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Abstract. We study homomorphisms from the ring of Siegel modular forms of a given de-

gree to the ring of elliptic modular forms for a congruence subgroup. These homomorphisms

essentially arise from the restriction of Siegel modular forms to modular curves. These ho-

momorphisms give rise to linear relations among the Fourier coefficients of a Siegel modular

form. We use this technique to prove that dimS10
4 = 1.

§1. Introduction.

A Siegel modular cusp form of degree n has a Fourier series f(Ω) =
∑

t a(t)e(tr(Ωt))
where t runs over Xn, the set of positive definite semi-integral n× n forms. If we restrict
attention to cusp forms of even weight then the Fourier coefficients are class functions
of t. The vector space Sk

n of cusp forms of weight k is finite dimensional and so there
exist finite subsets S ⊂ classes(Xn) such that the projection map FSS : Sk

n → CS given
by f �→

∏
[t]∈S a(t) is injective. The following Theorem [13, p. 218] gives one such S

that is readily computable from n and k. Instead of ordering semi-integral forms t by
their determinant det(t) we order them by their dyadic trace w(t). Denote by Pn(F) the
positive definite n × n symmetric matrices with coefficients in F ⊆ R. The dyadic trace
w : Pn(R) → R+ is a class function and only a finite number of classes from Xn will have
a dyadic trace below any fixed bound, see [13].

Theorem 1.1. Let n, k ∈ Z+. Let S = {[t] : t ∈ Xn and w(t) ≤ n 2√
3

k
4π}. The map

FSS : Sk
n → CS is injective.

This Theorem allows one to deduce equality in Sk
n from equality on the Fourier coef-

ficients for S. There are two obvious avenues for improvement. First, as is evident from
Table 1, the bound dimSk

n ≤ card(S) is tractable but crude and we would like to trim
down the set S to make card(S) closer to dimSk

n. Second, the image FSS(f) determines
f and one would like to compute some Fourier coefficients outside of S directly from the
Fourier coefficients in S. This paper realizes both improvements. We give a method for
producing linear relations on the Fourier coefficients of the elements in Sk

n. Table 1 gives
dimSk

4 , card(S) and examples of linear relations for even k ≤ 12. These are the only even
weights for which dimSk

4 is known and the result dimS10
4 = 1 is a new one.
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Table 1.

k dimSk
4 card(S) linear relations

2 0 0

4 0 0

6 0 1 a( 1
2D4) = 0

8 1 2 a( 1
2D4) + a( 1

2A4) = 0

10 1 10 see equations (3.3)

12 2 23 21 uncomputed relations

For k ≤ 4 we have S = ∅ and so Theorem 1.1 by itself proves Sk
4 = 0, results due to

Christian [2] and Eichler [4][5]. For k = 6 we have S = {[ 12D4]} and the method in this
paper provides the linear relation a( 1

2D4) = 0 so that we conclude dimS6
4 = 0. For k = 8 we

have S = {[ 12D4], [ 12A4]} and the method provides the linear relation a( 1
2D4) + a( 1

2A4) = 0
showing that dimS8

4 ≤ 1. The Schottky form J is in S8
4 [9] so we have dimS8

4 = 1, see
[14][11][3] for these results. For k = 10 the S consists of the ten classes in Table 3 and the
method provides the nine linearly independent relations given in equation 3.3. We know
the cusp form G10 is in S10

4 , see [13, p. 232], so that we have dimS10
4 = 1, a result that has

been beyond the reach of other methods [12][3]. By the work of Erokhin dimS12
4 = 2 is

already known, see [6][7][11]. Linear relations among Fourier coefficients for semi-integral
forms not solely in S allow the computation of Fourier coefficients outside of S.

The method of producing linear relations on Fourier coefficients from Sk
n relies on the

homomorphisms φ∗
s : Sk

n → Snk
1 (Γ0(�)) which exist for any s ∈ Pn(Z) and any � ∈ Z+

with �s−1 integral. We write elements of Γ1 = Sp1(Z) as
(

a b
c d

)
and define the subgroup

Γ0(�) by �|c and the subgroup ∆1 by c = 0. We define φs(τ) = sτ so that for f ∈ Mk
n we

have (φ∗
sf)(τ) = f(sτ). There are three important points about these homomorphisms:

(1) The image ring M1 (Γ0(�)) is amenable to computation. (2) The Fourier coefficients of
φ∗
sf at each cusp are linear combinations of the Fourier coefficients of f , see Proposition 2.3.

(3) There are lots of n×n integral forms s. The first point allows us to work out the linear
relations among the Fourier coefficients at all cusps of elements in Snk

1 (Γ0(�)). The second
point induces linear relations on the Fourier coefficients of elements in Sk

n from the linear
relations on Snk

1 (Γ0(�)). The third point allows us to continue producing linear relations
if more are desired.

We illustrate the technique in weights 6 and 8 when the number of Fourier coefficients
remains small. Let f ∈ Sk

4 have the Fourier expansion f(Ω) =
∑

t a(t)e(〈Ω, t〉) where
〈Ω, t〉 = tr(Ωt). Let D4 represent the 4 × 4 form of this root lattice (D4 = 2B0 from
Table 3). We compute the Fourier expansion of φ∗

D4
f in powers of q = e(τ). For any

s ∈ Pn(Q) we expand φ∗
sf into a Fourier series as

(φ∗
sf)(τ) =

∑
j∈Q+


 ∑

t:〈s,t〉=j

a(t)


 qj .

For simplicity we will henceforth assume that k is even. If we introduce the notation



RESTRICTION OF SIEGEL MODULAR FORMS 3

V(j, s, t) = card{v ∈ Xn : [v] = [t], 〈v, s〉 = j} then we can write

(1.2) (φ∗
sf)(τ) =

∑
j∈Q+


∑

[t]

V(j, s, t) a(t)


 qj .

Table 2 is a table of the representation numbers V(j,D4, t) for j ≤ 7, omitted entries are
zero. See Table 3 for the list of B0, B1, . . . , B9.

Table 2. V(j,D4, t).

j B0 B1 B2 B3 B4 B5 B6 B7 B8 B9

4 1

5 16 48

6 144 288 216 48 12

7 384 1488 864 288 144 432 240 288 48 16

Thus we have the following expansion:(
φ∗
D4

f
)
(τ) =a(B0)q4 + (16a(B0) + 48a(B1)) q5

+ (144a(B0) + 288a(B1) + 216a(B2) + 48a(B3) + 12a(B4)) q6

+(384a(B0) + 1488a(B1) + 864a(B2) + 288a(B3) + 144a(B4) + 432a(B5)

+ 240a(B6) + 288a(B7) + 48a(B8) + 16a(B9))q7 + · · · .(1.3)

The function φ∗
D4

f ∈ S4k
1 (Γ0(2)) is invariant under the Fricke operator because D−1

4

is equivalent to 1
2D4, see Proposition 2.2. The ring M1 (Γ0(2)) is generated by E−

2,2 ∈
M2

1 (Γ0(2)) and E−
4,2 ∈ M4

1 (Γ0(2)) and the ring of cusp forms is principally generated
by C+

8,2 ∈ S8
1 (Γ0(2)). The ± superscript indicates an eigenvalue of ±1 under the Fricke

operator. In general we define E±
k,d(τ) = (Ek(τ)± d

k
2 Ek(dτ))/(1± d

k
2 ) where the Ek(τ) =

1 − 2k
Bk

∑∞
n=1 σk−1(n)qn are the Eisenstein series and the Bk are given by t/(et − 1) =∑∞

k=0 Bkt
k/k!. We have E±

k,d ∈ Mk
1 (Γ0(d)) except in the case of E+

2,d. The Fourier
expansions of these generators are given by

E−
2,2 (τ) = 1 + 24

∞∑
n=1

(σ1(n) − 2σ1(n/2)) qn = 1 + 24q + 24q2 + 96q3 + 24q4 + 144q5 + . . .

E−
4,2 (τ) = 1 − 80

∞∑
n=1

(σ3(n) − 4σ3(n/2)) qn = 1 − 80q − 400q2 − 2240q3 − 2960q4 − . . .

C+
8,2 (z) =

1
256

(
E−

2,2 (τ)4 − E−
4,2 (τ)2

)
= q − 8q2 + 12q3 + 64q4 − 210q5 − 96q6 − . . .

The vanishing order of φ∗
D4

f at the cusp [I] is at least 4 and because φ∗
D4

f is an
eigenfunction of the Fricke operator the vanishing order at the cusp [J ] is the same. Thus
we have (C+

8,2)
4|φ∗

D4
f in M1 (Γ0(2)). For k = 6 this means φ∗

D4
f = 0 and so every coefficient

in equation 1.3 gives a homogeneous linear relation; in particular we must have a(B0) = 0
(or a( 1

2D4) = 0) and hence by Theorem 1.1 we have S6
4 = 0. For k = 8 there is a parameter

c ∈ C such that

φ∗
D4

f = c(C+
8,2)

4 = c
(
q4 − 32q5 + 432q6 − 2944q7 + 7192q8 + 39744q9 − . . .

)
.
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Elimination of the parameter c provides the following 3 linear relations for any f ∈ S8
4 .

a(B0) + a(B1) = 0;

−24a(B0) + 24a(B1) + 18a(B2) + 4a(B3) + a(B4) = 0;

208a(B0) + 93a(B1) + 54a(B2) + 18a(B3) + 9a(B4) + 27a(B5)

+ 15a(B6) + 18a(B7) + 3a(B8) + a(B9) = 0.(1.4)

As mentioned, the first relation alone, a( 1
2D4) + a( 1

2A4) = 0 (note B1 = 1
2A4), implies

that dimS8
4 ≤ 1.

For k = 10 there are parameters α, β ∈ C such that φ∗
D4

f = (C+
8,2)

4
(
α(E−

2,2)
4 + βC+

8,2

)
.

The element (E−
2,2)

2E−
4,2 cannot occur in this representation because it has eigenvalue −1

under the Fricke operator. Elimination of the parameters α and β provides two linear
relations:

224a(B0) = 184a(B1) + 18a(B2) + 4a(B3) + a(B4);

21376a(B1) = −16110a(B2) − 3916a(B3) − 1231a(B4) − 1512a(B5) − 840a(B6)

− 1008a(B7) − 168a(B8) − 56a(B9).(1.5)

In conjunction with Theorem 1.1 these two relations imply dimS10
4 ≤ 8 but it will require

another homomorphism φ∗
H : S10

4 → S40
1 (Γ0(6)) and a more extensive computation to

prove that dimS10
4 ≤ 1.

§2. Propositions.

We let Γn = Spn(Z). We write elements of Spn(R) as
(

A B
C D

)
. The group Spn(R) acts

on functions from the right via (f |
k

(
A
C

B
D

)
)(Ω) = det(CΩ+D)−kf

(
(AΩ + B)(CΩ + D)−1

)
.

Proposition 2.1. Let n, � ∈ Z+. Let s, �s−1 ∈ Pn(Z). The map φ∗
s : Mk

n → Mnk
1 (Γ0(�))

is a graded ring homomorphism.

Proof. For
(
a
c
b
d

)
∈ Sp1(R) we have

(φ∗
sf |

nk

(
a
c
b
d

)
)(τ) = (cτ + d)−nkf(

aτ + b

cτ + d
s)

= (cτ + d)−nkf((aτs + bs)(cs−1τs + dI)−1)

= (cτ + d)−nkf(
(

aI
cs−1

bs
dI

)
· τs)

= (cτ + d)−nk det(cs−1τs + dI)k(f |
k

(
aI

cs−1
bs
dI

)
)(τs) = (f |

k

(
aI

cs−1
bs
dI

)
)(τs).

If we now assume that σ ∈ Γ0(�) then cs−1 is integral and so
(

aI
cs−1

bs
dI

)
∈ Spn(Z). Therefore

we have (f |
(

aI
cs−1

bs
dI

)
)(τs) = f(τs) = φ∗

sf(τ). It is straightforward to see that φ∗
sf is

holomorphic on H1 and that it is bounded on domains of type {τ ∈ H1 : Imτ > y0}. Thus
we have φ∗

s : Mk
n → Mnk

1 (Γ0(�)). �

For � ∈ Z+ let W� = 1√
�

(
0 −1
� 0

)
denote the Fricke involution.
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Proposition 2.2. Let n, � ∈ Z+. Let s, �s−1 ∈ Pn(Z). Let f ∈ Mk
n . Assume that s

is GLn(Z)-equivalent to �s−1. Then φ∗
sf ∈ Mnk

1 (Γ0(�)) is an eigenfunction of the Fricke
operator W�. The eigenvalue is +1 unless s is improperly equivalent to �s−1 and k is odd
in which case φ∗

sf has eigenvalue −1 under W�.

Proof. When s is equivalent to �s−1 we have UsU ′ = �s−1 for some U ∈ GLn(Z). We will
show that (φ∗

sf) |W� = det(U)kφ∗
sf . The factor det(U)k is one except in the case noted.

We first check that φs ◦W� =
(

0 U∗

−U 0

)
◦ φs. For every τ ∈ H1 we have

(φs ◦W�) (τ) = φs

(
− 1

�τ

)
= −1

�
sτ−1 = −U∗s−1U−1τ−1 = U∗ (−Usτ)−1

=
(

0 U∗

−U 0

)
(sτ) =

((
0 U∗

−U 0

)
◦ φs

)
(τ).

Noting that
(

0 U∗

−U 0

)
∈ Γn we compute

[
(φ∗

sf) |
nk

W�

]
(τ) = (

√
�τ)−nk (φ∗

sf) (W�(τ)) = (
√
�τ)−nk (f ◦ φs ◦W�) (τ)

=(
√
�τ)−nk

(
f ◦

(
0 U∗

−U 0

)
◦ φs

)
(τ) = (

√
�τ)−nk det(−Usτ)kf (φs(τ))

=(−
√
�)−nk det(U)k det(s)k (φ∗

sf) (τ) = det(U)k (φ∗
sf) (τ).

In the last line above we have used the fact that det(s)2 = �n and that when nk is odd we
must have f identically zero. �

The next Proposition shows how to develop the Fourier expansion of φ∗
sf at any cusp.

Proposition 2.3. Let n ∈ Z+. Let s ∈ Pn(Q). Let f ∈ Sk
n have the Fourier expansion

f(Ω) =
∑

t a(t)e(〈Ω, t〉). Let
(
a
c
b
d

)
∈ Γ1. There exist A, B ∈ Qn×n such that

(
aI

cs−1
bs
dI

)
∈

Γn

(A
0

B
A∗

)
and for any such A, B we have

(φ∗
sf |

nk

(
a
c
b
d

)
)(τ)=(detA)kf(τAsA′+BA′)=(detA)k

∑
j∈Q+


 ∑

t:〈AsA′,t〉=j

a(t)e (〈t,BA′〉)


 qj

Proof. We now wish to study (φ∗
sf |

(
a
c
b
d

)
) for

(
a
c
b
d

)
∈ Sp1(Z). Then as in the proof of

Proposition 2.1 we have

(φ∗
sf |

nk

(
a
c
b
d

)
)(τ) = (f |

k

(
aI

cs−1
bs
dI

)
)(τs).

Now, we can always decompose any matrix in Spn(Q) as something in Spn(Z) times some-
thing in Spn(Q) with C = 0 [8, p. 125]. So let

(
aI

cs−1
bs
dI

)
∈ Γn

(A
0

B
A∗

)
. Since f is automorphic

with respect to Γn we have

(φ∗
sf |

nk

(
a
c
b
d

)
)(τ) = (f |

k

(
aI

cs−1
bs
dI

)
)(τs) = (f |

k

(A
0

B
A∗

)
)(τs) = (detA)kf(τAsA′ + BA′).
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The Fourier expansion for (φ∗
sf |

(
a
c
b
d

)
)(τ) follows from the Fourier expansion for f under

the substitution Ω = τAsA′ + BA′. �

The above Proposition provides for the computation of the Fourier expansion of φ∗
sf |σ

in general. When � is squarefree however the computation of the character e (〈t,BA′〉) may
be finessed. We introduce a new notation: Notice that A in Proposition 2.3 is determined
up to uA with u ∈ GLn(Z). Thus AsA′ is determined up to equivalence class. We define

s�
(
a
c
b
d

)
= AsA′

with the understanding that this is well-defined only up to equivalence class. Since f is
automorphic with respect to

(
u
0

0
u∗

)
, we have f(usu′τ) = f(sτ) and it makes sense to talk

about f((s�
(
a
c
b
d

)
)τ) and φ∗

s�
(
a
c
b
d

)f .

Proposition 2.4. Let s ∈ Pn(Z). Let � ∈ Z+ such that �s−1 is integral and primitive.
Let

(
a
c
b
d

)
∈ Γ1. Suppose gcd(c, �

c ) = 1. Let ĉ ∈ Z such that ĉc ≡ 1 mod �
c . For any A with(

aI
cs−1

bs
dI

)
∈ Γn

(A
0

B
A∗

)
we have

(φ∗
sf |

(
a
c
b
d

)
)(τ) = (detA)kφ∗

s�
(
a
c
b
d

)f(τ + dĉ).

Proof. We have
(A

0
B
A∗

)(
aI

cs−1
bs
dI

)−1 ∈ Spn(Z). Thus we have

(2.5)
(
A B
0 A∗

) (
dI −bs

−cs−1 aI

)
=

(
dA− cBs−1 −bAs + aB
−cA∗s−1 aA∗

)
∈ Spn(Z).

Note that each of the four blocks must be in Zn×n. Multiplying dA− cBs−1 by the integral
s implies dAs− cB is integral. Both As and B are integral because we have

As = a(dAs− cB) + c(−bAs + aB),

B = b(dAs− cB) + d(−bAs + aB).

Since cBs−1 = c
�B�s−1 and �s−1 ∈ Zn×n, we have cBs−1 ∈ c

�Z
n×n. This combined with

dA− cBs−1 ∈ Zn×n implies dA ∈ c
�Z

n×n. Also we have A = 1
� (As)�s−1 ∈ 1

�Z
n×n and

consequently A = a(dA) − b(cA) ∈ c
�Z

n×n. Since As is integral, its transpose sA′ is also
integral. Then multiplying dA− cBs−1 by the integral ĉsA′ implies that dĉAsA′ and
ĉcBA′ differ by an integer matrix. But ĉc ≡ 1 mod �

c and BA′ ∈ c
�Z

n×n imply that ĉcBA′

and BA′ differ by an integer matrix. Hence dĉAsA′ and BA′ differ by an integer matrix.
Finally, from Proposition 2.3 we have (detA)−k(φ∗

sf |
(
a
c
b
d

)
)(τ) =

f(τAsA′ + BA′) = f(τAsA′ + dĉAsA′) = f(AsA′(τ + dĉ)) = φ∗
s�

(
a
c
b
d

)f(τ + dĉ). �

§3. The space S10
4 .

We will apply the technique of the Introduction to S10
4 . Theorem 1.1 says a form

in S10
4 is determined by its coefficients a(t) with w(t) ≤ 3.5. Table 3 gives the list of

these 10 quadratic forms, see [10][13]. For uniformity of notation we will refer to these
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as B0, . . . , B9. Here the number under � for Bi is the smallest positive integer such that
�(2Bi)−1 is integral.

Table 3. Semi-integral quaternary forms with dyadic trace ≤ 3.5.

Name Form Dyadic trace 16·Determinant �

B0
1
2

( 2
1
1
1

1
2
0
0

1
0
2
0

1
0
0
2

)
2 4 2

B1
1
2

( 2
1
0
1

1
2
0
0

0
0
2
1

1
0
1
2

)
2.5 5 5

B2
1
2

( 2
0
0
1

0
2
0
1

0
0
2
0

1
1
0
2

)
3 8 4

B3
1
2

( 2
1
0
0

1
2
0
0

0
0
2
1

0
0
1
2

)
3 9 3

B4
1
2

( 2
1
1
1

1
2
0
0

1
0
2
0

1
0
0
4

)
3 12 6

B5
1
2

( 2
0
0
1

0
2
0
0

0
0
2
0

1
0
0
2

)
3.5 12 6

B6
1
2

( 2
1
1
0

1
2
0
1

1
0
2
0

0
1
0
4

)
3.5 13 13

B7
1
2

( 2
1
0
1

1
2
0
0

0
0
2
1

1
0
1
4

)
3.5 17 17

B8
1
2

( 2
0
0
1

0
2
0
1

0
0
2
1

1
1
1
4

)
3.5 20 10

B9
1
2

( 2
1
1
1

1
2
0
1

1
0
4
2

1
1
2
4

)
3.5 25 5

We will apply the technique to H = 2B4 for which 6H−1 is integral. By Proposition 2.1
we have Imφ∗

Hf ⊂ M1(Γ0(6)) and our calculations will occur inside this ring. The ring
M1(Γ0(6)) is generated by three forms A, B, C of weight 2. There is one relation C2 =
9B2 − 8A2. The ring of cusp forms is principally generated by a form of weight 4, D =
1
4 (A2 − B2). There are 4 cusps in Γ0(6)\Γ1/∆1, represented by I, σ2 =

(
1
2

0
1

)
, σ3 =

(
1
3

0
1

)
and J with respective widths 1, 3, 2 and 6. We now give the Fourier expansions of the
generators at all four cusps. The definition of E−

2,2 has already been given, similarly define
E−

2,3(τ) = 1+12
∑∞

n=1(σ1(n)−3σ1(n/3))qn = 1+12(q+3q2 +q3 +7q4 +6q5 + · · · ). Define
the following elements in M1(Γ0(6)):

A(τ) = (3/4)E−
2,2(3τ) + (1/4)E−

2,2(τ) = 1 + 6q + 6q2 + 42q3 + · · · ,
B(τ) = (2/3)E−

2,3(2τ) + (1/3)E−
2,3(τ) = 1 + 4q + 20q2 + 4q3 + · · · ,

C(τ) = (3/2)E−
2,2(3τ) − (1/2)E−

2,2(τ) = 1 − 12q − 12q2 − 12q3 + · · · .

The elliptic modular forms A, B, C transform nicely as

(A|J)(τ) = − 1
6A(τ/6), (A|σ2)(τ) = +1

3A((τ − 1)/3), (A|σ3)(τ) = − 1
2A((τ − 1)/2)

(B|J)(τ) = − 1
6B(τ/6), (B|σ2)(τ) = − 1

3B((τ − 1)/3) (B|σ3)(τ) = +1
2B((τ − 1)/2)

(C|J)(τ) = + 1
6C(τ/6), (C|σ2)(τ) = − 1

3C((τ − 1)/3) (C|σ3)(τ) = − 1
2C((τ − 1)/2)

We use Propostions 2.3 and 2.4 to work out the Fourier expansion of φ∗
Hf |σ for σ = I, σ2,

σ3, J . We implement the algorithms from [8, pp.125, 322-328] to produce a factorization(
aI

cH−1
bH
dI

)
∈ Γn

(A
0

B
A∗

)
and obtain det(A) and H�σ = AHA′. We display H�σ2, H�σ3,

H�J and mention that the associated |det(A)| equals 3, 4, 12, respectively:
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H�σ2=
1
3




4 2 1 −1
2 4 −1 1
1 −1 4 −1
−1 1 −1 4


 ;H�σ3=

1
2




2 0 0 1
0 2 0 1
0 0 2 1
1 1 1 3


 ;H�J=

1
6




2 1 1 1
1 5 −1 2
1 −1 5 2
1 2 2 5




Note that all three of the cases σ2, σ3, J satisfy the hypotheses of Proposition 2.4. Note
that for c = 2, we can take ĉ = −1 so that cĉ = 1 mod 3; for c = 3, we can take ĉ = −1
so that cĉ = 1 mod 2. Thus we have

(φ∗
Hf |I)(τ) = φ∗

Hf(τ),

(φ∗
Hf |σ2)(τ) = 3−10φ∗

H�σ2
f(τ − 1),

(φ∗
Hf |σ3)(τ) = 4−10φ∗

H�σ3
f(τ − 1),

(φ∗
Hf |J)(τ) = 12−10φ∗

H�Jf(τ).(3.1)

Hence the Fourier expansions may be computed from the numbers V(j,H�σ, t) given in
Tables 4, 5, 6 and 7. Among the computations we perform, the computation of these
representation numbers is by far the most expensive.

Table 4. V(j,H, t)

j B0 B1 B2 B3 B4 B5 B6 B7 B8 B9

6 1

7 12 36

8 96 168 114 24 6

9 196 760 384 108 60 168 108 96 12 4

Table 5. V(j,H�σ2, t)

j B0 B1 B2 B3 B4 B5 B6 B7 B8 B9

10/3 1

11/3 4 12

12/3 24 24 6

13/3 12 96 24 12

14/3 78 192 120 24 6 12 1

15/3 144 312 192 24 28 84 48 36

Table 6. V(j,H�σ3, t)

j B0 B1 B2 B3 B4 B5 B6 B7 B8 B9

6/2 5 4

7/2 24 72 12

8/2 120 264 138 48 15 12 12
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Table 7. V(j,H�J, t)

j B0 B1 B2 B3 B4 B5 B6 B7 B8 B9

10/6 1

11/6 8

12/6 24 12 6 1

13/6 24 96 12 8

From these expansions we see that φ∗
Hf vanishes to order at least 6 at every cusp so

that there are pararmeters α0, . . . , α8 and β0, . . . , β7 ∈ C such that

φ∗
Hf = (D)6

(
α0A

8 + α1A
7B + · · · + α8B

8 + C(β0A
7 + β1A

6B + · · · + β7B
7)

)
.

Without introducing any new parameters we also have equalities for any σ ∈ Γ1:

(3.2) φ∗
Hf |σ = (D|σ)6

(
α0(A|σ)8 + . . .+α8(B|σ)8 + (C|σ)(β0(A|σ)7 + . . .+β7(B|σ)7)

)
.

For σ = I, σ2, σ3, J the left side of equation 3.2 is computed from equations 3.1, equation
1.2 and Tables 4 through 7. The right side is computed from the expansions of the elliptic
modular forms A, B and C. At the cusp [I] we equate the coefficents for j = 6, . . . , 9; at
the cusp [σ2] for j = 6/3, . . . , 15/3; at the cusp [σ3] for j = 6/2, . . . , 8/2 and at the cusp [J ]
for j = 6/6, . . . , 13/6. Elimination of the 17 parameters αi, βi from the 4+10+3+8 = 25
linear equations results in 8 linearly independent equations:

a(B2) = −86/21a(B0) − 188/21a(B1)

a(B3) = 100/3a(B0) + 58/3a(B1)

a(B4) = −300/7a(B0) + 24/7a(B1)

a(B5) = −1892/21a(B0) + 568/21a(B1)

a(B6) = 288/7a(B0) − 53/7a(B1)

a(B7) = 2860/63a(B0) − 8738/63a(B1)

a(B8) = 656/7a(B0) + 3872/7a(B1)

a(B9) = 21016/21a(B0) + 15532/21a(B1).

When we combine these 8 linear relations with the 2 linear relations in equation 1.5 ob-
tained by considering φ∗

D4
, we see that the rank is actually 9, so that we have a total of 9

linearly independent relations in a(B0), . . . , a(B9):

a(B1) = 2a(B0)

a(B2) = −22a(B0)

a(B3) = 72a(B0)

a(B4) = −36a(B0)

a(B5) = −36a(B0)

a(B6) = 26a(B0)

a(B7) = −232a(B0)

a(B8) = 1200a(B0)

a(B9) = 2480a(B0).(3.3)
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These relations and Theorem 1.1 imply that dimS10
4 ≤ 1. Since we can come up with one

nonzero cusp form G10 in S10
4 we have a theorem.

Theorem 3.4. We have dimS10
4 = 1 and S10

4 = CG10.

§4. Final Comments.

The computations that have been performed for the form H are largely independent
of the weight k. Applied to the space S8

4 we may extend the Fourier expansion of the
Schottky form J beyond that given in [1]. Table 8 gives the Fourier coefficients a(Bi) for
J/216 and G10/218345.

Table 8. (Fourier Coefficients)

f B0 B1 B2 B3 B4 B5 B6 B7 B8 B9

J/216 1 −1 2 6 −12 −12 11 2 −72 116

G10/218345 1 2 −22 72 −36 −36 26 −232 1200 2480

Although the parameters αi and βi were simply eliminated in section §3, their values
are also determined by this process. It may be of interest to present the images of φ∗

sf for
s = D4, H and f = J,G10.

φ∗
D4

J = 216(C+
8,2)

4

φ∗
D4

G10 = 218345(C+
8,2)

4
(
(E−

2,2)
4 + 48C+

8,2

)
φ∗
HJ = 212D6(A + C)4

φ∗
HG10 = 214335D6(A + C)4(25A4−8A3B−7A3C−8A2BC−ABC2 + 4AC3−BC3−C4)

It is interesting to note that the image of G10 comes out to a multiple of the image of J
under both φ∗

D4
and φ∗

H . As a final comment we note that linear relations among Fourier
coefficients can be viewed as linear relations among Poincare series.
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