Lemma 1.1 we need 0 
∈ supp(f) for n ≥ 2. We cannot have
0 ∈ supp(f) since then limΩ→+∞iI |φf (Ω)| = +∞ implies that φf does not attain a
maximum in Hn. For the case n = 1 we need the condition 0 < supp(f); this holds because
any nonpositive indices in the Fourier series of f would imply that φf is unbounded in a
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deleted neighborhood of i∞. Let K = ν(f), by Lemma 1.1 K is a kernel. We will prove
that (

k

4π
Y −1

0

)	
⊇ (K	)Q

and it then follows that

k

4π
Y −1

0 ∈
(
k

4π
Y −1

0

)		
⊆

(
(K	)Q

)	
= K		 = K

since K	 and K are kernels. We need to show that 〈 k4πY
−1
0 , T 〉 ≥ 1 for any T = P

q ∈ (K	)Q
where P ∈ Psemi

n (Z), q ∈ Z+.
Let Ωζ = Ω0 + ζ"P be an analytic map for ζ with Im ζ ≥ −ε where ε > 0 is sufficiently

small to ensure that Ωζ ∈ Hn. Because P is integral the function f(Ωζ) is a holomorphic
function of z = e(ζ) for 0 < |z| ≤ e2πε. Note that the Laurent expansion about z = 0,

f(Ωζ) =
∑

s∈supp(f)

ase(〈s,Ωζ〉) =
∑

s∈supp(f)

ase(〈s,Ω0〉)e(ζ〈s, "P 〉)

has order at least mins∈supp(f)〈s, "P 〉 = "qmins∈supp(f)〈s, Pq 〉 ≥ "q since 〈s, T 〉 ≥ 1. There-

fore the function
f(Ωζ)
e("qζ)

extends holomorphically to z = 0 and must attain its maximum

modulus on |z| = e2πε, or equivalently for some ζ ′ with Im ζ ′ = −ε. This maximum must
be greater than or equal to the modulus at z = 1 so that we must have the inequality

| f(Ω0)
e("q · 0)

| ≤ | f(Ωζ′)
e("qζ ′)

|.

Use of the inequality det(Y )k/2|f(Ω)| ≤ φf (Ω0) = det(Y0)k/2|f(Ω0)| renders the above
inequality as

k

2
ln det(I − ε"Y −1

0 P ) ≤ −2π"qε

since f is not identically zero. Expanding in powers of ε, dividing by ε, and letting ε→ 0+

we conclude that k
2 〈Y

−1
0 , "P 〉 ≥ 2π"q. This is 〈 k4πY

−1
0 , Pq 〉 ≥ 1 as was to be shown. �

This theorem is our main technical result. This analysis closely parallels that in Freitag
[11, p.48-50] and Eichler [7] [8]. Their arguments, however, are restricted to specific choices
of T ∈ (K	)Z and hence their various conclusions are simple corollaries of the Semihull
theorem. This theorem is the real reason underlying all the various types of special es-
timates prescribing which Fourier coefficients must vanish in order to imply that a cusp
form is identically zero.

1.3 Theorem. (Main Result) Let f ∈ Skn(Γ, χ) be nontrivial with Γ of finite index in Γn.
Let φf (Ω) = det(Y )k/2|f(Ω)| attain its maximum at Ω0 = X0 + iY0 ∈ Hn. Then for all
M ∈ Γn we have k

4π

(
Im{M−1Ω0}

)−1 ∈ ν(f |M).

Proof. Recall that f being a cusp form ensures that φf attains a maximum [11, pg. 129].
In the case of half-integral weight, φf has a maximum because (φf )2 = φf2 and f2 is a
modular form of integral weight. Recall we assume that Imχ ⊆ e(Q). We will first show
that ∀M ∈ Γn, ∃" ∈ Z+ : f |M is invariant under S∆n("). The function f |M transforms
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by χM (χM (g) = χ(MgM−1)) under ΓM = M−1ΓM which is also a subgroup of finite
index. For n ≥ 2 ΓM is finitely generated so that ImχM is finite. Since ker(χM ) is of
finite index in Γ there is an " such that we have ker(χM ) ⊇ Γn("). Thus f |M is invariant
under S∆n("). For n = 1, t(ΓM ) = "1Z for some "1 ∈ Z+ since t(ΓM ) is of finite index
in t(Γ1) = Z. Therefore kerS∆1(χ

M ) ∼= "1"2Z for some "2 and f |M is invariant under
S∆1("1"2). The function φf |M attains its maximum at M−1Ω0 since φf |M (Ω) = φf (MΩ).
Now we use Theorem 1.2. �

Discussion of the Main Result. It is often expedient to introduce an auxiliary function
φ as a height function on Hn or as a means to linearly order the support of a cusp form
f ; however, the natural way to measure both support and height is via kernels. A maxi-
mum point Ω0 of φf is forbidden from some neighborhood of each cusp and Theorem 1.3
explicitly gives such a neighborhood in terms of the kernel ν(f |M). Should the vanishing
requirements placed on f be sufficiently demanding that these forbidden neighborhoods
cover a fundamental domain for Γ then f must itself vanish. In the next section we fall
back upon vanishing theorems stated in terms of type two functions φ because for n > 1
we cannot handle the relation of the forbidden regions to the fundamental domain for Γ
but we conclude this section with a vanishing theorem in terms of coverings.

Given a cusp form f ∈ Skn(Γ) we are interested in all of the kernels ν(f |M) for M ∈ Γn.
These coincide whenever M falls in the same coset of Γ\Γn so there are actually only a
finite number of distinct kernels. The action of ∆n on the right is particularly simple
and further restricts the number of kernels one must consider. We will call a collection of
kernels which transforms like ν(f |M) under the left action of Γ and the right action of ∆n

a Γ-admissible collection of kernels.

1.4 Definition. A collection of kernels {KM}M∈Γn is called Γ-admissible if

∀ g ∈ Γ,∀u =
(

tA S
0 A−1

)
∈ ∆n, we have KgMu = AKM

tA.

1.5 Lemma. Let f ∈ Skn(Γ, χ) be nontrivial. Then {ν(f |M)}M∈Γn is a Γ-admissible col-
lection of kernels. Let {KM} be any Γ-admissible collection of kernels. Then the following
two conditions are equivalent:

(1) For all M in Γn, we have the containment ν(f |M) ⊆ KM .
(2) For all M from a set of double coset representatives for Γ\Γn/∆n we have the

containment ν(f |M) ⊆ KM .

Proof. Left to the reader. �

1.6 Theorem. (Vanishing Theorem) Let f ∈ Skn(Γ, χ) with Γ of finite index in Γn. Let
φf (Ω) = det(Y )k/2|f(Ω)| attain a maximum at Ω0 = X0 + iY0 ∈ Hn. Let {KM} be a
Γ-admissible collection of kernels. Assume we have supp(f |M) ⊆ KM for all M from a
set of representatives for Γ\Γn/∆n.

If we have f 
≡ 0 then we have that Ω0 is not in the union:

⋃
M∈Γn

M{Ω ∈ Hn :
k

4π
(Im Ω)−1 
∈ KM}.

If this union contains a fundamental domain Fn(Γ) then we have f ≡ 0.

Proof. Assume that f is not identically zero. Since φf (Ω) is Γ-invariant we can choose
a maximum point Ω0 ∈ Fn(Γ). Apply the Main Result 1.3 to f and conclude that
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k
4π

(
Im{M−1Ω0}

)−1 ∈ ν(f |M) for all M ∈ Γn. Since {KM} is a Γ-admissible collec-
tion of kernels, Lemma 1.5 tells us that ν(f |M) ⊆ KM for all M ∈ Γn so that we have
k
4π

(
Im{M−1Ω0}

)−1 ∈ KM for all M ∈ Γn. Therefore we have

M−1Ω0 ∈{Ω ∈ Hn :
k

4π
(Im Ω)−1 ∈ KM},

Ω0 
∈M{Ω ∈ Hn :
k

4π
(Im Ω)−1 
∈ KM},

Ω0 
∈
⋃

M∈Γn

M{Ω ∈ Hn :
k

4π
(Im Ω)−1 
∈ KM}.

However if the last union contains Fn(Γ) and we have Ω0 ∈ Fn(Γ) then this contradicts
that f 
≡ 0. �

§2. Estimation with type two functions

In this section we define type one and type two functions and use type two functions in
the statement of vanishing theorems.

Definition 2.1. A function φ : Domφ→ R≥0 with Pn(R) ⊆ Domφ ⊆ Psemi
n (R) is called

type one if
(1) φ(s) > 0 for all s ∈ Pn(R),
(2) φ(λs) = λφ(s) for all λ ∈ R≥0 and s ∈ Domφ,
(3) φ(s1 + s2) ≥ φ(s1) + φ(s2) for all s1, s2 ∈ Domφ.

2.2 Proposition. A type one function φ is continuous on Pn(R).

Proof. Pick ε > 0. We will define a neighborhood N of a fixed t ∈ Pn(R) such that
|φ(s)− φ(t)| < ε for all s ∈ N .

Pick q ∈ R such that 0 < q < ε
φ(t) and 0 < q < 1. Since qt > 0, we can choose a

neighborhood N of t such that qt ± (t − s) > 0 for all s ∈ N . Then for s ∈ N , we have
φ(t)+ε > φ(t)+qφ(t) = (1+q)φ(t) = φ((1+q)t) = φ(s+qt+(t−s)) ≥ φ(s)+φ(qt+(t−s)) >
φ(s). Also, we have φ(s) = φ(t−qt+qt+s− t) ≥ φ((1−q)t)+φ(qt+s− t) > φ((1−q)t) =
(1− q)φ(t) = φ(t)− qφ(t) > φ(t)− ε. Therefore ε > φ(s)− φ(t) > −ε for s ∈ N . �

Definition 2.3. A type one function φ is called type two if φ(Pn(Z)) is discrete in R.

Examples. The following are some useful type two functions: the trace tr(s), the reduced
determinant det(s)1/n, Hermite’s function m(s), and the dyadic trace w(s). Among these
only the trace is not a class function. The smallest eigenvalue of s, λ1(s) is type one but
not type two.

2.4 Lemma. Let φ be type one. Let S ⊆ 1
�Pn(Z) for some " ∈ Z+. Then we have

inf φ (Semihull(S) ∩ Pn(R)) = inf φ(S). If φ is type two we also have inf φ(S) = minφ(S).

Proof. The inequality inf φ(S) ≥ inf φ (Semihull(S) ∩ Pn(R)) follows from the inclusion
S ⊆ Semihull(S) ∩ Pn(R). On the other hand take any x ∈ Semihull(S) ∩ Pn(R). There
are choices of si ∈ S and ai ≥ 0 satisfying

∑
i ai ≥ 1 such that

∑
i aisi is arbitrarily close

to x. The continuity of φ on Pn(R) implies that φ(
∑

i aisi) is arbitrarily close to φ(x).
Since φ is type one we also have φ(

∑
i aisi) ≥

∑
i aiφ(si) ≥

∑
i ai inf φ(S) ≥ inf φ(S);

therefore we conclude φ(x) ≥ inf φ(S). If φ is type two we know that φ(S) is discrete in R
and so we have inf φ(S) = minφ(S). �

The uniform vanishing hypothesis in the next theorem in too restrictive and will be
weakened to an average vanishing hypothesis in the theorem that follows it.
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2.5 Theorem. (Uniform Estimation) Let f ∈ Skn(Γ, χ) with Γ of finite index in Γn. Let
φ be type two. If f has the following uniform φ-vanishing

∀ [M ] ∈ Γ\Γn, minφ (supp(f |M)) >
k

4π
sup

Ω∈Hn

inf
σ∈Γn

φ
(
Im(σΩ)−1

)
then we have f ≡ 0.

Proof. Note that since Γ\Γn is a finite set, we can rewrite the hypothesis as ∃δ > 0,
∀M ∈ Γn, minφ (supp(f |M)) > k

4π supΩ∈Hn
infσ∈Γn

φ
(
Im(σΩ)−1

)
+ δ. We assume f 
≡ 0

and obtain a contradiction. Apply the Main Result 1.3 to conclude that

k

4π
(
Im{M−1Ω0}

)−1 ∈ Semihull[supp(f |M)]

for some Ω0 ∈ Hn and for all M ∈ Γn. Then we have

k

4π
φ

(
{Im(M−1Ω0)}−1

)
∈φ (Semihull[supp(f |M)] ∩ Pn(R)) ,

=R≥1 minφ (supp(f |M)) by Lemma 2.4 with S = supp(f |M).

Combined with the hypothesis, this yields

k

4π
φ

(
{Im(M−1Ω0)}−1

)
>

k

4π
sup

Ω∈Hn

inf
σ∈Γn

φ
(
Im(σΩ)−1

)
+ δ.

Take any ε > 0, there exists a σ0 ∈ Γn such that

inf
σ∈Γn

φ
(
Im(σΩ0)−1

)
+ ε ≥ φ

(
Im(σ0Ω0)−1

)
.

Combined with the previous inequality in the instance where M = σ−1
0 , we obtain

inf
σ∈Γn

φ
(
Im(σΩ0)−1

)
+ ε > sup

Ω∈Hn

inf
σ∈Γn

φ
(
Im(σΩ)−1

)
+ δ.

Taking ε→ 0+ yields the contradiction

inf
σ∈Γn

φ
(
Im(σΩ0)−1

)
≥ sup

Ω∈Hn

inf
σ∈Γn

φ
(
Im(σΩ)−1

)
+ δ. �

2.6 Theorem. (Average Estimation) Let f ∈ Skn(Γ, χ) with Γ of finite index I in Γn. Let
φ be type two. Let M1, . . . ,MI be a set of representatives for Γ\Γn. If f has the following
average φ-vanishing

1
I

I∑
i=1

minφ (supp(f |Mi)) >
k

4π
sup

Ω∈Hn

inf
σ∈Γn

φ
(
Im(σΩ)−1

)

then we have f ≡ 0.

Proof. We assume f 
≡ 0 and obtain a contradiction. Let σi = minφ (supp(f |Mi)). Let
the Fourier series of f |Mi be written as

(f |Mi)(Ω) =
∑

si∈supp(f |Mi)

aisie(〈si,Ω〉).
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Consider the norm F of f given by F (Ω) =
∏I
i=1(f |Mi)(Ω) ∈ SkIn (Γn) of weight kI

modular with respect to the full group Γn. We will apply the previous Theorem 2.5 to F
to show that F ≡ 0 by verifying the following condition:

(2.7) minφ (supp(F )) >
kI

4π
sup

Ω∈Hn

inf
σ∈Γn

φ
(
Im(σΩ)−1

)
.

In order to express the condition 2.7 in terms of the σi we expand F in a Fourier series

F (Ω) =
∑
s1

· · ·
∑
sI

(
I∏
i=1

aisi

)
e(〈s1 + · · ·+ sI ,Ω〉).

We have s ∈ supp(F ) only if there exist si ∈ supp(f |Mi) such that s = s1 + · · ·+ sI . This
implies that φ(s) ≥

∑
i φ(si) ≥

∑
i σi for all s ∈ supp(F ) so that we have minφ(supp(F )) ≥∑

i σi. By the hypothesis
∑
σi >

kI
4π supΩ∈Hn

infσ∈Γn φ
(
Im(σΩ)−1

)
, we see that condition

2.7 is true. Then we have F ≡ 0, whence f ≡ 0. �

In order to apply the previous two theorems, it becomes necessary to compute φn =
supΩ∈Hn

infσ∈Γn φ
(
{Im(σΩ)}−1

)
for various type two functions φ, or at least to compute

upper bounds. Currently, we know of no better upper bound for φn other than φn ≤
supΩ∈Fn

φ(Y −1). The quality of the upper bound is important in making the previous two
theorems of practical value. Here are the best upper bounds that we know of and their
relation to the mathematical literature.

For n = 1 we have tr(s) = det(s)1/n = m(s) = w(s) and supF1
φ(y−1) = 2√

3
for these φ

from the well known construction of F1, supφ(y−1) = φ(1) supτ y−1 = φ(1) 2√
3
.

For the type two function, the trace, let κn = supFn
tr(Y −1). We have trn ≤ κn and

the best known upper bound for κn is κn ≤ nµnn
2√
3
, see [14, p.197], [5]. If we use the trace

as the type two function in Theorem 2.5 and restrict ourselves to the full modular group
Γn we obtain the result of Siegel (whose statement was given in the Introduction), see [14,
p.200].

To compute an upper bound for dimSkn or to show that a particular cusp form is zero
using Siegel’s Theorem, one lists the semi-integral classes [s] such that a representative
s exists satisfying tr(s) ≤ κn

k
4π . The number of such classes [s] is then an upper bound

for dimSkn and is the number of Fourier coefficients as of f that must be computed in
an application. It suffices to count classes because the vanishing of as is a class function.
Notice that the trace is not a class function so that representatives from a table must be
checked to ensure that they have minimal trace, if they in fact do. In practice, of course,
one must use the upper bound of item (3). Since tables order forms by determinant it is
also helpful to express the condition in terms of the determinant as in item (4) to use as
a preliminary sorting method. This theorem, the most commonly known, is actually the
most inefficient among those we discuss.

For the type two Hermite’s function we have mn ≤ supFn
m(Y −1). The best known up-

per bound for supFn
m(Y −1) occurs in [7]: m(Y −1) ≤ µn det(Y −1)1/n = µn/det(Y )1/n ≤

µn/(m(Y )/µn) = µ2
n/m(Y ) ≤ µ2

n
2√
3
. The equivalence of items (1) and (3) in the follow-

ing theorem is due to Eichler, see [7]. The equivalence of items (1) and (2) is likely an
improvement in that mn may be smaller than supFn

m(Y −1).

2.8 Theorem. Let f ∈ Skn have Fourier expansion f(Ω) =
∑

s>0 ase
2πi tr(sΩ). The fol-

lowing conditions are equivalent.
(1) f = 0.
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(2) For all s such that m(s) ≤ mn
k
4π , we have as = 0.

(3) For all s such that m(s) ≤ µ2
n

2√
3
k
4π , we have as = 0.

This Theorem is not a finiteness theorem in the usual sense because the condition (2)
may hold for infinitely many classes [s]. A similar theorem for Fourier-Jacobi expansions
may be found in [7][28]. When we have mn

k
4π < 1 then condition (2) holds and so Skn = 0.

Eichler used condition (3) to show that Sk3 = 0 for k ≤ 6; Sk4 = 0 for k ≤ 5; Sk5 = 0 for
k ≤ 5.

The constant mn also has significance in the theory of toroidal compactifications of
Hn/Γn. Let A(1)

n be the coarse moduli space of dimension n principally polarized abelian
varieties and rank one degenerations used in [23]. Let A(1),0

n be the elements of A(1)
n with

minimal automorphism group. Each f ∈ Skn defines a divisor div(f) ⊆ An = Hn/Γn
which under certain conditions extends to a divisor on A(1)

n . The divisor class of div(f) in
Pic(A(1),0

n )⊗Q is given by [div(f)] = kλ−µδ where λ is the class of the Hodge bundle, k is
the weight of f , δ is the divisor class of the boundary [A(1)

n \An] and µ = minm(supp(f)).
The “slope” of a divisor refers to k/µ. The existence of effective divisors with slope less
than the slope of the canonical bundle was used in [32][23] to show that An is of general
type for n ≥ 7. This theorem shows that an effective divisor has slope which is bounded
below by:

slope =
k

µ
≥ 4π
mn
≥ 2π

√
3

µ2
n

.

The asymptotic growth of this lower bound for the slope is 2π
√

3
µ2
n
≥ const/n2 [4, p.20]. A

more careful study of the new constant mn defined here may reveal a slower growth than
O(n2). This gives the only known lower bound on the slope for large n.

For the type two function the dyadic trace, wn ≤ supFn
w(Y −1) gives the best known

upper bound for wn: supFn
w(Y −1) ≤ n 2√

3
. From section 3, use Y −1 > 0 and Lemma 3.4

to obtain 〈Y, s〉 ≥ m(Y )w(s) so that w(Y −1) ≤ 〈Y,Y −1〉
m(Y ) = n

m(Y ) ≤ n√
3/2

= 2n√
3
.

2.9 Theorem. Let f ∈ Skn have Fourier expansion f(Ω) =
∑

s>0 ase
2πi tr(sΩ). The fol-

lowing conditions are equivalent.
(1) f = 0.
(2) For all s such that w(s) ≤ wn

k
4π , we have as = 0.

(3) For all s such that w(s) ≤ n 2√
3
k
4π , we have as = 0.

(4) For all s such that det(s)1/n ≤ µn
2√
3
k
4π , we have as = 0.

This estimate seems to give the best results, see the examples in §5 for comparisons.
Corollary 3.8 of [28, p. 340] could be used to prove items (3) and (4) above.

For the type two function the reduced determinant we have the following equality
detn = supΩ∈Hn

infσ∈Γn det
(
{Im(σΩ)}−1

) 1
n = supFn

det(Y −1)1/n from the construction
of Siegel’s fundamental domain Fn. The best known upper bound for detn is detn ≤ µn

2√
3

which follows from Hermite’s Inequality.

2.10 Theorem. Let f ∈ Skn have Fourier expansion f(Ω) =
∑

s>0 ase
2πi tr(sΩ). The

following conditions are equivalent.
(1) f = 0.
(2) For all s such that det(s)1/n ≤ detn k

4π , we have as = 0.



12 C. POOR AND D. S. YUEN

(3) For all s such that det(s)1/n ≤ µn
2√
3
k
4π , we have as = 0.

If h(Ω) = det(Y ) is taken as a height function on Hn then computing detn amounts to
finding a lowest point in Fn. Siegel gave upper bounds for this in [31, p.64–65]. Lower
bounds on detn can be computed from the existence of nontrivial cusp forms. Just as the
covering issue, these are interesting problems in the symplectic geometry of numbers.

§3. Dyadic Trace

In this section we develop the theory of the dyadic trace, a particular type two class
function. This theory follows from certain facts about the perfect cone decomposition
[1, pp.144–150] but we present a more elementary and self-contained account aimed at
computational use. We let C∗

n = R≥0〈vtv〉v∈Zn\0 and later characterize C∗
n as the elements

of Psemi
n (R) whose radical is defined over Q. A subspace W of Rm is said to be defined

over Q if it is spanned by vectors from W ∩ Qm. Recall rad(s) = {v ∈ Rn : tvsv = 0}
and note that for s ≥ 0 we have rad(s) = Null(s) = {v ∈ Rn : sv = 0}. For s ∈ Pn(R)
we use the notation MinVec(s) = {x ∈ Zn : txsx = m(s) }. We extend the notation, in a
consistent but perhaps nonstandard way, to singular s ∈ Psemi

n (R)\Pn(R) by: MinVec(s) =
{x ∈ Zn : txsx = 0 }. For a singular s, the R-span of MinVec(s) is rad(s) precisely when
s ∈ C∗

n. We let ei for i = 1, . . . , n denote the standard basis for Zn.

3.1 Definition. The matrix s ∈ Vn(R) has a dyadic representation if there exist αi ∈
R≥0 and vi ∈ Zn \ {0} such that s =

∑
αivi

tvi.

For example, s =
(

1 − 1
2

− 1
2 1

)
has a dyadic representation

s =
1
2

(
1
0

)
( 1 0 ) +

1
2

(
1
−1

)
( 1 −1 ) +

1
2

(
0
1

)
( 0 1 ) .

A dyadic representation is termed strict when we have αi > 0 for all i. A matrix s with a
dyadic representation is semidefinite but not all semidefinite s have dyadic representations;

for example, s =
(

1
√

2√
2 2

)
does not have a dyadic representation. To see this assume

that we have a dyadic representation s =
∑
αivi

tvi, which we may assume strict, and note
that

0 = (
√

2 −1 ) s
(√

2
−1

)
=

∑
αi

(
tvi

(√
2
−1

))2

implies that tvi

(√
2
−1

)
= 0 for all i contradicting vi ∈ Z2 \{0} and

√
2 
∈ Q. This example

illustrates the general case. The cone inside Psemi
n (R) consisting of elements s which possess

a dyadic representation is clearly C∗
n = R≥0〈vtv〉v∈Zn\0; we may characterize C∗

n as the
elements of Psemi

n (R) whose radical is defined over Q.

3.2 Proposition. C∗
n = {s ∈ Psemi

n (R) : rad(s) is defined over Q}
Proof. The case n = 1 is trivial because both sides of the equation are equal to R≥0. We
clearly have C∗

n ⊆ {s ∈ Psemi
n (R) : rad(s) is defined over Q} because if s =

∑
αivi

tvi is a
strict dyadic representation then txsx =

∑
αi (txvi)

2 and so rad(s) = {x ∈ Rn : txvi =
0 for all i} is defined over Q. The main step needed to prove the other inclusion is that
C∗
n ⊇ Pn(R); granting this we can prove C∗

n ⊇ {s ∈ Psemi
n (R) : rad(s) is defined over Q} by
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induction on n. Suppose that s ≥ 0 and that rad(s) 
= 0 is defined over Q, then there exists

a u ∈ SLn(Z) such that tusu =
(

0 0
0 sn−1

)
. This shows that sn−1 ≥ 0 has rad(sn−1) de-

fined over Q, thus the induction hypothesis gives a dyadic representation sn−1 =
∑
αivi

tvi

and hence tusu =
∑
αi

(
0
vi

)
t

(
0
vi

)
. Possessing a dyadic representation is a class prop-

erty so that tusu ∈ C∗
n implies that s ∈ C∗

n. This completes the induction.
In order to handle the case rad(s) = 0 and show that Pn(R) ⊆ C∗

n we first show
that Pn(Q) ⊆ C∗

n. Let s ∈ Pn(Q). By completing the square successively we have
txsx =

∑
αi (txvi)

2 for some vi ∈ Qn and αi ∈ Q≥0. Choose a q ∈ Z+ such that qvi ∈ Zn
for all i, then we have s =

∑ αi

q2 (qvi)t(qvi). Omitting the terms with vi = 0 gives a
dyadic representation of s. Next we show that any s ∈ Vn(R) which is near-diagonal is in
C∗
n. A matrix s is near-diagonal when for all i we have sii ≥

∑
j:j �=i |sij |. A near-diagonal

s has the immediate dyadic representation

s =
∑
i,j:i<j

|sij |(ei + sgn(sij)ej) t(ei + sgn(sij)ej) +
∑
i


sii −

∑
j:j �=i

|sij |


 ei

tei.

This shows that s ∈ C∗
n. We can now demonstrate the general case Pn(R) ⊆ C∗

n by
combining the two previous special cases. Let s ∈ Pn(R); choose η ∈ R+ so that s− ηI ∈
Pn(R), and choose s̃ ∈ Pn(Q) so that E = (s − ηI) − s̃ has all its entries less than η

n
in absolute value. Then s = s̃ + (ηI + E) has a dyadic representation because both the
rational s̃ and the near-diagonal ηI + E do. This demonstrates that Pn(R) ⊆ C∗

n. �

3.3 Definition. Define the dyadic trace w : C∗
n → R≥0 for s ∈ C∗

n by

w(s) = sup

(∑
i

αi

)

where the supremum is over all dyadic representations of s =
∑
αivi

tvi.

3.4 Lemma. The dyadic trace w is a type one class function w : C∗
n → R≥0 satisfying

for all s ∈ C∗
n :

(1) ∀Y ∈ Psemi
n (R), 〈Y, s〉 ≥ w(s)m(Y )

(2) w(s) = 0 ⇐⇒ s = 0

Proof. Let s =
∑
αivi

tvi be any dyadic representation. Then sY =
∑
αivi

tviY and
〈Y, s〉 =

∑
αi
tviY vi ≥

∑
αim(Y ). Taking the supremum over all dyadic representations

gives 〈Y, s〉 ≥ w(s)m(Y ). This shows that w(s) is finite by choosing, say, Y = I. Since
w(s) ≥

∑
αi for any dyadic representation of s we have w(s) = 0 ⇐⇒ s = 0. Hence note

that w maps from Pn(R) to R>0. The remainder of the proof is left to the reader. �

Lemma 3.4 has an improved version in Proposition 3.12. We will now work towards
showing that w also has a characterization as an infimum:

for s ∈ C∗
n, w(s) = inf

Y ∈Pn(R)

〈s, Y 〉
m(Y )

.

Once this is proven, the two characterizations as supremum and infimum allow one to
quickly bound w(s) in computations. The first step toward the infimum characterization
is to show that the infimum is attained by some Y ∈ Pn(R) and for this we need some
facts about m(Y ).
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3.5 Lemma. The type two function m is continuous on Psemi
n (R) and vanishes on the

singular set Psemi
n (R) \ Pn(R).

Proof. This is a consequence of the fact that Hermite’s inequality m(Y ) ≤ µn det(Y )1/n

holds for all Y ∈ Psemi
n (R). At nonsingular Y the continuity of m follows from Proposition

2.2 because m is type one. �

3.6 Lemma. Let φ be a type one function continuous on Psemi
n (R) and vanishing on the

singular set Psemi
n (R) \ Pn(R). For all s ∈ Pn(R) the infimum

φ̂(s) = inf
Y ∈Pn(R)

〈s, Y 〉
φ(Y )

is attained at some Y0 ∈ Pn(R).

Proof. Let D be the set D = {Y ∈ Pn(R) : φ(Y ) = 1 }. Note that we have φ̂(s) =
infY ∈D 〈s, Y 〉 since we may replace Y by Y

φ(Y ) . Next, let E be the subset of D de-

fined by E =
{
Y ∈ D : tr(Y ) ≤ tr(s)

λ1(s)φ(I)

}
. Note that E 
= ∅ because I

φ(I) ∈ E. Now
consider any Y ∈ D \ E, so that we have tr(s) < tr(Y )λ1(s)φ(I). For all such Y we
have 〈s, I

φ(I) 〉 = tr(s)
φ(I) < λ1(s) tr(Y ) ≤ 〈s, Y 〉; together with I

φ(I) ∈ E this implies that
infY ∈D 〈s, Y 〉 = infY ∈E 〈s, Y 〉. The set E is bounded due to the bound on tr(Y ). The set
E is closed in Psemi

n (R) because if Y ∈ Psemi
n (R) is a cluster point of E, then φ(Y ) = 1

forces Y ∈ Pn(R), which forces Y ∈ E since E is closed in Pn(R). Therefore, E is closed in
Vn(R) since Psemi

n (R) is closed in Vn(R). Thus E is compact. Since 〈s, Y 〉 is a continuous
function of Y , then infY ∈E 〈s, Y 〉 is attained at some Y0 ∈ E. �

3.7 Proposition. For all s ∈ C∗
n the infimum

m̂(s) = inf
Y ∈Pn(R)

〈s, Y 〉
m(Y )

is attained at some Y0 ∈ Pn(R).

Proof. For s ∈ Pn(R) this follows from Lemmas 3.5 and 3.6. If s ∈ C∗
n has rad(s) 
= 0

then there exists a u ∈ SLn(Z): tusu =
(

0 0
0 s′

)
for s′ ∈ C∗

n−1 and we finish the proof by

induction. �

Now that we know that the above infimum is attained we want to show that it is equal
to w(s). This requires some information about the variation of minimal vectors.

3.8 Lemma. (Variation of Minimal Vectors) Let Y0 ∈ Pn(R). There exists a neighborhood
N ⊂ Pn(R) of Y0 such that we have

Y ∈ N =⇒ MinVec(Y ) ⊆ MinVec(Y0).

Proof. This follows from the continuity of m. Let η > 0 be such that 0 < Y0 − ηI. Let
N1 = {Y : Y0− ηI < Y } be a neighborhood of Y0. Select a second neighborhood N2 ⊆ N1

of Y0 such that Y ∈ N2 implies that |m(Y ) − m(Y0)| < 1. Setting W = {x ∈ Zn \ 0 :
(Y0−ηI)[x] < m(Y0)+1} we have MinVec(Y ) ⊆W for Y ∈ N2. This follows for a minimal
vector x from the inequality (Y0 − ηI)[x] < Y [x] = m(Y ) < m(Y0) + 1. Note that W is a
finite set because Y0 − ηI > 0.
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Now assume that the desired neighborhood N does not exist and proceed by contradic-
tion. We choose sequences Yk ∈ N2, vk ∈ Zn \ 0 such that Yk → Y0 and Yk[vk] = m(Yk)
but vk 
∈ MinVec(Y0). We have vk ∈ MinVec(Yk) ⊆ W and since W is a finite set we can
assume the sequence vk to be constant, vk = v, by choosing a subsequence if necessary. We
have that Y0[v] is the limit of Yk[v] and that Yk[v] = Yk[vk] = m(Yk) converges to m(Y0)
by the continuity of m. Hence we have Y0[v] = m(Y0) and v ∈ MinVec(Y0) is the desired
contradiction. �

The following theorem shows that the supremum defining the dyadic trace as well as
the infimum characterizing it are both attained.

3.9 Theorem. For any s ∈ C∗
n there exists a Y0 ∈ Pn(R) such that we have w(s) =

infY ∈Pn(R)
〈s,Y 〉
m(Y ) = 〈s,Y0〉

m(Y0)
and for any such Y0 we have

(1) s has a dyadic representation in the minimal vectors of Y0, that is, there exist
vi ∈ MinVec(Y0) and αi ≥ 0 such that we have s =

∑
αivi

tvi,
(2) 〈s,Y0〉

m(Y0)
= w(s) =

∑
αi.

Proof. For the existence of Y0, see Proposition 3.7. Now, for any such Y0,

(3.10) 〈s, Y0〉m(Y ) ≤ m(Y0)〈s, Y 〉 for all Y ∈ Pn(R).

Let N be a neighborhood of Y0 as in lemma 3.8. For any B sufficiently small in Vn(R) we
have YB = Y0 +B ∈ N . Let vB ∈ MinVec(Y0) such that m(YB) = YB [vB ]. Then equation
3.10 yields 〈s, Y0〉〈Y0 +B, vB

tvB〉 ≤ m(Y0)〈s, Y0 +B〉 or

(3.11) 〈s, Y0〉〈B, vB tvB〉 ≤ m(Y0)〈s,B〉 for B ∈ N − Y0.

Let T ∈ Vn(R) such that T [v] ≥ 0 for all v ∈ MinVec(Y0). Set B = λT with λ > 0 so
that B ∈ N − Y0. By equation 3.11 0 ≤ λ〈s, Y0〉〈T, vB tvB〉 ≤ λm(Y0)〈s, T 〉 and therefore
s ∈

(
{v tv}v∈MinVec(Y0)

)∨∨ = R≥0〈v tv〉v∈MinVec(Y0).
For (2), s =

∑
αivi

tvi be a dyadic representation in the minimal vectors of Y0. Then
〈s, Y0〉 =

∑
αim(Y0). Now use Lemma 3.4 to get 〈s,Y0〉

m(Y0)
≥ w(s) ≥

∑
αi. �

Tables of quadratic forms are usually listed in order of increasing determinant and the
next proposition allows us to compare the reduced determinant with the dyadic trace. This
is the promised improvement of Lemma 3.4.

3.12 Proposition. (Summary) The dyadic trace w is a type two class function w : C∗
n →

R≥0 satisfying for all s ∈ C∗
n:

(1) s = 0 ⇐⇒ w(s) = 0,
(2)

∀Y ∈ Psemi
n (R), 〈Y, s〉 ≥ w(s)m(Y ).

Equality is attained if and only if s has a dyadic representation in the minimal
vectors of Y .

(3)
w(s) ≥ n

µn
det(s)1/n.

Equality is attained if and only if s = 0 or s−1 exists and attains equality in
Hermite’s inequality.
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Proof. We prove item (2). By Lemma 3.4, 〈Y, s〉 ≥ w(s)m(Y ) holds for all Y ∈ Psemi
n (R).

Equality clearly holds if s has a dyadic representation in the minimal vectors of Y , and
by Theorem 3.9 (1) this is the case for nonsingular Y whenever the equality 〈Y,s〉

m(Y ) = w(s)
holds. For singular Y , the equality 〈Y, s〉 = 0 implies that 0 = 〈Y, s〉 =

∑
αiY [vi] for any

dyadic representation s =
∑
αivi

tvi of s. The case s = 0 is trivial. For s 
= 0 we may
assume the dyadic representation to be strict and thereby conclude: Y [vi] = 0 and hence
vi ∈ MinVec(Y ).

We demonstrate item (3), which by item (1) need only be proven for nonsingular s, by
combining the arithmetic–geometric inequality with Hermite’s inequality.

∀Y ∈ Pn(R),
〈s, Y 〉
m(Y )

≥ n det(s)1/n det(Y )1/n

m(Y )
≥ n

µn
det(s)1/n.

Taking the infimum over Y ∈ Pn(R) gives w(s) ≥ n
µn

det(s)1/n by Theorem 3.9. On the
other hand, equality holds above if and only if equality holds in both the arithmetic–
geometric inequality and in Hermite’s inequality. That is, if and only if sY = λI for some
λ ∈ R+ and Y optimizes Hermite’s inequality. By Theorem 3.9 there is a Y such that
w(s) = 〈s,Y 〉

m(Y ) and so the equality w(s) = n
µn

det(s)1/n implies that s−1 optimizes Hermite’s
inequality.

The inequality w(s) ≥ n
µn

det(s)1/n shows that given any B ∈ R+ there are only a finite
number of integral classes s satisfying w(s) ≤ B. Hence w(Pn(Z)) is discrete in R and w
is type two. �

§4. Calculations in low degrees

In this section, we prove some formulae for w(s) for n = 1, 2, 3. We make tables of
quadratic forms with low dyadic traces for n = 3, 4. We also make tables comparing the
number of Fourier coefficients one needs to calculate for low weights using the old trace
method versus using the new dyadic trace method for n = 2, 3, 4.

For n = 1 we have w(s) = s. For n = 2 we have a formula for w(s) if s =
(
a b
b c

)
∈

P2(R) is Minkowski reduced. This reduction condition is 2|b| ≤ a ≤ c, see [4, p.396–397].

4.1 Proposition (Dyadic trace for n = 2). Let s =
(
a b
b c

)
∈ P2(R) be Minkowski

reduced. Then we have w(s) = a+ c− |b| ≥ 3
4 tr(s).

Proof. Consider Y =
(

2 ±1
±1 2

)
∈ P2(Z) and note that m(Y ) = 2 in either case. Then

w(s) ≤ tr(sY )
m(Y ) = a + c ± b so that we have w(s) ≤ a + c − |b|. On the other hand, if we

have |b| ≤ a and |b| ≤ c, then s has the dyadic representation:

s =
(
a b
b c

)
= |b|

(
1 sgn(b)

sgn(b) 1

)
+ (a− |b|)

(
1 0
0 0

)
+ (c− |b|)

(
0 0
0 1

)

= |b|
(

1
sgn(b)

)
(1 sgn(b)) + (a− |b|)

(
1
0

)
(1 0) + (c− |b|)

(
0
1

)
(0 1),

so that w(s) ≥ |b| + (a − |b|) + (c − |b|) = a + c − |b|. Using the reduction conditions, we
have: w(s) = a+c−|b| ≥ a+c− a

2 = a+c
2 + c

2 = 1
2 tr(s)+ c

2 ≥ 1
2 tr(s)+

1
2 tr(s)

2 = 3
4 tr(s). �
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For n = 3 we also have a formula for w(s) if s =


 a d e
d b f
e f c


 ∈ P3(R) is in Minkowski

reduced form. The reduction conditions are: a ≤ b ≤ c; 2|d|, 2|e| ≤ a; 2|f | ≤ b; and
2|d± e± f | ≤ a+ b, [4, p.397].

4.2 Proposition (Dyadic trace for n = 3). Let s =


 a d e
d b f
e f c


 ∈ P3(R) be Minkowski

reduced. Then we have w(s) ≥ 2
3 tr(s) and we have:

Case I. If def ≤ 0, then w(s) = a+ b+ c− (|d|+ |e|+ |f |);
Case II. If def > 0, then w(s) = a+ b+ c− (|d|+ |e|+ |f |) + min(|d|, |e|, |f |).

Proof. Consider Y =


 2 α β
α 2 γ
β γ 2


 ∈ V3(Z) where α, β, γ ∈ {0,±1}. We compute det(Y ) =

8 + 2αβγ − 2(α2 + β2 + γ2) so that Y ∈ P3(Z) unless αβγ = −1. We have m(Y ) = 2
when αβγ 
= −1. Therefore w(s) ≤ tr(sY )

m(Y ) = a+ b + c+ minα,β,γ∈{0,1,−1}
αβγ �=−1

(αd + βe+ γf).

When def ≤ 0, we have min(αd+ βe+ γf) = −(|d|+ |e|+ |f |). When def > 0, we have
min(αd+ βe+ γf) = −(|d|+ |e|+ |f |) + min(|d|, |e|, |f |).

On the other hand, we can use the Minkowski reduction conditions to produce the
dyadic representation: s = |d|v1 tv1 + |e|v2 tv2 + |f |v3 tv3 + (a − |d| − |e|)v4 tv4 + (b −
|d| − |f |)v5 tv5 + (c − |e| − |f |)v6 tv6 where tv1 = (1, sgn(d), 0), tv2 = (1, 0, sgn(e)), tv3 =
(0, 1, sgn(f)), tv4 = (1, 0, 0), tv5 = (0, 1, 0), tv6 = (0, 0, 1). Therefore we have,

w(s) ≥ |d|+ |e|+ |f |+ (a− |d| − |e|) + (b− |d| − |f |) + (c− |e| − |f |)
= a+ b+ c− (|d|+ |e|+ |f |).

Because of the previous upper bound, we see that w(s) = a+ b+ c− (|d|+ |e|+ |f |) in Case
I. In Case II we may assume that d, e, f > 0 by changing to an equivalent reduced s. Let
m = min(|d|, |e|, |f |). We display the dyadic representation: s = mu1

tu1 +(d−m)u2
tu2 +

(e−m)u3
tu3 +(f −m)u4

tu4 +(a−d−e+m)u5
tu5 +(b−d−f+m)u6

tu6 +(c−e−f+m)u7
tu7

where tu1 = (1, 1, 1), tu2 = (1, 1, 0), tu3 = (1, 0, 1), tu4 = (0, 1, 1), tu5 = (1, 0, 0), tu6 =
(0, 1, 0), tu7 = (0, 0, 1), and conclude that

w(s) ≥ m+ (d−m) + (e−m) + (f −m) + (a−d−e+m) + (b−d−f+m) + (c−e−f+m)
= a+ b+ c− d− e− f +m.

We then have w(s) = a + b + c − (|d| + |e| + |f |) + m from the previous upper bound in
Case II. We have shown the equality w(s) = a + b + c + minα,β,γ∈{0,1,−1}

αβγ �=−1

(αd + βe + γf)

for reduced s. Further application of the reduction conditions implies that we have:

w(s) ≥ tr(s)−max |αd+ βe+ γf | ≥ tr(s)− a+ b

2

=
a+ b+ c

2
+
c

2
= 1

2 tr(s) +
c

2
≥ 1

2 tr(s) +
1
3 tr(s)

2
=

2
3

tr(s). �

For n = 4, we do not have a general rule such as Proposition 4.1 or 4.2 but we have
worked out many instances. In n = 4, we computer search for upper bounds on w(s) using
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w(s) ≤ 〈s,Y 〉
m(Y ) and for lower bounds using w(s) ≥

∑
αi over dyadic representations of s

until the upper and lower bounds coincide for some Y and some s =
∑
αivi

tvi. In this
case we have vi ∈ MinVec(Y ) by Theorem 3.9. For n = 4, we use the tables of G. Nipp,
“Quaternary Quadratic Forms: Computer Generated Tables” [24].

In Table 1, we list the first 10 even quaternary forms, [24], listed in order of increasing

determinant. For s =



a e f h
e b g i
f g c j
h i j d


 we write: a b c d 2e 2f 2g 2h 2i 2j

and as is traditional we let D = 16 det(s), the discriminant.

Table 1. (Even Quaternary Forms)

D w(s) s

4 2 1 1 1 1 0 0 0 1 1 1

5 2.5 1 1 1 1 1 0 0 1 0 1

8 3 1 1 1 1 0 0 0 1 1 0

9 3 1 1 1 1 1 0 0 0 0 1

12 3 1 1 1 2 1 1 0 1 0 0

12 3.5 1 1 1 1 0 0 0 1 0 0

13 3.5 1 1 1 2 1 1 0 0 1 0

16 4 1 1 1 1 0 0 0 0 0 0

16 4 1 1 1 2 1 1 0 0 0 0

17 3.5 1 1 1 2 1 0 0 1 0 1

In Tables 2, 3, and 4, we consider an f ∈ Skn with Fourier expansion
∑
ase(〈s,Ω〉). The

first column lists the weight k of the vector space Skn. The second column lists a number
t0 such that the condition that as = 0 for all s : tr(s) ≤ t0 implies f ≡ 0. The given t0
is the greatest integer less than or equal to 2√

3
nµnn

k
4π . The third column lists a number

w0 such that the condition that as = 0 for all s : w(s) ≤ w0 implies f ≡ 0. The given
w0 is the greatest half-integer less than or equal to 2√

3
n k

4π . The fourth column gives the
number T of integral-valued classes [s] such that tr(s) ≤ t0 for some s. The fifth column
gives the number W of integral-valued classes [s] such that w(s) ≤ w0. The sixth column
gives dimSkn, if known. The numbers T and W in the fourth and fifth columns are the
number of Fourier coefficients of f one must compute to show that f ≡ 0 using the old
and new methods. We always have dimSkn ≤ W ≤ T and the difference T −W measures
the superiority of the new method over the old one.
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Table 2. (n=2)

k
weight

t0
trace

w0

dyadic
T

old estimate
W

new estimate
dimSkn

true dim.

0 0 0 0 0 0

2 0 0 0 0 0

4 0 0.5 0 0 0

6 1 1 0 0 0

8 1 1 0 0 0

10 2 1.5 2 1 1

12 2 2 2 2 1

14 3 2.5 4 3 1

16 3 2.5 4 3 2

18 4 3 9 5 2

20 4 3.5 9 7 3

22 5 4 14 10 4

24 5 4 14 10 5

26 6 4.5 23 13 5

28 6 5 23 17 7

30 7 5.5 32 21 8
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Table 3. (n=3)

k
weight

t0
trace

w0

dyadic
T

old estimate
W

new estimate
dimSkn

true dim.

0 0 0 0 0 0

2 1 0.5 0 0 0

4 2 1 0 0 0

6 3 1.5 3 0 0

8 4 2 8 1 0

10 5 2.5 20 2 0

12 6 3 44 5 1

14 7 3.5 85 8 1

16 8 4 152 16 3

18 9 4.5 263 24 4

20 11 5.5 674 58 6

Table 4. (n=4)

k
weight

t0
trace

w0

dyadic
T

old estimate
W

new estimate
dimSkn

true dim.

0 0 0 0 0 0

1 1 0 0 0 0

2 2 0.5 0 0 0

3 4 1 6 0 0

4 5 1 17 0 0

5 7 1.5 131 0 0

6 8 2 334 1 0

7 10 2.5 1611 2 0

8 11 2.5 3285 2 1

9 13 3 12517+ 5 0

10 14 3.5 22635+ 10 1+

11 16 4 42014+ 23 0

12 17 4 48800+ 23 2

13 19 4.5 56977+ 42 0

The numbers with a “+” in the “old estimate” column of Table 4 are due to the size
limitations of Nipp’s tables; the forms are listed there only up to discriminant 1732. The
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result of dimS11
4 is from an unpublished preprint of the authors. The results for dimS9

4 ,
dimS10

4 and dimS13
4 are from [26]. The results for dimS6

4 and dimS8
4 may be found in

[29][6][27] and for dimS7
4 in [29][6].

§5. Examples and Discussion.

Let us first consider Tables 2, 3, and 4. Table 2 shows that Sk2 = 0 for k ≤ 8, a result
that follows from the old trace method as well as from the new dyadic trace method. In
weight 10, the new method correctly bounds the one dimensional space S10

2 .
For n = 3, Table 3 shows that Sk3 = 0 for k ≤ 6, bettering the older method. The first

nonzero Sk3 , however, is S12
3 and so the estimate appears to be far from the mark. This is

not really the case, however, as there is a “missing” cusp form of weight 9 in S3: the cusp
form χ18 ∈ S18

3 defining the hyperelliptic locus inside A3 satisfies minm (supp(χ18)) = 2
and although

√
χ18 does not exist over H3 as a Siegel modular form it does exist over

Teichmüller space as a Teichmüller modular form [12]. A defining expression for χ18 can
be taken as

χ18(Ω) =
36∏

even ζ

θ[ζ](0,Ω)

and calculation shows that

χ18(Ω) = −228e


〈


 2 1 1

1 2 0
1 0 2


 ,Ω〉


 + 229e


〈


 2 1 1

1 2 x
1 x 2


 ,Ω〉


 + . . .

plus equivalent terms and terms with classes of higher dyadic trace. Since a cusp form of

weight 18 exists with


 2 1 1

1 2 0
1 0 2


 in its support, the linearity of our method of estimation

means that it cannot rule out the existence of a cusp form of weight 9 = 1
2 (18) with

 1 x x
x 1 0
x 0 1


 = 1

2


 2 1 1

1 2 0
1 0 2


 in its support.

For n = 4, Table 4 shows that Sk4 = 0 for k ≤ 5, and the contrast between the old and
new methods is dramatic. Formerly intractable calculations become tractable. The first
nonzero Sk4 , is S8

4 = CJ , see [29][27][6], where J is Schottky’s modular form vanishing on
the Jacobian locus in A4. The following definition [15] of J can be given (write 1

2 = x):

J = r200 + r20x + r2x0 − 2 (r00r0x + r00rx0 + r0xrx0) ,

rµν =
8∏

α,β,γ∈{0,x}
θ[µ 0 0 0
ν α β γ

](0,Ω) for µ, ν ∈ {0, x}.

Our method, however, allows the possibility that S6
4 is nonzero. We do not attribute,

as in n = 3, this poor showing to the existence of cusp forms f of higher weight with
minm { supp(f) } > 1 but suggest that the difference between the true value of w4 =
supΩ∈H4

infσ∈Γ4 w
(
(ImσΩ)−1

)
and the available upper bound 2√

3
n = 8√

3
is affecting the

sharpness of our estimates. Further progress in estimating the constants wn, mn, or even
detn, will correspondingly improve the estimates given here.
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As intimated in the Introduction, finding linear relations among the theta series attached
to Type II lattices is an obvious application for our results. Recall that a lattice Λ in a M
dimensional Euclidean space is called Type II [4] if it is self dual and if the norm of any
element from Λ is an even integer. The corresponding class of M -by-M quadratic forms
[Q] is obtained from the inner product by choosing any basis for the lattice. The associated
theta series is defined by ϑQ(Ω) = θ(0,Ω⊗Q) where we make use in this definition of the
map Ω $→ Ω⊗Q from Hn to HMn [21, p. 217]. The significance of Type II lattices is that

ϑΛ ∈ S
M
2
n for each n, see [11, p. 17]. Useful formal properties of the theta series are:

ϑΛ1⊕Λ2 = ϑΛ1ϑΛ2 ; ϑΛ(Ω1 ⊕ Ω2) = ϑΛ(Ω1)ϑΛ(Ω2); Φ {ϑΛ on Hn } = ϑΛ on Hn−1.

If Λ is a Type II Lattice then M is necessarily a multiple of 8. For M = 8 there is one
isometry class E8, and it can be shown that M4

n = CϑE8 for all n, see [6]. For M = 16 there
are two isometry classes, E8 ⊕ E8 and D+

16, and the discussion of the linear dependencies
between their theta series is prototypical for the whole subject. We know that ϑ2

E8
− ϑD+

16

is a cusp form of weight 8 in n = 1 and so must be identically zero. Therefore ϑ2
E8
− ϑD+

16

is a cusp form of weight 8 in n = 2 and observation of Table 1 shows that it is also
identically zero. This is a theorem of Witt. Turning to Table 2 in n = 3 we see that
a cusp form of weight 8 is uniquely determined by its Fourier coefficient for the unique

class of dyadic trace two, A3 =


 1 x x
x 1 0
x 0 1


. A computation, see [28, p. 353], shows that

E8 ⊕ E8 and D+
16 both represent A3 480 · 56 · 27 = 725, 760 times so that ϑ2

E8
− ϑD+

16
is

again trivial in n = 3. This fact, Witt’s Conjecture, was first proven by Igusa [13] and
Kneser [19]. In n = 4, ϑ2

E8
− ϑD+

16
is a cusp form of weight 8 and Table 3 tells us that the

modular form is determined by two Fourier coefficients, those for D4 =




1 x x x
x 1 0 0
x 0 1 0
x 0 0 1




and A4 =




1 x x 0
x 1 0 x
x 0 1 0
0 x 0 1


. A theorem of Igusa [15] shows that ϑ2

E8
− ϑD+

16
= 32·5·7

22 J is

really Schottky’s modular form. We can prove this here by evaluating these two Fourier
coefficients. We have that E8⊕E8 represents D4 480 ·56 ·27 ·10 = 7, 257, 600 times and A4

480 · 56 · 27 · 16 = 11, 612, 160 times; whereas D+
16 represents D4 480 · 56 · 26 · 3 = 2, 096, 640

times and A4 480 · 56 · 26 · 24 = 16, 773, 120 times. Therefore, by subtraction, we have

ϑ2
E8
− ϑD+

16
= 5, 160, 960e (〈D4,Ω〉)− 5, 160, 960e (〈A4,Ω〉) + . . .

whereas from the expression defining J we compute

J = 216e (〈D4,Ω〉)− 216e (〈A4,Ω〉) + . . . .

Noting that 5, 160, 960 = 214 · 32 · 5 · 7 we have Igusa’s result: ϑ2
E8
− ϑD+

16
= 32·5·7

22 J .
For M = 24, there are 24 isometry classes of Type II lattices, the Niemeier lattices.

Classifying the linear relations among the theta series of the Niemeier lattices is a very
interesting problem. The best results are due to Erokhin [9], see also [3], and we revisit
these results in the light of our present estimates for weight 12 cusp forms.
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The span of the ϑΛ is 2 dimensional for n = 1 and a cusp form is completely determined
by the coefficients as with s ≤ 2√

3
· 1 · 12

4π ≤ 1.103, that is by a1. Here a1 has the
interpretation as the number of lattice elements of norm 2; zero in the case of the Leech
lattice and the “kissing number” for the remaining 23 Niemeier lattices. Examining Table
1, we see that for n = 2 a cusp form of weight 12 is determined by the two classes with

dyadic trace less than or equal to 2, that is by
[

1 x
x 1

]
and

[
1 0
0 1

]
. We know that

dimS12
2 = 1 so that the Fourier coefficients of cusp forms for these two classes must always

bear the same ratio; in fact this ratio is 1 : 10. Hence the span of the theta series attached
to the Niemeier lattices is 3 dimensional for n = 2. Examining Table 2, we see that for
n = 3 a cusp form of weight 12 is determined by the five classes with dyadic trace less
than or equal to 3; namely


 1 x x
x 1 0
x 0 1


 ,


 1 x 0
x 1 0
0 0 1


 ,


 1 0 0

0 1 0
0 0 1


 ,


 1 x x
x 1 0
x 0 2


 ,


 1 0 x

0 1 x
x x 2




Again, the calculation that the Fourier coefficients of any cusp form for these fives classes
are always in the same proportion is equivalent to the fact that dimS12

3 = 1. Hence
the span of the theta series attached to the Niemeier lattices is 4 dimensional for n = 3.
Examining Table 4, we see that for n = 4 a cusp form of weight 12 is determined by
the 23 classes with dyadic trace less than or equal to 4, listed in Table 5. We know that
dimS12

4 = 2, see [27], but this fact is known as a corollary of the work of Erokhin that
the span of the theta seires attached to the Niemeier lattices in n = 4 is 6 dimensional.
The two papers of Erokhin [9] [10] that provide this result are intricate and it would be
nice to give a straightforward alternate proof of dimS12

4 = 2 by computing the rank of a
certain 24× 27 matrix to be 6. The 24 rows of this matrix are indexed by the 24 Niemeier

lattices and the 27 columns are indexed by the matrices: 0, 1,
[

1 x
x 1

]
,


 1 x x
x 1 0
x 0 1


, and

the 23 4 × 4 forms of dyadic trace less than or equal to 4 listed in Table 5. The ij-entry
of this matrix is the representation number of the i-th Niemeier lattice on the j-th form.
This computation, although within the realm of tractability, is beyond our computational
resources. The 27 Fourier coefficients needed for each Niemeier lattice using this method
stand in stark contrast to the more than 48, 000 forms of trace less than or equal to 17 that
are required by the old method. Nipp’s extensive computer generated tables of quaternary
form do not even exhaust all of the forms with trace less than or equal to 17, so the actual
figure is probably closer to 100,000 forms.
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Table 5. (The 23 Quaternary Forms with dyadic trace ≤ 4)
See Table 1 for the first 10; this table lists the other 13.

D w(s) s

20 4 1 1 1 3 1 1 0 1 0 0

20 3.5 1 1 1 2 0 0 0 1 1 1

20 4 1 1 1 2 1 0 0 1 0 0

21 4 1 1 1 2 1 0 0 0 0 1

24 4 1 1 1 2 0 0 0 1 1 0

25 3.5 1 1 2 2 1 1 0 1 1 2

28 4 1 1 2 2 1 1 0 0 1 1

32 4 1 1 2 2 0 0 0 1 1 2

32 4 1 1 2 2 1 1 0 1 0 0

33 4 1 1 2 2 0 1 1 1 0 2

32 4 1 1 2 2 0 1 1 1 1 1

33 4 1 1 2 2 0 0 0 1 2 2

64 4 2 2 2 2 0 0 0 2 2 2

To apply our estimates in another way to lattices of lower rank and to obtain some new
results, consider theta series with harmonic coefficients. Let Λ be a Type II lattice of rank
m and let Q : Mk×n(C)→ C be a pluri-harmonic polynomial [11, p. 161] of degree ν and
define ϑΛ,Q : Hn → C by

ϑΛ,Q(Ω) =
∑
L∈Λn

Q(L)eiπ〈
tLL,Ω〉.

The function ϑΛ,Q is then a Siegel modular cusp form of weight m
2 + ν and degree n.

Furthermore we know that Q(X) = det(BX)ν is pluri-harmonic whenever B satisfies
B tB = 0. Here B ∈ Mn×m(C) and X ∈ Mm×n(C). Set B1 to be the 4 × 8 matrix [I iI]
andB2 to be the 4×16 matrix [I 0 iI 0]; setQ1(X) = det(B1X)6 andQ2(X) = det(B2X)2.
Then both ϑE8,Q1 and ϑE8⊕E8,Q2 are in S10

4 and their Fourier coefficients for the ten classes
with dyadic trace less than or equal to 3.5 are given in Table 6. Since all of the coefficients
are in the ratio −5 :: 96 we conclude that 96ϑE8,Q1 + 5ϑE8⊕E8,Q2 = 0. As a final example
we construct an element of S10

4 from thetanullwerte.
A fundamental system in F2n

2 is a sequence of 2n + 2 characteristics where all triplets
are azygetic [15, p. 534]. For n = 4 the number of fundamental systems composed en-
tirely of even characteristics is 13056. For any fundamental system, FS, the function∏
ζ∈FS θ[ζ](0,Ω) is a cusp form for Γn(2). If we define G10 by

G10 =
13056∑

FS:FS is an even fund. sys.

∏
ζ∈FS

θ[ζ](0,Ω)2
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then G10 is in S10
4 . An examination of the ten Fourier coefficients as with w(s) ≤ 3.5

shows that they are proportional to those listed in Table 6. The coefficient of G10 for D4 is
100663296 = 225 ·3 so that we have 32 ·52G10 = −212 ϑE8,Q1 , an identity between modular
forms arising from quite different sources.

Table 6. (Fourier Coefficients)

D w(s) s as: ϑE8,Q1 as: ϑE8⊕E8,Q2

4 2 1 1 1 1 0 0 0 1 1 1 -5529600 106168320

5 2.5 1 1 1 1 1 0 0 1 0 1 -11059200 212336640

8 3 1 1 1 1 0 0 0 1 1 0 121651200 -2335703040

9 3 1 1 1 1 1 0 0 0 0 1 -398131200 7644119040

12 3 1 1 1 2 1 1 0 1 0 0 199065600 -3822059520

12 3.5 1 1 1 1 0 0 0 1 0 0 199065600 -3822059520

13 3.5 1 1 1 2 1 1 0 0 1 0 -143769600 2760376320

17 3.5 1 1 1 2 1 0 0 1 0 1 1282867200 -24631050240

20 3.5 1 1 1 2 0 0 0 1 1 1 -6635520000 127401984000

25 3.5 1 1 2 2 1 1 0 1 1 2 -13713408000 263297433600
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8. M. Eichler, Erratum: Über die Anzahl der linear unabhängigen Siegelschen Modulfor-
men von gegebenem Gewicht, Math. Ann. 215 (1975), 195.

9. V. A. Erokhin, Theta series of even unimodular 24-dimensional lattices, LOMI 86
(1979), 82-93, also in JSM 17 (1981), 1999-2008 [16].

10. V. A. Erokhin, Theta series of even unimodular lattices, LOMI 199 (1981), 59-70, also
in JSM 25 (1984), 1012-1020 [16].

11. E. Freitag, Siegelsche Modulfunktionen, Grundlehren der mathematische Wissenschaften
254, Springer Verlag, Berlin, 1983.



26 C. POOR AND D. S. YUEN

12. Ichikawa, Teichmüller Modular forms, Abh. Math. Sem. Univ. Hamburg 66 (1996),
337–354.

13. J. I. Igusa, Modular forms and projective invariants, Amer. J. Math. 89 (1967), 817-855.
14. J. I. Igusa, Theta Functions, Grundlehren der mathematische Wissenschaften 194,

Springer Verlag, 1972.
15. J. I. Igusa, Schottky’s invariant and quadratic forms, Christoffel Symposium, Birkhäuser
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