RESTRICTION OF SIEGEL MODULAR FORMS TO MODULAR CURVES

CRIS POOR, POOR@FORDHAM.EDU DAVID S. YUEN, YUEN@LFC.EDU

ABSTRACT. We study homomorphisms from the ring of Siegel modular forms of a given degree to the ring of elliptic modular forms for a congruence subgroup. These homomorphisms essentially arise from the restriction of Siegel modular forms to modular curves. These homomorphisms give rise to linear relations among the Fourier coefficients of a Siegel modular form. We use this technique to prove that dim $S_4^{10} = 1$.

§1. Introduction.

A Siegel modular cusp form of degree n has a Fourier series $f(\Omega) = \sum_{t} a(t)e(\operatorname{tr}(\Omega t))$ where t runs over \mathcal{X}_n , the set of positive definite semi-integral $n \times n$ forms. If we restrict attention to cusp forms of even weight then the Fourier coefficients are class functions of t. The vector space S_n^k of cusp forms of weight k is finite dimensional and so there exist finite subsets $\mathcal{S} \subset \operatorname{classes}(\mathcal{X}_n)$ such that the projection map $\operatorname{FS}_{\mathcal{S}} : S_n^k \to \mathbb{C}^{\mathcal{S}}$ given by $f \mapsto \prod_{[t] \in \mathcal{S}} a(t)$ is injective. The following Theorem [13, p. 218] gives one such \mathcal{S} that is readily computable from n and k. Instead of ordering semi-integral forms t by their determinant det(t) we order them by their dyadic trace w(t). Denote by $\mathcal{P}_n(\mathbb{F})$ the positive definite $n \times n$ symmetric matrices with coefficients in $\mathbb{F} \subseteq \mathbb{R}$. The dyadic trace $w : \mathcal{P}_n(\mathbb{R}) \to \mathbb{R}^+$ is a class function and only a finite number of classes from \mathcal{X}_n will have a dyadic trace below any fixed bound, see [13].

Theorem 1.1. Let $n, k \in \mathbb{Z}^+$. Let $S = \{[t] : t \in \mathcal{X}_n \text{ and } w(t) \leq n \frac{2}{\sqrt{3}} \frac{k}{4\pi} \}$. The map $FS_S : S_n^k \to \mathbb{C}^S$ is injective.

This Theorem allows one to deduce equality in S_n^k from equality on the Fourier coefficients for S. There are two obvious avenues for improvement. First, as is evident from Table 1, the bound dim $S_n^k \leq \operatorname{card}(S)$ is tractable but crude and we would like to trim down the set S to make $\operatorname{card}(S)$ closer to dim S_n^k . Second, the image $\operatorname{FS}_S(f)$ determines f and one would like to compute some Fourier coefficients outside of S directly from the Fourier coefficients in S. This paper realizes both improvements. We give a method for producing linear relations on the Fourier coefficients of the elements in S_n^k . Table 1 gives dim S_4^k , $\operatorname{card}(S)$ and examples of linear relations for even $k \leq 12$. These are the only even weights for which dim S_4^k is known and the result dim $S_4^{10} = 1$ is a new one.

¹⁹⁹¹ Mathematics Subject Classification. 11F46.

Key words and phrases. Siegel modular forms, dyadic trace.

k	$\dim S_4^k$	$\operatorname{card}(\mathcal{S})$	linear relations
2	0	0	
4	0	0	
6	0	1	$a(\frac{1}{2}D_4) = 0$
8	1	2	$a(\frac{1}{2}D_4) + a(\frac{1}{2}A_4) = 0$
10	1	10	see equations (3.3)
12	2	23	21 uncomputed relations

Table 1.

For $k \leq 4$ we have $S = \emptyset$ and so Theorem 1.1 by itself proves $S_4^k = 0$, results due to Christian [2] and Eichler [4][5]. For k = 6 we have $S = \{ [\frac{1}{2}D_4] \}$ and the method in this paper provides the linear relation $a(\frac{1}{2}D_4) = 0$ so that we conclude dim $S_4^6 = 0$. For k = 8 we have $S = \{ [\frac{1}{2}D_4], [\frac{1}{2}A_4] \}$ and the method provides the linear relation $a(\frac{1}{2}D_4) + a(\frac{1}{2}A_4) = 0$ showing that dim $S_4^8 \leq 1$. The Schottky form J is in S_4^8 [9] so we have dim $S_4^8 = 1$, see [14][11][3] for these results. For k = 10 the S consists of the ten classes in Table 3 and the method provides the nine linearly independent relations given in equation 3.3. We know the cusp form G_{10} is in S_4^{10} , see [13, p. 232], so that we have dim $S_4^{10} = 1$, a result that has been beyond the reach of other methods [12][3]. By the work of Erokhin dim $S_4^{12} = 2$ is already known, see [6][7][11]. Linear relations among Fourier coefficients for semi-integral forms not solely in S allow the computation of Fourier coefficients outside of S.

The method of producing linear relations on Fourier coefficients from S_n^k relies on the homomorphisms $\phi_s^* : S_n^k \to S_1^{nk}(\Gamma_0(\ell))$ which exist for any $s \in \mathcal{P}_n(\mathbb{Z})$ and any $\ell \in \mathbb{Z}^+$ with ℓs^{-1} integral. We write elements of $\Gamma_1 = \operatorname{Sp}_1(\mathbb{Z})$ as $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and define the subgroup $\Gamma_0(\ell)$ by $\ell | c$ and the subgroup Δ_1 by c = 0. We define $\phi_s(\tau) = s\tau$ so that for $f \in M_n^k$ we have $(\phi_s^* f)(\tau) = f(s\tau)$. There are three important points about these homomorphisms: (1) The image ring $M_1(\Gamma_0(\ell))$ is amenable to computation. (2) The Fourier coefficients of $\phi_s^* f$ at each cusp are linear combinations of the Fourier coefficients of f, see Proposition 2.3. (3) There are lots of $n \times n$ integral forms s. The first point allows us to work out the linear relations among the Fourier coefficients at all cusps of elements in $S_1^{nk}(\Gamma_0(\ell))$. The second point induces linear relations on the Fourier coefficients of elements in S_n^k from the linear relations on $S_1^{nk}(\Gamma_0(\ell))$. The third point allows us to continue producing linear relations if more are desired.

We illustrate the technique in weights 6 and 8 when the number of Fourier coefficients remains small. Let $f \in S_4^k$ have the Fourier expansion $f(\Omega) = \sum_t a(t)e(\langle \Omega, t \rangle)$ where $\langle \Omega, t \rangle = \operatorname{tr}(\Omega t)$. Let D_4 represent the 4 × 4 form of this root lattice $(D_4 = 2B_0 \text{ from}$ Table 3). We compute the Fourier expansion of $\phi_{D_4}^* f$ in powers of $q = e(\tau)$. For any $s \in \mathcal{P}_n(\mathbb{Q})$ we expand $\phi_s^* f$ into a Fourier series as

$$(\phi_s^*f)(\tau) = \sum_{j \in \mathbb{Q}^+} \left(\sum_{t: \langle s, t \rangle = j} a(t) \right) q^j.$$

For simplicity we will henceforth assume that k is even. If we introduce the notation

 $\mathcal{V}(j,s,t) = \operatorname{card}\{v \in \mathcal{X}_n : [v] = [t], \langle v, s \rangle = j\}$ then we can write

(1.2)
$$(\phi_s^* f)(\tau) = \sum_{j \in \mathbb{Q}^+} \left(\sum_{[t]} \mathcal{V}(j, s, t) a(t) \right) q^j.$$

Table 2 is a table of the representation numbers $\mathcal{V}(j, D_4, t)$ for $j \leq 7$, omitted entries are zero. See Table 3 for the list of B_0, B_1, \ldots, B_9 .

	Table 2. $\mathcal{V}(j, D_4, t)$.													
j	B_0	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8	B_9				
4	1													
5	16	48												
6	144	288	216	48	12									
7	384	1488	864	288	144	432	240	288	48	16				

Thus we have the following expansion:

$$(\phi_{D_4}^* f) (\tau) = a(B_0)q^4 + (16a(B_0) + 48a(B_1))q^5 + (144a(B_0) + 288a(B_1) + 216a(B_2) + 48a(B_3) + 12a(B_4))q^6 + (384a(B_0) + 1488a(B_1) + 864a(B_2) + 288a(B_3) + 144a(B_4) + 432a(B_5) + 240a(B_6) + 288a(B_7) + 48a(B_8) + 16a(B_9))q^7 + \cdots .$$

The function $\phi_{D_4}^* f \in S_1^{4k}(\Gamma_0(2))$ is invariant under the Fricke operator because D_4^{-1} is equivalent to $\frac{1}{2}D_4$, see Proposition 2.2. The ring $M_1(\Gamma_0(2))$ is generated by $E_{2,2}^- \in M_1^2(\Gamma_0(2))$ and $E_{4,2}^- \in M_1^4(\Gamma_0(2))$ and the ring of cusp forms is principally generated by $C_{8,2}^+ \in S_1^8(\Gamma_0(2))$. The \pm superscript indicates an eigenvalue of ± 1 under the Fricke operator. In general we define $E_{k,d}^{\pm}(\tau) = (E_k(\tau) \pm d^{\frac{k}{2}}E_k(d\tau))/(1 \pm d^{\frac{k}{2}})$ where the $E_k(\tau) = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n$ are the Eisenstein series and the B_k are given by $t/(e^t - 1) = \sum_{k=0}^{\infty} B_k t^k/k!$. We have $E_{k,d}^{\pm} \in M_1^k(\Gamma_0(d))$ except in the case of $E_{2,d}^+$. The Fourier expansions of these generators are given by

$$E_{2,2}^{-}(\tau) = 1 + 24 \sum_{n=1}^{\infty} \left(\sigma_1(n) - 2\sigma_1(n/2)\right) q^n = 1 + 24q + 24q^2 + 96q^3 + 24q^4 + 144q^5 + \dots$$

$$E_{4,2}^{-}(\tau) = 1 - 80 \sum_{n=1}^{\infty} \left(\sigma_3(n) - 4\sigma_3(n/2)\right) q^n = 1 - 80q - 400q^2 - 2240q^3 - 2960q^4 - \dots$$

$$C_{8,2}^{+}(z) = \frac{1}{256} \left(E_{2,2}^{-}(\tau)^4 - E_{4,2}^{-}(\tau)^2\right) = q - 8q^2 + 12q^3 + 64q^4 - 210q^5 - 96q^6 - \dots$$

The vanishing order of $\phi_{D_4}^* f$ at the cusp [I] is at least 4 and because $\phi_{D_4}^* f$ is an eigenfunction of the Fricke operator the vanishing order at the cusp [J] is the same. Thus we have $(C_{8,2}^+)^4 | \phi_{D_4}^* f$ in $M_1(\Gamma_0(2))$. For k = 6 this means $\phi_{D_4}^* f = 0$ and so every coefficient in equation 1.3 gives a homogeneous linear relation; in particular we must have $a(B_0) = 0$ (or $a(\frac{1}{2}D_4) = 0$) and hence by Theorem 1.1 we have $S_4^6 = 0$. For k = 8 there is a parameter $c \in \mathbb{C}$ such that

$$\phi_{D_4}^* f = c(C_{8,2}^+)^4 = c\left(q^4 - 32q^5 + 432q^6 - 2944q^7 + 7192q^8 + 39744q^9 - \dots\right).$$

Elimination of the parameter c provides the following 3 linear relations for any $f \in S_4^8$.

$$a(B_0) + a(B_1) = 0;$$

$$-24a(B_0) + 24a(B_1) + 18a(B_2) + 4a(B_3) + a(B_4) = 0;$$

$$208a(B_0) + 93a(B_1) + 54a(B_2) + 18a(B_3) + 9a(B_4) + 27a(B_5)$$

$$+ 15a(B_6) + 18a(B_7) + 3a(B_8) + a(B_9) = 0.$$

As mentioned, the first relation alone, $a(\frac{1}{2}D_4) + a(\frac{1}{2}A_4) = 0$ (note $B_1 = \frac{1}{2}A_4$), implies that dim $S_4^8 \leq 1$.

For k = 10 there are parameters $\alpha, \beta \in \mathbb{C}$ such that $\phi_{D_4}^* f = (C_{8,2}^+)^4 \left(\alpha(E_{2,2}^-)^4 + \beta C_{8,2}^+\right)$. The element $(E_{2,2}^-)^2 E_{4,2}^-$ cannot occur in this representation because it has eigenvalue -1 under the Fricke operator. Elimination of the parameters α and β provides two linear relations:

$$224a(B_0) = 184a(B_1) + 18a(B_2) + 4a(B_3) + a(B_4);$$

$$21376a(B_1) = -16110a(B_2) - 3916a(B_3) - 1231a(B_4) - 1512a(B_5) - 840a(B_6)$$

$$(1.5) - 1008a(B_7) - 168a(B_8) - 56a(B_9).$$

In conjunction with Theorem 1.1 these two relations imply dim $S_4^{10} \leq 8$ but it will require another homomorphism $\phi_H^* : S_4^{10} \to S_1^{40}(\Gamma_0(6))$ and a more extensive computation to prove that dim $S_4^{10} \leq 1$.

$\S 2.$ Propositions.

We let $\Gamma_n = \operatorname{Sp}_n(\mathbb{Z})$. We write elements of $\operatorname{Sp}_n(\mathbb{R})$ as $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$. The group $\operatorname{Sp}_n(\mathbb{R})$ acts on functions from the right via $(f|_{\binom{A & B}{C & D}})(\Omega) = \det(C\Omega + D)^{-k}f((A\Omega + B)(C\Omega + D)^{-1})$.

Proposition 2.1. Let $n, \ell \in \mathbb{Z}^+$. Let $s, \ell s^{-1} \in \mathcal{P}_n(\mathbb{Z})$. The map $\phi_s^* : M_n^k \to M_1^{nk}(\Gamma_0(\ell))$ is a graded ring homomorphism.

Proof. For $\binom{a \ b}{c \ d} \in \operatorname{Sp}_1(\mathbb{R})$ we have

$$\begin{aligned} (\phi_s^* f \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix})(\tau) &= (c\tau + d)^{-nk} f(\frac{a\tau + b}{c\tau + d}s) \\ &= (c\tau + d)^{-nk} f((a\tau s + bs)(cs^{-1}\tau s + dI)^{-1}) \\ &= (c\tau + d)^{-nk} f(\begin{pmatrix} aI & bs \\ cs^{-1} & dI \end{pmatrix} \cdot \tau s) \\ &= (c\tau + d)^{-nk} \det(cs^{-1}\tau s + dI)^k (f \mid \begin{pmatrix} aI & bs \\ cs^{-1} & dI \end{pmatrix})(\tau s) = (f \mid \begin{pmatrix} aI & bs \\ cs^{-1} & dI \end{pmatrix})(\tau s). \end{aligned}$$

If we now assume that $\sigma \in \Gamma_0(\ell)$ then cs^{-1} is integral and so $\begin{pmatrix} aI \\ cs^{-1} dI \end{pmatrix} \in \operatorname{Sp}_n(\mathbb{Z})$. Therefore we have $(f|\begin{pmatrix} aI \\ cs^{-1} dI \end{pmatrix})(\tau s) = f(\tau s) = \phi_s^* f(\tau)$. It is straightforward to see that $\phi_s^* f$ is holomorphic on \mathcal{H}_1 and that it is bounded on domains of type $\{\tau \in \mathcal{H}_1 : \operatorname{Im} \tau > y_0\}$. Thus we have $\phi_s^* : M_n^k \to M_1^{nk}(\Gamma_0(\ell))$. \Box

For
$$\ell \in \mathbb{Z}^+$$
 let $W_{\ell} = \frac{1}{\sqrt{\ell}} \begin{pmatrix} 0 & -1 \\ \ell & 0 \end{pmatrix}$ denote the Fricke involution

Proposition 2.2. Let $n, \ell \in \mathbb{Z}^+$. Let $s, \ell s^{-1} \in \mathcal{P}_n(\mathbb{Z})$. Let $f \in M_n^k$. Assume that s is $\operatorname{GL}_n(\mathbb{Z})$ -equivalent to ℓs^{-1} . Then $\phi_s^* f \in M_1^{nk}(\Gamma_0(\ell))$ is an eigenfunction of the Fricke operator W_ℓ . The eigenvalue is +1 unless s is improperly equivalent to ℓs^{-1} and k is odd in which case $\phi_s^* f$ has eigenvalue -1 under W_ℓ .

Proof. When s is equivalent to ℓs^{-1} we have $UsU' = \ell s^{-1}$ for some $U \in \operatorname{GL}_n(\mathbb{Z})$. We will show that $(\phi_s^* f) | W_\ell = \det(U)^k \phi_s^* f$. The factor $\det(U)^k$ is one except in the case noted. We first check that $\phi_s \circ W_\ell = \begin{pmatrix} 0 & U^* \\ -U & 0 \end{pmatrix} \circ \phi_s$. For every $\tau \in \mathcal{H}_1$ we have

$$(\phi_s \circ W_\ell) (\tau) = \phi_s \left(-\frac{1}{\ell \tau} \right) = -\frac{1}{\ell} s \tau^{-1} = -U^* s^{-1} U^{-1} \tau^{-1} = U^* (-U s \tau)^{-1}$$
$$= \begin{pmatrix} 0 & U^* \\ -U & 0 \end{pmatrix} (s \tau) = \left(\begin{pmatrix} 0 & U^* \\ -U & 0 \end{pmatrix} \circ \phi_s \right) (\tau).$$

Noting that $\begin{pmatrix} 0 & U^* \\ -U & 0 \end{pmatrix} \in \Gamma_n$ we compute

$$\begin{bmatrix} (\phi_s^* f) & | W_\ell \end{bmatrix} (\tau) = (\sqrt{\ell}\tau)^{-nk} (\phi_s^* f) (W_\ell(\tau)) = (\sqrt{\ell}\tau)^{-nk} (f \circ \phi_s \circ W_\ell) (\tau)$$
$$= (\sqrt{\ell}\tau)^{-nk} \left(f \circ \begin{pmatrix} 0 & U^* \\ -U & 0 \end{pmatrix} \circ \phi_s \right) (\tau) = (\sqrt{\ell}\tau)^{-nk} \det(-Us\tau)^k f (\phi_s(\tau))$$
$$= (-\sqrt{\ell})^{-nk} \det(U)^k \det(s)^k (\phi_s^* f) (\tau) = \det(U)^k (\phi_s^* f) (\tau).$$

In the last line above we have used the fact that $det(s)^2 = \ell^n$ and that when nk is odd we must have f identically zero. \Box

The next Proposition shows how to develop the Fourier expansion of $\phi_s^* f$ at any cusp.

Proposition 2.3. Let $n \in \mathbb{Z}^+$. Let $s \in \mathcal{P}_n(\mathbb{Q})$. Let $f \in S_n^k$ have the Fourier expansion $f(\Omega) = \sum_t a(t)e(\langle \Omega, t \rangle)$. Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_1$. There exist $\mathcal{A}, \mathcal{B} \in \mathbb{Q}^{n \times n}$ such that $\begin{pmatrix} aI & bs \\ cs^{-1} & dI \end{pmatrix} \in \Gamma_n\begin{pmatrix} \mathcal{A} & \mathcal{B} \\ 0 & \mathcal{A}^* \end{pmatrix}$ and for any such \mathcal{A}, \mathcal{B} we have

$$(\phi_s^* f \underset{nk}{\mid} \begin{pmatrix} a & b \\ c & d \end{pmatrix})(\tau) = (\det \mathcal{A})^k f(\tau \mathcal{A}s\mathcal{A}' + \mathcal{B}\mathcal{A}') = (\det \mathcal{A})^k \sum_{j \in \mathbb{Q}^+} \left(\sum_{t: \langle \mathcal{A}s\mathcal{A}', t \rangle = j} a(t) e\left(\langle t, \mathcal{B}\mathcal{A}' \rangle\right) \right) q^j$$

Proof. We now wish to study $(\phi_s^* f | \begin{pmatrix} a & b \\ c & d \end{pmatrix})$ for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{Sp}_1(\mathbb{Z})$. Then as in the proof of Proposition 2.1 we have

$$(\phi_s^* f \mathop{|}_{nk} \begin{pmatrix} a & b \\ c & d \end{pmatrix})(\tau) = (f \mathop{|}_{k} \begin{pmatrix} aI & bs \\ cs^{-1} & dI \end{pmatrix})(\tau s).$$

Now, we can always decompose any matrix in $\operatorname{Sp}_n(\mathbb{Q})$ as something in $\operatorname{Sp}_n(\mathbb{Z})$ times something in $\operatorname{Sp}_n(\mathbb{Q})$ with C = 0 [8, p. 125]. So let $\begin{pmatrix} aI & bs \\ cs^{-1} & dI \end{pmatrix} \in \Gamma_n\begin{pmatrix} \mathcal{A} & \mathcal{B} \\ 0 & \mathcal{A}^* \end{pmatrix}$. Since f is automorphic with respect to Γ_n we have

$$(\phi_s^* f \underset{nk}{|} \begin{pmatrix} a & b \\ c & d \end{pmatrix})(\tau) = (f \underset{k}{|} \begin{pmatrix} aI & bs \\ cs^{-1} & dI \end{pmatrix})(\tau s) = (f \underset{k}{|} \begin{pmatrix} \mathcal{A} & \mathcal{B} \\ 0 & \mathcal{A}^* \end{pmatrix})(\tau s) = (\det \mathcal{A})^k f(\tau \mathcal{A}s\mathcal{A}' + \mathcal{B}\mathcal{A}').$$

The Fourier expansion for $(\phi_s^* f | \begin{pmatrix} a & b \\ c & d \end{pmatrix})(\tau)$ follows from the Fourier expansion for f under the substitution $\Omega = \tau \mathcal{A}s\mathcal{A}' + \mathcal{B}\mathcal{A}'$. \Box

The above Proposition provides for the computation of the Fourier expansion of $\phi_s^* f | \sigma$ in general. When ℓ is squarefree however the computation of the character $e(\langle t, \mathcal{BA}' \rangle)$ may be finessed. We introduce a new notation: Notice that \mathcal{A} in Proposition 2.3 is determined up to $u\mathcal{A}$ with $u \in \operatorname{GL}_n(\mathbb{Z})$. Thus \mathcal{AsA}' is determined up to equivalence class. We define

$$s \Box \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) = \mathcal{A} s \mathcal{A}'$$

with the understanding that this is well-defined only up to equivalence class. Since f is automorphic with respect to $\begin{pmatrix} u & 0 \\ 0 & u^* \end{pmatrix}$, we have $f(usu'\tau) = f(s\tau)$ and it makes sense to talk about $f((s \Box \begin{pmatrix} a & b \\ c & d \end{pmatrix})\tau)$ and $\phi^*_{s \Box \begin{pmatrix} a & b \\ c & d \end{pmatrix}}f$.

Proposition 2.4. Let $s \in \mathcal{P}_n(\mathbb{Z})$. Let $\ell \in \mathbb{Z}^+$ such that ℓs^{-1} is integral and primitive. Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_1$. Suppose $gcd(c, \frac{\ell}{c}) = 1$. Let $\hat{c} \in \mathbb{Z}$ such that $\hat{c}c \equiv 1 \mod \frac{\ell}{c}$. For any \mathcal{A} with $\begin{pmatrix} aI & bs \\ cs^{-1} & dI \end{pmatrix} \in \Gamma_n\begin{pmatrix} \mathcal{A} & \mathcal{B} \\ 0 & \mathcal{A}^* \end{pmatrix}$ we have

$$(\phi_s^* f | \begin{pmatrix} a & b \\ c & d \end{pmatrix})(\tau) = (\det \mathcal{A})^k \phi_{s \Box \begin{pmatrix} a & b \\ c & d \end{pmatrix}}^* f(\tau + d\hat{c}).$$

Proof. We have $\begin{pmatrix} \mathcal{A} & \mathcal{B} \\ 0 & \mathcal{A}^* \end{pmatrix} \begin{pmatrix} aI & bs \\ cs^{-1} & dI \end{pmatrix}^{-1} \in \operatorname{Sp}_n(\mathbb{Z})$. Thus we have

(2.5)
$$\begin{pmatrix} \mathcal{A} & \mathcal{B} \\ 0 & \mathcal{A}^* \end{pmatrix} \begin{pmatrix} dI & -bs \\ -cs^{-1} & aI \end{pmatrix} = \begin{pmatrix} d\mathcal{A} - c\mathcal{B}s^{-1} & -b\mathcal{A}s + a\mathcal{B} \\ -c\mathcal{A}^*s^{-1} & a\mathcal{A}^* \end{pmatrix} \in \operatorname{Sp}_n(\mathbb{Z})$$

Note that each of the four blocks must be in $\mathbb{Z}^{n \times n}$. Multiplying $d\mathcal{A} - c\mathcal{B}s^{-1}$ by the integral s implies $d\mathcal{A}s - c\mathcal{B}$ is integral. Both $\mathcal{A}s$ and \mathcal{B} are integral because we have

$$\mathcal{A}s = a(d\mathcal{A}s - c\mathcal{B}) + c(-b\mathcal{A}s + a\mathcal{B}),$$
$$\mathcal{B} = b(d\mathcal{A}s - c\mathcal{B}) + d(-b\mathcal{A}s + a\mathcal{B}).$$

Since $c\mathcal{B}s^{-1} = \frac{c}{\ell}\mathcal{B}\ell s^{-1}$ and $\ell s^{-1} \in \mathbb{Z}^{n \times n}$, we have $c\mathcal{B}s^{-1} \in \frac{c}{\ell}\mathbb{Z}^{n \times n}$. This combined with $d\mathcal{A} - c\mathcal{B}s^{-1} \in \mathbb{Z}^{n \times n}$ implies $d\mathcal{A} \in \frac{c}{\ell}\mathbb{Z}^{n \times n}$. Also we have $\mathcal{A} = \frac{1}{\ell}(\mathcal{A}s)\ell s^{-1} \in \frac{1}{\ell}\mathbb{Z}^{n \times n}$ and consequently $\mathcal{A} = a(d\mathcal{A}) - b(c\mathcal{A}) \in \frac{c}{\ell}\mathbb{Z}^{n \times n}$. Since $\mathcal{A}s$ is integral, its transpose $s\mathcal{A}'$ is also integral. Then multiplying $d\mathcal{A} - c\mathcal{B}s^{-1}$ by the integral $\hat{c}s\mathcal{A}'$ implies that $\hat{c}c\mathcal{A}s\mathcal{A}'$ and $\hat{c}c\mathcal{B}\mathcal{A}'$ differ by an integer matrix. But $\hat{c}c \equiv 1 \mod \frac{\ell}{c}$ and $\mathcal{B}\mathcal{A}' \in \frac{c}{\ell}\mathbb{Z}^{n \times n}$ imply that $\hat{c}c\mathcal{B}\mathcal{A}'$ and $\mathcal{B}\mathcal{A}'$ differ by an integer matrix. Hence $\hat{c}c\mathcal{A}s\mathcal{A}'$ and $\mathcal{B}\mathcal{A}'$ differ by an integer matrix. Finally, from Proposition 2.3 we have $(\det \mathcal{A})^{-k}(\phi_s^*f|\binom{a}{c}b)(\tau) =$

$$f(\tau \mathcal{A}s\mathcal{A}' + \mathcal{B}\mathcal{A}') = f(\tau \mathcal{A}s\mathcal{A}' + d\hat{c}\mathcal{A}s\mathcal{A}') = f(\mathcal{A}s\mathcal{A}'(\tau + d\hat{c})) = \phi^*_{s\Box\begin{pmatrix}a&b\\c&d\end{pmatrix}} f(\tau + d\hat{c}). \quad \Box$$

§3. The space S_4^{10} .

We will apply the technique of the Introduction to S_4^{10} . Theorem 1.1 says a form in S_4^{10} is determined by its coefficients a(t) with $w(t) \leq 3.5$. Table 3 gives the list of these 10 quadratic forms, see [10][13]. For uniformity of notation we will refer to these

as B_0,\ldots	$, B_9.$	Here	the	numb	ber	under	ℓ f	or B	$_i$ is	the	smal	lest	positive	integer	such	that
$\ell(2B_i)^{-1}$	is inte	egral.														

Name	Form	Dyadic trace	16.Determinant	ℓ
B_0	$\frac{1}{2} \left(\begin{array}{rrrr} 2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{array} \right)$	2	4	2
B_1	$\frac{1}{2} \left(\begin{array}{rrrr} 2 & 1 & 0 & 1 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 1 & 0 & 1 & 2 \end{array} \right)$	2.5	5	5
B_2	$\frac{1}{2} \left(\begin{array}{rrrr} 2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 1 & 1 & 0 & 2 \end{array} \right)$	3	8	4
B_3	$\frac{1}{2} \left(\begin{array}{rrrr} 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{array} \right)$	3	9	3
B_4	$\frac{1}{2} \left(\begin{array}{rrrr} 2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 4 \end{array} \right)$	3	12	6
B_5	$\frac{1}{2} \left(\begin{array}{cccc} 2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{array} \right)$	3.5	12	6
B_6	$\frac{1}{2} \left(\begin{array}{rrrr} 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 4 \end{array} \right)$	3.5	13	13
B_7	$\frac{1}{2} \left(\begin{array}{rrrr} 2 & 1 & 0 & 1 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 1 & 0 & 1 & 4 \end{array} \right)$	3.5	17	17
B_8	$\frac{1}{2} \overline{\left(\begin{array}{cccc} 2 & 0 & 0 & 1\\ 0 & 2 & 0 & 1\\ 0 & 0 & 2 & 1\\ 1 & 1 & 1 & 4 \end{array}\right)}$	3.5	20	10
B_9	$\frac{1}{2} \left(\begin{array}{rrrr} 2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 1 \\ 1 & 0 & 4 & 2 \\ 1 & 1 & 2 & 4 \end{array} \right)$	3.5	25	5

Table 3. Semi-integral quaternary forms with dyadic trace ≤ 3.5 .

We will apply the technique to $H = 2B_4$ for which $6H^{-1}$ is integral. By Proposition 2.1 we have $\operatorname{Im} \phi_H^* f \subset M_1(\Gamma_0(6))$ and our calculations will occur inside this ring. The ring $M_1(\Gamma_0(6))$ is generated by three forms A, B, C of weight 2. There is one relation $C^2 = 9B^2 - 8A^2$. The ring of cusp forms is principally generated by a form of weight 4, $D = \frac{1}{4}(A^2 - B^2)$. There are 4 cusps in $\Gamma_0(6) \setminus \Gamma_1/\Delta_1$, represented by $I, \sigma_2 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}, \sigma_3 = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$ and J with respective widths 1, 3, 2 and 6. We now give the Fourier expansions of the generators at all four cusps. The definition of $E_{2,2}^-$ has already been given, similarly define $E_{2,3}^-(\tau) = 1 + 12 \sum_{n=1}^{\infty} (\sigma_1(n) - 3\sigma_1(n/3))q^n = 1 + 12(q + 3q^2 + q^3 + 7q^4 + 6q^5 + \cdots)$. Define the following elements in $M_1(\Gamma_0(6))$:

$$A(\tau) = (3/4)E_{2,2}^{-}(3\tau) + (1/4)E_{2,2}^{-}(\tau) = 1 + 6q + 6q^{2} + 42q^{3} + \cdots,$$

$$B(\tau) = (2/3)E_{2,3}^{-}(2\tau) + (1/3)E_{2,3}^{-}(\tau) = 1 + 4q + 20q^{2} + 4q^{3} + \cdots,$$

$$C(\tau) = (3/2)E_{2,2}^{-}(3\tau) - (1/2)E_{2,2}^{-}(\tau) = 1 - 12q - 12q^{2} - 12q^{3} + \cdots.$$

The elliptic modular forms A, B, C transform nicely as

$$(A|J)(\tau) = -\frac{1}{6}A(\tau/6), \quad (A|\sigma_2)(\tau) = +\frac{1}{3}A((\tau-1)/3), \quad (A|\sigma_3)(\tau) = -\frac{1}{2}A((\tau-1)/2) \\ (B|J)(\tau) = -\frac{1}{6}B(\tau/6), \quad (B|\sigma_2)(\tau) = -\frac{1}{3}B((\tau-1)/3) \quad (B|\sigma_3)(\tau) = +\frac{1}{2}B((\tau-1)/2) \\ (C|J)(\tau) = +\frac{1}{6}C(\tau/6), \quad (C|\sigma_2)(\tau) = -\frac{1}{3}C((\tau-1)/3) \quad (C|\sigma_3)(\tau) = -\frac{1}{2}C((\tau-1)/2)$$

We use Propositions 2.3 and 2.4 to work out the Fourier expansion of $\phi_H^* f | \sigma$ for $\sigma = I$, σ_2 , σ_3 , J. We implement the algorithms from [8, pp.125, 322-328] to produce a factorization $\begin{pmatrix} aI & bH \\ cH^{-1} & dI \end{pmatrix} \in \Gamma_n \begin{pmatrix} \mathcal{A} & \mathcal{B} \\ 0 & \mathcal{A}^* \end{pmatrix}$ and obtain det (\mathcal{A}) and $H \Box \sigma = \mathcal{A} H \mathcal{A}'$. We display $H \Box \sigma_2$, $H \Box \sigma_3$, $H \Box J$ and mention that the associated $|\det(\mathcal{A})|$ equals 3, 4, 12, respectively:

$$H\Box\sigma_{2} = \frac{1}{3} \begin{pmatrix} 4 & 2 & 1 & -1 \\ 2 & 4 & -1 & 1 \\ 1 & -1 & 4 & -1 \\ -1 & 1 & -1 & 4 \end{pmatrix}; H\Box\sigma_{3} = \frac{1}{2} \begin{pmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 2 & 1 \\ 1 & 1 & 1 & 3 \end{pmatrix}; H\Box J = \frac{1}{6} \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 5 & -1 & 2 \\ 1 & -1 & 5 & 2 \\ 1 & 2 & 2 & 5 \end{pmatrix}$$

Note that all three of the cases σ_2 , σ_3 , J satisfy the hypotheses of Proposition 2.4. Note that for c = 2, we can take $\hat{c} = -1$ so that $c\hat{c} = 1 \mod 3$; for c = 3, we can take $\hat{c} = -1$ so that $c\hat{c} = 1 \mod 3$; for c = 3, we can take $\hat{c} = -1$ so that $c\hat{c} = 1 \mod 2$. Thus we have

(3.1)

$$\begin{aligned} (\phi_{H}^{*}f|I)(\tau) &= \phi_{H}^{*}f(\tau), \\ (\phi_{H}^{*}f|\sigma_{2})(\tau) &= 3^{-10}\phi_{H\square\sigma_{2}}^{*}f(\tau-1), \\ (\phi_{H}^{*}f|\sigma_{3})(\tau) &= 4^{-10}\phi_{H\square\sigma_{3}}^{*}f(\tau-1), \\ (\phi_{H}^{*}f|J)(\tau) &= 12^{-10}\phi_{H\square J}^{*}f(\tau). \end{aligned}$$

Hence the Fourier expansions may be computed from the numbers $\mathcal{V}(j, H \Box \sigma, t)$ given in Tables 4, 5, 6 and 7. Among the computations we perform, the computation of these representation numbers is by far the most expensive.

	Table 4. $\mathcal{V}(j, H, t)$													
j	B_0	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8	B_9				
6	1													
7	12	36												
8	96	168	114	24	6									
9	196	760	384	108	60	168	108	96	12	4				

Table 5. $\mathcal{V}(j, H \Box \sigma_2, t)$

j	B_0	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8	B_9
10/3	1									
11/3	4	12								
12/3	24	24	6							
13/3	12	96	24	12						
14/3	78	192	120	24	6	12				1
15/3	144	312	192	24	28	84	48	36		

Table 6. $\mathcal{V}(j, H \Box \sigma_3, t)$

j	B_0	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8	B_9
6/2	5	4								
7/2	24	72	12							
8/2	120	264	138	48	15	12	12			

		1	able	; [.]	(J, I)	$I \Box J$	$, \iota)$			
j	B_0	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8	B_9
10/6	1									
11/6		8								
12/6	24	12	6		1					
13/6	24	96	12				8			

Table 7. $\mathcal{V}(i, H \Box J, t)$

From these expansions we see that $\phi_H^* f$ vanishes to order at least 6 at every cusp so that there are parameters $\alpha_0, \ldots, \alpha_8$ and $\beta_0, \ldots, \beta_7 \in \mathbb{C}$ such that

$$\phi_H^* f = (D)^6 \left(\alpha_0 A^8 + \alpha_1 A^7 B + \dots + \alpha_8 B^8 + C(\beta_0 A^7 + \beta_1 A^6 B + \dots + \beta_7 B^7) \right).$$

Without introducing any new parameters we also have equalities for any $\sigma \in \Gamma_1$:

(3.2)
$$\phi_H^* f | \sigma = (D|\sigma)^6 \left(\alpha_0 (A|\sigma)^8 + \ldots + \alpha_8 (B|\sigma)^8 + (C|\sigma) (\beta_0 (A|\sigma)^7 + \ldots + \beta_7 (B|\sigma)^7) \right).$$

For $\sigma = I, \sigma_2, \sigma_3, J$ the left side of equation 3.2 is computed from equations 3.1, equation 1.2 and Tables 4 through 7. The right side is computed from the expansions of the elliptic modular forms A, B and C. At the cusp [I] we equate the coefficients for $j = 6, \ldots, 9$; at the cusp $[\sigma_2]$ for $j = 6/3, \ldots, 15/3$; at the cusp $[\sigma_3]$ for $j = 6/2, \ldots, 8/2$ and at the cusp [J] for $j = 6/6, \ldots, 13/6$. Elimination of the 17 parameters α_i, β_i from the 4 + 10 + 3 + 8 = 25 linear equations results in 8 linearly independent equations:

$$\begin{aligned} a(B_2) &= -86/21a(B_0) - 188/21a(B_1) \\ a(B_3) &= 100/3a(B_0) + 58/3a(B_1) \\ a(B_4) &= -300/7a(B_0) + 24/7a(B_1) \\ a(B_5) &= -1892/21a(B_0) + 568/21a(B_1) \\ a(B_6) &= 288/7a(B_0) - 53/7a(B_1) \\ a(B_7) &= 2860/63a(B_0) - 8738/63a(B_1) \\ a(B_8) &= 656/7a(B_0) + 3872/7a(B_1) \\ a(B_9) &= 21016/21a(B_0) + 15532/21a(B_1). \end{aligned}$$

When we combine these 8 linear relations with the 2 linear relations in equation 1.5 obtained by considering $\phi_{D_4}^*$, we see that the rank is actually 9, so that we have a total of 9 linearly independent relations in $a(B_0), \ldots, a(B_9)$:

$$a(B_{1}) = 2a(B_{0})$$

$$a(B_{2}) = -22a(B_{0})$$

$$a(B_{3}) = 72a(B_{0})$$

$$a(B_{4}) = -36a(B_{0})$$

$$a(B_{5}) = -36a(B_{0})$$

$$a(B_{6}) = 26a(B_{0})$$

$$a(B_{7}) = -232a(B_{0})$$

$$a(B_{8}) = 1200a(B_{0})$$

$$a(B_{9}) = 2480a(B_{0}).$$

These relations and Theorem 1.1 imply that dim $S_4^{10} \leq 1$. Since we can come up with one nonzero cusp form G_{10} in S_4^{10} we have a theorem.

Theorem 3.4. We have dim $S_4^{10} = 1$ and $S_4^{10} = \mathbb{C}G_{10}$.

§4. Final Comments.

The computations that have been performed for the form H are largely independent of the weight k. Applied to the space S_4^8 we may extend the Fourier expansion of the Schottky form J beyond that given in [1]. Table 8 gives the Fourier coefficients $a(B_i)$ for $J/2^{16}$ and $G_{10}/2^{18}3^45$.

f	B_0	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8	B_9
$J/2^{16}$	1	-1	2	6	-12	-12	11	2	-72	116
$G_{10}/2^{18}3^45$	1	2	-22	72	-36	-36	26	-232	1200	2480

 Table 8. (Fourier Coefficients)

Although the parameters α_i and β_i were simply eliminated in section §3, their values are also determined by this process. It may be of interest to present the images of $\phi_s^* f$ for $s = D_4, H$ and $f = J, G_{10}$.

$$\begin{split} \phi_{D_4}^* J &= 2^{16} (C_{8,2}^+)^4 \\ \phi_{D_4}^* G_{10} &= 2^{18} 3^4 5 (C_{8,2}^+)^4 \left((E_{2,2}^-)^4 + 48 C_{8,2}^+ \right) \\ \phi_H^* J &= 2^{12} D^6 (A+C)^4 \\ \phi_H^* G_{10} &= 2^{14} 3^3 5 D^6 (A+C)^4 (25 A^4 - 8 A^3 B - 7 A^3 C - 8 A^2 B C - A B C^2 + 4 A C^3 - B C^3 - C^4) \end{split}$$

It is interesting to note that the image of G_{10} comes out to a multiple of the image of J under both $\phi_{D_4}^*$ and ϕ_H^* . As a final comment we note that linear relations among Fourier coefficients can be viewed as linear relations among Poincare series.

References

- 1. B. Brinkman, L. Gerritzen, *The lowest term of the Schottky modular form*, Math. Annalen **292** (1992), 329-335.
- U. Christian, Selberg's Zeta-, L-, and Eisenstein series, Lecture Notes in Math., vol. 1030, Springer Verlag, Berlin Heidelberg New York, 1983.
- W. Duke and O. Imamoğlu, Siegel Modular Forms of Small Weight, Math. Ann. 308 (1997), 525-534.
- 4. M. Eichler, Uber die Anzahl der linear unabhängigen Siegelschen Modulformen von gegebenem Gewicht, Math. Ann. **213** (1975), 281–291.
- 5. M. Eichler, Erratum: Über die Anzahl der linear unabhängigen Siegelschen Modulformen von gegebenem Gewicht, Math. Ann. 215 (1975), 195.
- V. A. Erokhin, Theta series of even unimodular 24-dimensional lattices, LOMI 86 (1979), 82-93, also in JSM 17 (1981), 1999-2008.
- V. A. Erokhin, Theta series of even unimodular lattices, LOMI 199 (1981), 59-70, also in JSM 25 (1984), 1012-1020.
- 8. E. Freitag, *Siegelsche Modulfunktionen*, Grundlehren der mathematische Wissenschaften 254, Springer Verlag, Berlin, 1983.

- 9. J. I. Igusa, *Schottky's invariant and quadratic forms*, Christoffel Symposium, Birkhäuser Verlag, 1981.
- 10. G. Nipp, *Quaternary Quadratic Forms, Computer Generated Tables*, Springer-Verlag, New York.
- 11. C. Poor and D. Yuen, Dimensions of Spaces of Siegel Modular Forms of Low Weight in Degree Four, Bull. Austral. Math. Soc. 54 (1996), 309–315.
- C. Poor and D. Yuen, Dimensions of Spaces of Siegel Modular Cusp Forms and Theta Series with Pluri-Harmonics, Far East Journal of Mathematical Sciences (FJMS) 1 6 (1999), 849–863.
- C. Poor and D. Yuen, Linear dependence among Siegel Modular Forms, Math. Ann. 318 (2000), 205–234.
- 14. R. Salvati Manni, Modular forms of the fourth degree (Remark on a paper of Harris and Morrison), Classification of irregular varieties (Ballico, Catanese, Ciliberto Eds.), Lecture Notes in Math. 1515 (1992), 106–111.

DEPARTMENT OF MATHEMATICS, FORDHAM UNIVERSITY, BRONX, NY 10458 *Email:* poor@fordham.edu

MATH/CS DEPARTMENT, LAKE FOREST COLLEGE, 555 N. SHERIDAN RD., LAKE FOREST, IL 60045 *Email:* yuen@lfc.edu