RESTRICTION OF SIEGEL MODULAR FORMS TO MODULAR CURVES

Cris Poor, Poor@fordham.Edu
David S. Yuen, Yuen@lfc.edu

Abstract

We study homomorphisms from the ring of Siegel modular forms of a given degree to the ring of elliptic modular forms for a congruence subgroup. These homomorphisms essentially arise from the restriction of Siegel modular forms to modular curves. These homomorphisms give rise to linear relations among the Fourier coefficients of a Siegel modular form. We use this technique to prove that $\operatorname{dim} S_{4}^{10}=1$.

§1. Introduction.

A Siegel modular cusp form of degree n has a Fourier series $f(\Omega)=\sum_{t} a(t) e(\operatorname{tr}(\Omega t))$ where t runs over \mathcal{X}_{n}, the set of positive definite semi-integral $n \times n$ forms. If we restrict attention to cusp forms of even weight then the Fourier coefficients are class functions of t. The vector space S_{n}^{k} of cusp forms of weight k is finite dimensional and so there exist finite subsets $\mathcal{S} \subset \operatorname{classes}\left(\mathcal{X}_{n}\right)$ such that the projection map $\mathrm{FS}_{\mathcal{S}}: S_{n}^{k} \rightarrow \mathbb{C}^{\mathcal{S}}$ given by $f \mapsto \prod_{[t] \in \mathcal{S}} a(t)$ is injective. The following Theorem [13, p. 218] gives one such \mathcal{S} that is readily computable from n and k. Instead of ordering semi-integral forms t by their determinant $\operatorname{det}(t)$ we order them by their dyadic trace $w(t)$. Denote by $\mathcal{P}_{n}(\mathbb{F})$ the positive definite $n \times n$ symmetric matrices with coefficients in $\mathbb{F} \subseteq \mathbb{R}$. The dyadic trace $w: \mathcal{P}_{n}(\mathbb{R}) \rightarrow \mathbb{R}^{+}$is a class function and only a finite number of classes from \mathcal{X}_{n} will have a dyadic trace below any fixed bound, see [13].

Theorem 1.1. Let $n, k \in \mathbb{Z}^{+}$. Let $\mathcal{S}=\left\{[t]: t \in \mathcal{X}_{n}\right.$ and $\left.w(t) \leq n \frac{2}{\sqrt{3}} \frac{k}{4 \pi}\right\}$. The map $\mathrm{FS}_{\mathcal{S}}: S_{n}^{k} \rightarrow \mathbb{C}^{\mathcal{S}}$ is injective.

This Theorem allows one to deduce equality in S_{n}^{k} from equality on the Fourier coefficients for \mathcal{S}. There are two obvious avenues for improvement. First, as is evident from Table 1, the bound $\operatorname{dim} S_{n}^{k} \leq \operatorname{card}(\mathcal{S})$ is tractable but crude and we would like to trim down the set \mathcal{S} to make $\operatorname{card}(\mathcal{S})$ closer to $\operatorname{dim} S_{n}^{k}$. Second, the image $\mathrm{FS}_{\mathcal{S}}(f)$ determines f and one would like to compute some Fourier coefficients outside of \mathcal{S} directly from the Fourier coefficients in \mathcal{S}. This paper realizes both improvements. We give a method for producing linear relations on the Fourier coefficients of the elements in S_{n}^{k}. Table 1 gives $\operatorname{dim} S_{4}^{k}, \operatorname{card}(\mathcal{S})$ and examples of linear relations for even $k \leq 12$. These are the only even weights for which $\operatorname{dim} S_{4}^{k}$ is known and the result $\operatorname{dim} S_{4}^{10}=1$ is a new one.

[^0]Table 1.

k	$\operatorname{dim} S_{4}^{k}$	$\operatorname{card}(\mathcal{S})$	linear relations
2	0	0	
4	0	0	
6	0	1	$a\left(\frac{1}{2} D_{4}\right)=0$
8	1	2	$a\left(\frac{1}{2} D_{4}\right)+a\left(\frac{1}{2} A_{4}\right)=0$
10	1	10	see equations (3.3)
12	2	23	21 uncomputed relations

For $k \leq 4$ we have $\mathcal{S}=\emptyset$ and so Theorem 1.1 by itself proves $S_{4}^{k}=0$, results due to Christian [2] and Eichler [4][5]. For $k=6$ we have $\mathcal{S}=\left\{\left[\frac{1}{2} D_{4}\right]\right\}$ and the method in this paper provides the linear relation $a\left(\frac{1}{2} D_{4}\right)=0$ so that we conclude $\operatorname{dim} S_{4}^{6}=0$. For $k=8$ we have $\mathcal{S}=\left\{\left[\frac{1}{2} D_{4}\right],\left[\frac{1}{2} A_{4}\right]\right\}$ and the method provides the linear relation $a\left(\frac{1}{2} D_{4}\right)+a\left(\frac{1}{2} A_{4}\right)=0$ showing that $\operatorname{dim} S_{4}^{8} \leq 1$. The Schottky form J is in S_{4}^{8} [9] so we have $\operatorname{dim} S_{4}^{8}=1$, see [14][11][3] for these results. For $k=10$ the \mathcal{S} consists of the ten classes in Table 3 and the method provides the nine linearly independent relations given in equation 3.3. We know the cusp form G_{10} is in S_{4}^{10}, see [13, p. 232], so that we have $\operatorname{dim} S_{4}^{10}=1$, a result that has been beyond the reach of other methods [12][3]. By the work of Erokhin $\operatorname{dim} S_{4}^{12}=2$ is already known, see [6][7][11]. Linear relations among Fourier coefficients for semi-integral forms not solely in \mathcal{S} allow the computation of Fourier coefficients outside of \mathcal{S}.

The method of producing linear relations on Fourier coefficients from S_{n}^{k} relies on the homomorphisms $\phi_{s}^{*}: S_{n}^{k} \rightarrow S_{1}^{n k}\left(\Gamma_{0}(\ell)\right)$ which exist for any $s \in \mathcal{P}_{n}(\mathbb{Z})$ and any $\ell \in \mathbb{Z}^{+}$ with ℓs^{-1} integral. We write elements of $\Gamma_{1}=\operatorname{Sp}_{1}(\mathbb{Z})$ as $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and define the subgroup $\Gamma_{0}(\ell)$ by $\ell \mid c$ and the subgroup Δ_{1} by $c=0$. We define $\phi_{s}(\tau)=s \tau$ so that for $f \in M_{n}^{k}$ we have $\left(\phi_{s}^{*} f\right)(\tau)=f(s \tau)$. There are three important points about these homomorphisms: (1) The image ring $M_{1}\left(\Gamma_{0}(\ell)\right)$ is amenable to computation. (2) The Fourier coefficients of $\phi_{s}^{*} f$ at each cusp are linear combinations of the Fourier coefficients of f, see Proposition 2.3. (3) There are lots of $n \times n$ integral forms s. The first point allows us to work out the linear relations among the Fourier coefficients at all cusps of elements in $S_{1}^{n k}\left(\Gamma_{0}(\ell)\right)$. The second point induces linear relations on the Fourier coefficients of elements in S_{n}^{k} from the linear relations on $S_{1}^{n k}\left(\Gamma_{0}(\ell)\right)$. The third point allows us to continue producing linear relations if more are desired.

We illustrate the technique in weights 6 and 8 when the number of Fourier coefficients remains small. Let $f \in S_{4}^{k}$ have the Fourier expansion $f(\Omega)=\sum_{t} a(t) e(\langle\Omega, t\rangle)$ where $\langle\Omega, t\rangle=\operatorname{tr}(\Omega t)$. Let D_{4} represent the 4×4 form of this root lattice $\left(D_{4}=2 B_{0}\right.$ from Table 3). We compute the Fourier expansion of $\phi_{D_{4}}^{*} f$ in powers of $q=e(\tau)$. For any $s \in \mathcal{P}_{n}(\mathbb{Q})$ we expand $\phi_{s}^{*} f$ into a Fourier series as

$$
\left(\phi_{s}^{*} f\right)(\tau)=\sum_{j \in \mathbb{Q}^{+}}\left(\sum_{t:\langle s, t\rangle=j} a(t)\right) q^{j} .
$$

For simplicity we will henceforth assume that k is even. If we introduce the notation
$\mathcal{V}(j, s, t)=\operatorname{card}\left\{v \in \mathcal{X}_{n}:[v]=[t],\langle v, s\rangle=j\right\}$ then we can write

$$
\begin{equation*}
\left(\phi_{s}^{*} f\right)(\tau)=\sum_{j \in \mathbb{Q}^{+}}\left(\sum_{[t]} \mathcal{V}(j, s, t) a(t)\right) q^{j} \tag{1.2}
\end{equation*}
$$

Table 2 is a table of the representation numbers $\mathcal{V}\left(j, D_{4}, t\right)$ for $j \leq 7$, omitted entries are zero. See Table 3 for the list of $B_{0}, B_{1}, \ldots, B_{9}$.

Table 2. $\mathcal{V}\left(j, D_{4}, t\right)$.

j	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}	B_{7}	B_{8}	B_{9}
4	1									
5	16	48								
6	144	288	216	48	12					
7	384	1488	864	288	144	432	240	288	48	16

Thus we have the following expansion:

$$
\begin{align*}
\left(\phi_{D_{4}}^{*} f\right)(\tau)= & a\left(B_{0}\right) q^{4}+\left(16 a\left(B_{0}\right)+48 a\left(B_{1}\right)\right) q^{5} \\
& +\left(144 a\left(B_{0}\right)+288 a\left(B_{1}\right)+216 a\left(B_{2}\right)+48 a\left(B_{3}\right)+12 a\left(B_{4}\right)\right) q^{6} \\
& +\left(384 a\left(B_{0}\right)+1488 a\left(B_{1}\right)+864 a\left(B_{2}\right)+288 a\left(B_{3}\right)+144 a\left(B_{4}\right)+432 a\left(B_{5}\right)\right. \\
& \left.\quad+240 a\left(B_{6}\right)+288 a\left(B_{7}\right)+48 a\left(B_{8}\right)+16 a\left(B_{9}\right)\right) q^{7}+\cdots . \tag{1.3}
\end{align*}
$$

The function $\phi_{D_{4}}^{*} f \in S_{1}^{4 k}\left(\Gamma_{0}(2)\right)$ is invariant under the Fricke operator because D_{4}^{-1} is equivalent to $\frac{1}{2} D_{4}$, see Proposition 2.2. The ring $M_{1}\left(\Gamma_{0}(2)\right)$ is generated by $E_{2,2}^{-} \in$ $M_{1}^{2}\left(\Gamma_{0}(2)\right)$ and $E_{4,2}^{-} \in M_{1}^{4}\left(\Gamma_{0}(2)\right)$ and the ring of cusp forms is principally generated by $C_{8,2}^{+} \in S_{1}^{8}\left(\Gamma_{0}(2)\right)$. The \pm superscript indicates an eigenvalue of ± 1 under the Fricke operator. In general we define $E_{k, d}^{ \pm}(\tau)=\left(E_{k}(\tau) \pm d^{\frac{k}{2}} E_{k}(d \tau)\right) /\left(1 \pm d^{\frac{k}{2}}\right)$ where the $E_{k}(\tau)=$ $1-\frac{2 k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}$ are the Eisenstein series and the B_{k} are given by $t /\left(e^{t}-1\right)=$ $\sum_{k=0}^{\infty} B_{k} t^{k} / k$!. We have $E_{k, d}^{ \pm} \in M_{1}^{k}\left(\Gamma_{0}(d)\right)$ except in the case of $E_{2, d}^{+}$. The Fourier expansions of these generators are given by

$$
\begin{aligned}
& E_{2,2}^{-}(\tau)=1+24 \sum_{n=1}^{\infty}\left(\sigma_{1}(n)-2 \sigma_{1}(n / 2)\right) q^{n}=1+24 q+24 q^{2}+96 q^{3}+24 q^{4}+144 q^{5}+\ldots \\
& E_{4,2}^{-}(\tau)=1-80 \sum_{n=1}^{\infty}\left(\sigma_{3}(n)-4 \sigma_{3}(n / 2)\right) q^{n}=1-80 q-400 q^{2}-2240 q^{3}-2960 q^{4}-\ldots \\
& C_{8,2}^{+}(z)=\frac{1}{256}\left(E_{2,2}^{-}(\tau)^{4}-E_{4,2}^{-}(\tau)^{2}\right)=q-8 q^{2}+12 q^{3}+64 q^{4}-210 q^{5}-96 q^{6}-\ldots
\end{aligned}
$$

The vanishing order of $\phi_{D_{4}}^{*} f$ at the cusp $[I]$ is at least 4 and because $\phi_{D_{4}}^{*} f$ is an eigenfunction of the Fricke operator the vanishing order at the cusp [J] is the same. Thus we have $\left(C_{8,2}^{+}\right)^{4} \mid \phi_{D_{4}}^{*} f$ in $M_{1}\left(\Gamma_{0}(2)\right)$. For $k=6$ this means $\phi_{D_{4}}^{*} f=0$ and so every coefficient in equation 1.3 gives a homogeneous linear relation; in particular we must have $a\left(B_{0}\right)=0$ (or $a\left(\frac{1}{2} D_{4}\right)=0$) and hence by Theorem 1.1 we have $S_{4}^{6}=0$. For $k=8$ there is a parameter $c \in \mathbb{C}$ such that

$$
\phi_{D_{4}}^{*} f=c\left(C_{8,2}^{+}\right)^{4}=c\left(q^{4}-32 q^{5}+432 q^{6}-2944 q^{7}+7192 q^{8}+39744 q^{9}-\ldots\right) .
$$

Elimination of the parameter c provides the following 3 linear relations for any $f \in S_{4}^{8}$.

$$
\begin{align*}
a\left(B_{0}\right) & +a\left(B_{1}\right)=0 ; \\
-24 a\left(B_{0}\right) & +24 a\left(B_{1}\right)+18 a\left(B_{2}\right)+4 a\left(B_{3}\right)+a\left(B_{4}\right)=0 ; \\
208 a\left(B_{0}\right) & +93 a\left(B_{1}\right)+54 a\left(B_{2}\right)+18 a\left(B_{3}\right)+9 a\left(B_{4}\right)+27 a\left(B_{5}\right) \\
& +15 a\left(B_{6}\right)+18 a\left(B_{7}\right)+3 a\left(B_{8}\right)+a\left(B_{9}\right)=0 . \tag{1.4}
\end{align*}
$$

As mentioned, the first relation alone, $a\left(\frac{1}{2} D_{4}\right)+a\left(\frac{1}{2} A_{4}\right)=0$ (note $\left.B_{1}=\frac{1}{2} A_{4}\right)$, implies that $\operatorname{dim} S_{4}^{8} \leq 1$.

For $k=10$ there are parameters $\alpha, \beta \in \mathbb{C}$ such that $\phi_{D_{4}}^{*} f=\left(C_{8,2}^{+}\right)^{4}\left(\alpha\left(E_{2,2}^{-}\right)^{4}+\beta C_{8,2}^{+}\right)$. The element $\left(E_{2,2}^{-}\right)^{2} E_{4,2}^{-}$cannot occur in this representation because it has eigenvalue -1 under the Fricke operator. Elimination of the parameters α and β provides two linear relations:

$$
\begin{align*}
224 a\left(B_{0}\right)= & 184 a\left(B_{1}\right)+18 a\left(B_{2}\right)+4 a\left(B_{3}\right)+a\left(B_{4}\right) ; \\
21376 a\left(B_{1}\right)= & -16110 a\left(B_{2}\right)-3916 a\left(B_{3}\right)-1231 a\left(B_{4}\right)-1512 a\left(B_{5}\right)-840 a\left(B_{6}\right) \\
& -1008 a\left(B_{7}\right)-168 a\left(B_{8}\right)-56 a\left(B_{9}\right) . \tag{1.5}
\end{align*}
$$

In conjunction with Theorem 1.1 these two relations imply $\operatorname{dim} S_{4}^{10} \leq 8$ but it will require another homomorphism $\phi_{H}^{*}: S_{4}^{10} \rightarrow S_{1}^{40}\left(\Gamma_{0}(6)\right)$ and a more extensive computation to prove that $\operatorname{dim} S_{4}^{10} \leq 1$.

§2. Propositions.

We let $\Gamma_{n}=\operatorname{Sp}_{n}(\mathbb{Z})$. We write elements of $\operatorname{Sp}_{n}(\mathbb{R})$ as $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$. The group $\operatorname{Sp}_{n}(\mathbb{R})$ acts on functions from the right via $\left.\left(f \left\lvert\, \begin{array}{cc}A & B \\ C & D\end{array}\right.\right)\right)(\Omega)=\operatorname{det}(C \Omega+D)^{-k} f\left((A \Omega+B)(C \Omega+D)^{-1}\right)$.

Proposition 2.1. Let $n, \ell \in \mathbb{Z}^{+}$. Let $s, \ell s^{-1} \in \mathcal{P}_{n}(\mathbb{Z})$. The map $\phi_{s}^{*}: M_{n}^{k} \rightarrow M_{1}^{n k}\left(\Gamma_{0}(\ell)\right)$ is a graded ring homomorphism.
Proof. For $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{Sp}_{1}(\mathbb{R})$ we have

$$
\begin{aligned}
& \left(\phi_{s}^{*} f \left\lvert\,\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)\right.\right)(\tau)=(c \tau+d)^{-n k} f\left(\frac{a \tau+b}{c \tau+d} s\right) \\
& =(c \tau+d)^{-n k} f\left((a \tau s+b s)\left(c s^{-1} \tau s+d I\right)^{-1}\right) \\
& =(c \tau+d)^{-n k} f\left(\left(\begin{array}{cc}
a I & b s \\
c s^{-1} & d I
\end{array}\right) \cdot \tau s\right)
\end{aligned}
$$

If we now assume that $\sigma \in \Gamma_{0}(\ell)$ then $c s^{-1}$ is integral and so $\left(\begin{array}{cc}a I & b s \\ c s^{-1} & d I\end{array}\right) \in \operatorname{Sp}_{n}(\mathbb{Z})$. Therefore we have $\left(f \left\lvert\,\left(\begin{array}{cc}a I & b s \\ c s^{-1} & d I\end{array}\right)\right.\right)(\tau s)=f(\tau s)=\phi_{s}^{*} f(\tau)$. It is straightforward to see that $\phi_{s}^{*} f$ is holomorphic on \mathcal{H}_{1} and that it is bounded on domains of type $\left\{\tau \in \mathcal{H}_{1}: \operatorname{Im} \tau>y_{0}\right\}$. Thus we have $\phi_{s}^{*}: M_{n}^{k} \rightarrow M_{1}^{n k}\left(\Gamma_{0}(\ell)\right)$.

For $\ell \in \mathbb{Z}^{+}$let $W_{\ell}=\frac{1}{\sqrt{\ell}}\left(\begin{array}{cc}0 & -1 \\ \ell & 0\end{array}\right)$ denote the Fricke involution.

Proposition 2.2. Let $n, \ell \in \mathbb{Z}^{+}$. Let $s, \ell s^{-1} \in \mathcal{P}_{n}(\mathbb{Z})$. Let $f \in M_{n}^{k}$. Assume that s is $\mathrm{GL}_{n}(\mathbb{Z})$-equivalent to ℓs^{-1}. Then $\phi_{s}^{*} f \in M_{1}^{n k}\left(\Gamma_{0}(\ell)\right)$ is an eigenfunction of the Fricke operator W_{ℓ}. The eigenvalue is +1 unless s is improperly equivalent to ℓs^{-1} and k is odd in which case $\phi_{s}^{*} f$ has eigenvalue -1 under W_{ℓ}.
Proof. When s is equivalent to ℓs^{-1} we have $U s U^{\prime}=\ell s^{-1}$ for some $U \in \mathrm{GL}_{n}(\mathbb{Z})$. We will show that $\left(\phi_{s}^{*} f\right) \mid W_{\ell}=\operatorname{det}(U)^{k} \phi_{s}^{*} f$. The factor $\operatorname{det}(U)^{k}$ is one except in the case noted. We first check that $\phi_{s} \circ W_{\ell}=\left(\begin{array}{cc}0 & U^{*} \\ -U & 0\end{array}\right) \circ \phi_{s}$. For every $\tau \in \mathcal{H}_{1}$ we have

$$
\begin{aligned}
\left(\phi_{s} \circ W_{\ell}\right)(\tau) & =\phi_{s}\left(-\frac{1}{\ell \tau}\right)=-\frac{1}{\ell} s \tau^{-1}=-U^{*} s^{-1} U^{-1} \tau^{-1}=U^{*}(-U s \tau)^{-1} \\
& =\left(\begin{array}{cc}
0 & U^{*} \\
-U & 0
\end{array}\right)(s \tau)=\left(\left(\begin{array}{cc}
0 & U^{*} \\
-U & 0
\end{array}\right) \circ \phi_{s}\right)(\tau)
\end{aligned}
$$

Noting that $\left(\begin{array}{cc}0 & U^{*} \\ -U & 0\end{array}\right) \in \Gamma_{n}$ we compute

$$
\begin{aligned}
& {\left[\left(\phi_{s}^{*} f\right) \mid W_{n k}\right](\tau)=(\sqrt{\ell} \tau)^{-n k}\left(\phi_{s}^{*} f\right)\left(W_{\ell}(\tau)\right)=(\sqrt{\ell} \tau)^{-n k}\left(f \circ \phi_{s} \circ W_{\ell}\right)(\tau) } \\
= & (\sqrt{\ell} \tau)^{-n k}\left(f \circ\left(\begin{array}{cc}
0 & U^{*} \\
-U & 0
\end{array}\right) \circ \phi_{s}\right)(\tau)=(\sqrt{\ell} \tau)^{-n k} \operatorname{det}(-U s \tau)^{k} f\left(\phi_{s}(\tau)\right) \\
= & (-\sqrt{\ell})^{-n k} \operatorname{det}(U)^{k} \operatorname{det}(s)^{k}\left(\phi_{s}^{*} f\right)(\tau)=\operatorname{det}(U)^{k}\left(\phi_{s}^{*} f\right)(\tau) .
\end{aligned}
$$

In the last line above we have used the fact that $\operatorname{det}(s)^{2}=\ell^{n}$ and that when $n k$ is odd we must have f identically zero.

The next Proposition shows how to develop the Fourier expansion of $\phi_{s}^{*} f$ at any cusp.
Proposition 2.3. Let $n \in \mathbb{Z}^{+}$. Let $s \in \mathcal{P}_{n}(\mathbb{Q})$. Let $f \in S_{n}^{k}$ have the Fourier expansion $f(\Omega)=\sum_{t} a(t) e(\langle\Omega, t\rangle)$. Let $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{1}$. There exist $\mathcal{A}, \mathcal{B} \in \mathbb{Q}^{n \times n}$ such that $\left(\begin{array}{cc}a I & b s \\ c^{-1} & d I\end{array}\right) \in$ $\Gamma_{n}\left(\begin{array}{cc}\mathcal{A} & \mathcal{B} \\ 0 & \mathcal{A}^{*}\end{array}\right)$ and for any such \mathcal{A}, \mathcal{B} we have

$$
\left(\phi_{s}^{*} f \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right.\right)(\tau)=(\operatorname{det} \mathcal{A})^{k} f\left(\tau \mathcal{A} s \mathcal{A}^{\prime}+\mathcal{B} \mathcal{A}^{\prime}\right)=(\operatorname{det} \mathcal{A})^{k} \sum_{j \in \mathbb{Q}^{+}}\left(\sum_{t:\left\langle\mathcal{A} s \mathcal{A}^{\prime}, t\right\rangle=j} a(t) e\left(\left\langle t, \mathcal{B} \mathcal{A}^{\prime}\right\rangle\right)\right) q^{j}
$$

Proof. We now wish to study $\left(\phi_{s}^{*} f\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)$ for $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \operatorname{Sp}_{1}(\mathbb{Z})$. Then as in the proof of Proposition 2.1 we have

$$
\left(\phi_{s}^{*} f \underset{n k}{\mid}\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)\right)(\tau)=\left(f \left\lvert\,\left(\begin{array}{cc}
a I & b s \\
c s^{-1} & d I
\end{array}\right)\right.\right)(\tau s) .
$$

Now, we can always decompose any matrix in $\operatorname{Sp}_{n}(\mathbb{Q})$ as something in $\operatorname{Sp}_{n}(\mathbb{Z})$ times something in $\operatorname{Sp}_{n}(\mathbb{Q})$ with $C=0\left[8\right.$, p. 125]. So let $\left(\begin{array}{cc}a I & b s \\ c s^{-1} & d I\end{array}\right) \in \Gamma_{n}\left(\begin{array}{cc}\mathcal{A} & \mathcal{B} \\ 0 & \mathcal{A}^{*}\end{array}\right)$. Since f is automorphic with respect to Γ_{n} we have

$$
\left.\left(\phi_{s}^{*} f \left\lvert\,\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)\right.\right)(\tau)=\left(f \left\lvert\,\left(\begin{array}{cc}
a I & b s \\
c s^{-1} & d I
\end{array}\right)\right.\right)(\tau s)=\left(f \left\lvert\, \begin{array}{cc}
\mathcal{A} & \mathcal{B} \\
0 & \mathcal{A}^{*}
\end{array}\right.\right)\right)(\tau s)=(\operatorname{det} \mathcal{A})^{k} f\left(\tau \mathcal{A} s \mathcal{A}^{\prime}+\mathcal{B} \mathcal{A}^{\prime}\right) .
$$

The Fourier expansion for $\left(\phi_{s}^{*} f \left\lvert\,\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right.\right)(\tau)$ follows from the Fourier expansion for f under the substitution $\Omega=\tau \mathcal{A} s \mathcal{A}^{\prime}+\mathcal{B} \mathcal{A}^{\prime}$.

The above Proposition provides for the computation of the Fourier expansion of $\phi_{s}^{*} f \mid \sigma$ in general. When ℓ is squarefree however the computation of the character $e\left(\left\langle t, \mathcal{B} \mathcal{A}^{\prime}\right\rangle\right)$ may be finessed. We introduce a new notation: Notice that \mathcal{A} in Proposition 2.3 is determined up to $u \mathcal{A}$ with $u \in \mathrm{GL}_{n}(\mathbb{Z})$. Thus $\mathcal{A} s \mathcal{A}^{\prime}$ is determined up to equivalence class. We define

$$
s \square\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\mathcal{A} s \mathcal{A}^{\prime}
$$

with the understanding that this is well-defined only up to equivalence class. Since f is automorphic with respect to $\left(\begin{array}{cc}u & 0 \\ 0 & u^{*}\end{array}\right)$, we have $f\left(u s u^{\prime} \tau\right)=f(s \tau)$ and it makes sense to talk about $f\left(\left(s \square\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right) \tau\right)$ and $\phi_{s \square\left(\begin{array}{ll}* & b \\ c & d\end{array}\right)}^{*} f$.

Proposition 2.4. Let $s \in \mathcal{P}_{n}(\mathbb{Z})$. Let $\ell \in \mathbb{Z}^{+}$such that ℓs^{-1} is integral and primitive. Let $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{1}$. Suppose $\operatorname{gcd}\left(c, \frac{\ell}{c}\right)=1$. Let $\hat{c} \in \mathbb{Z}$ such that $\hat{c} c \equiv 1 \bmod \frac{\ell}{c}$. For any \mathcal{A} with $\left(\begin{array}{cc}a I & b s \\ c s^{-1} & d I\end{array}\right) \in \Gamma_{n}\left(\begin{array}{cc}\mathcal{A} & \mathcal{B} \\ 0 & \mathcal{A}^{*}\end{array}\right)$ we have

$$
\left(\phi_{s}^{*} f \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right.\right)(\tau)=(\operatorname{det} \mathcal{A})^{k} \phi_{s \square\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)}^{*} f(\tau+d \hat{c}) .
$$

Proof. We have $\left(\begin{array}{cc}\mathcal{A} & \mathcal{B} \\ 0 & \mathcal{A}^{*}\end{array}\right)\left(\begin{array}{cc}a I & b s \\ c s^{-1} & d I\end{array}\right)^{-1} \in \operatorname{Sp}_{n}(\mathbb{Z})$. Thus we have

$$
\left(\begin{array}{cc}
\mathcal{A} & \mathcal{B} \tag{2.5}\\
0 & \mathcal{A}^{*}
\end{array}\right)\left(\begin{array}{cc}
d I & -b s \\
-c s^{-1} & a I
\end{array}\right)=\left(\begin{array}{cc}
d \mathcal{A}-c \mathcal{B} s^{-1} & -b \mathcal{A} s+a \mathcal{B} \\
-c \mathcal{A}^{*} s^{-1} & a \mathcal{A}^{*}
\end{array}\right) \in \operatorname{Sp}_{n}(\mathbb{Z})
$$

Note that each of the four blocks must be in $\mathbb{Z}^{n \times n}$. Multiplying $d \mathcal{A}-c \mathcal{B} s^{-1}$ by the integral s implies $d \mathcal{A} s-c \mathcal{B}$ is integral. Both $\mathcal{A} s$ and \mathcal{B} are integral because we have

$$
\begin{aligned}
\mathcal{A} s & =a(d \mathcal{A} s-c \mathcal{B})+c(-b \mathcal{A} s+a \mathcal{B}) \\
\mathcal{B} & =b(d \mathcal{A} s-c \mathcal{B})+d(-b \mathcal{A} s+a \mathcal{B})
\end{aligned}
$$

Since $c \mathcal{B} s^{-1}=\frac{c}{\ell} \mathcal{B} \ell s^{-1}$ and $\ell s^{-1} \in \mathbb{Z}^{n \times n}$, we have $c \mathcal{B} s^{-1} \in \frac{c}{\ell} \mathbb{Z}^{n \times n}$. This combined with $d \mathcal{A}-c \mathcal{B} s^{-1} \in \mathbb{Z}^{n \times n}$ implies $d \mathcal{A} \in \frac{c}{\ell} \mathbb{Z}^{n \times n}$. Also we have $\mathcal{A}=\frac{1}{\ell}(\mathcal{A} s) \ell s^{-1} \in \frac{1}{\ell} \mathbb{Z}^{n \times n}$ and consequently $\mathcal{A}=a(d \mathcal{A})-b(c \mathcal{A}) \in \frac{c}{\ell} \mathbb{Z}^{n \times n}$. Since $\mathcal{A} s$ is integral, its transpose $s \mathcal{A}^{\prime}$ is also integral. Then multiplying $d \mathcal{A}-c \mathcal{B} s^{-1}$ by the integral $\hat{c} s A^{\prime}$ implies that $d \hat{c} \mathcal{A} s \mathcal{A}^{\prime}$ and $\hat{c} c \mathcal{B} \mathcal{A}^{\prime}$ differ by an integer matrix. But $\hat{c} c \equiv 1 \bmod \frac{\ell}{c}$ and $\mathcal{B} \mathcal{A}^{\prime} \in \frac{c}{\ell} \mathbb{Z}^{n \times n}$ imply that $\hat{c} c \mathcal{B} \mathcal{A}^{\prime}$ and $\mathcal{B} \mathcal{A}^{\prime}$ differ by an integer matrix. Hence $d \hat{c} \mathcal{A} s \mathcal{A}^{\prime}$ and $\mathcal{B} \mathcal{A}^{\prime}$ differ by an integer matrix. Finally, from Proposition 2.3 we have $(\operatorname{det} \mathcal{A})^{-k}\left(\phi_{s}^{*} f\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)(\tau)=$

$$
f\left(\tau \mathcal{A} s \mathcal{A}^{\prime}+\mathcal{B} \mathcal{A}^{\prime}\right)=f\left(\tau \mathcal{A} s \mathcal{A}^{\prime}+d \hat{c} \mathcal{A} s \mathcal{A}^{\prime}\right)=f\left(\mathcal{A} s \mathcal{A}^{\prime}(\tau+d \hat{c})\right)=\phi_{s \square\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)}^{*} f(\tau+d \hat{c}) .
$$

§3. The space S_{4}^{10}.

We will apply the technique of the Introduction to S_{4}^{10}. Theorem 1.1 says a form in S_{4}^{10} is determined by its coefficients $a(t)$ with $w(t) \leq 3.5$. Table 3 gives the list of these 10 quadratic forms, see [10][13]. For uniformity of notation we will refer to these
as B_{0}, \ldots, B_{9}. Here the number under ℓ for B_{i} is the smallest positive integer such that $\ell\left(2 B_{i}\right)^{-1}$ is integral.

Table 3. Semi-integral quaternary forms with dyadic trace ≤ 3.5.

Name	Form	Dyadic trace	16-Determinant	ℓ
B_{0}	$\frac{1}{2}\left(\begin{array}{llll}2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2\end{array}\right)$	2	4	2
B_{1}	$\frac{1}{2}\left(\begin{array}{ccccc}2 & 1 & 0 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 1 \\ 1 & 0 & 1 & 2\end{array}\right)$	2.5	5	5
B_{2}	$\frac{1}{2}\left(\begin{array}{ccccc}2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 1 & 1 & 0 & 2\end{array}\right)$	3	8	4
B_{3}	$\frac{1}{2}\left(\begin{array}{lllll}2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2\end{array}\right)$	3	9	3
B_{4}	$\frac{1}{2}\left(\begin{array}{ccccc}2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 4\end{array}\right)$	3	12	6
B_{5}	$\frac{1}{2}\left(\begin{array}{ccccc}2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2\end{array}\right)$	3.5	12	6
B_{6}	$\frac{1}{2}\left(\begin{array}{llll}2 & 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0\end{array}\right)$	3.5	13	13
B_{7}	$\frac{1}{2}\left(\begin{array}{cccc}2 & 1 & 0 & 1 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 1 & 0 & 1 & 4\end{array}\right)$	3.5	17	17
B_{8}	$\frac{1}{2}\left(\begin{array}{ccccc}2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 2 & 1 \\ 1 & 1 & 1 & 4\end{array}\right)$	3.5	20	10
B_{9}	$\frac{1}{2}\left(\begin{array}{lllll}2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 1 \\ 1 & 0 & 4 & 2 \\ 1 & 1 & 2 & 4\end{array}\right)$	3.5	25	5

We will apply the technique to $H=2 B_{4}$ for which $6 H^{-1}$ is integral. By Proposition 2.1 we have $\operatorname{Im} \phi_{H}^{*} f \subset M_{1}\left(\Gamma_{0}(6)\right)$ and our calculations will occur inside this ring. The ring $M_{1}\left(\Gamma_{0}(6)\right)$ is generated by three forms A, B, C of weight 2 . There is one relation $C^{2}=$ $9 B^{2}-8 A^{2}$. The ring of cusp forms is principally generated by a form of weight $4, D=$ $\frac{1}{4}\left(A^{2}-B^{2}\right)$. There are 4 cusps in $\Gamma_{0}(6) \backslash \Gamma_{1} / \Delta_{1}$, represented by $I, \sigma_{2}=\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right), \sigma_{3}=\left(\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right)$ and J with respective widths $1,3,2$ and 6 . We now give the Fourier expansions of the generators at all four cusps. The definition of $E_{2,2}^{-}$has already been given, similarly define $E_{2,3}^{-}(\tau)=1+12 \sum_{n=1}^{\infty}\left(\sigma_{1}(n)-3 \sigma_{1}(n / 3)\right) q^{n}=1+12\left(q+3 q^{2}+q^{3}+7 q^{4}+6 q^{5}+\cdots\right)$. Define the following elements in $M_{1}\left(\Gamma_{0}(6)\right)$:

$$
\begin{aligned}
& A(\tau)=(3 / 4) E_{2,2}^{-}(3 \tau)+(1 / 4) E_{2,2}^{-}(\tau)=1+6 q+6 q^{2}+42 q^{3}+\cdots \\
& B(\tau)=(2 / 3) E_{2,3}^{-}(2 \tau)+(1 / 3) E_{2,3}^{-}(\tau)=1+4 q+20 q^{2}+4 q^{3}+\cdots \\
& C(\tau)=(3 / 2) E_{2,2}^{-}(3 \tau)-(1 / 2) E_{2,2}^{-}(\tau)=1-12 q-12 q^{2}-12 q^{3}+\cdots
\end{aligned}
$$

The elliptic modular forms A, B, C transform nicely as

$$
\begin{array}{llll}
(A \mid J)(\tau)=-\frac{1}{6} A(\tau / 6), & \left(A \mid \sigma_{2}\right)(\tau)=+\frac{1}{3} A((\tau-1) / 3), & & \left(A \mid \sigma_{3}\right)(\tau)=-\frac{1}{2} A((\tau-1) / 2) \\
(B \mid J)(\tau)=-\frac{1}{6} B(\tau / 6), & \left(B \mid \sigma_{2}\right)(\tau)=-\frac{1}{3} B((\tau-1) / 3) & & \left(B \mid \sigma_{3}\right)(\tau)=+\frac{1}{2} B((\tau-1) / 2) \\
(C \mid J)(\tau)=+\frac{1}{6} C(\tau / 6), & \left(C \mid \sigma_{2}\right)(\tau)=-\frac{1}{3} C((\tau-1) / 3) & \left(C \mid \sigma_{3}\right)(\tau)=-\frac{1}{2} C((\tau-1) / 2)
\end{array}
$$

We use Propostions 2.3 and 2.4 to work out the Fourier expansion of $\phi_{H}^{*} f \mid \sigma$ for $\sigma=I, \sigma_{2}$, σ_{3}, J. We implement the algorithms from [8, pp.125, 322-328] to produce a factorization $\left(\begin{array}{cc}a I & b H \\ c H^{-1} & d I\end{array}\right) \in \Gamma_{n}\left(\begin{array}{cc}\mathcal{A} & \mathcal{B} \\ 0 & \mathcal{A}^{*}\end{array}\right)$ and obtain $\operatorname{det}(\mathcal{A})$ and $H \square \sigma=\mathcal{A} H \mathcal{A}^{\prime}$. We display $H \square \sigma_{2}, H \square \sigma_{3}$, $H \square J$ and mention that the associated $|\operatorname{det}(\mathcal{A})|$ equals $3,4,12$, respectively:
$H \square \sigma_{2}=\frac{1}{3}\left(\begin{array}{cccc}4 & 2 & 1 & -1 \\ 2 & 4 & -1 & 1 \\ 1 & -1 & 4 & -1 \\ -1 & 1 & -1 & 4\end{array}\right) ; H \square \sigma_{3}=\frac{1}{2}\left(\begin{array}{cccc}2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 2 & 1 \\ 1 & 1 & 1 & 3\end{array}\right) ; H \square J=\frac{1}{6}\left(\begin{array}{cccc}2 & 1 & 1 & 1 \\ 1 & 5 & -1 & 2 \\ 1 & -1 & 5 & 2 \\ 1 & 2 & 2 & 5\end{array}\right)$
Note that all three of the cases $\sigma_{2}, \sigma_{3}, J$ satisfy the hypotheses of Proposition 2.4. Note that for $c=2$, we can take $\hat{c}=-1$ so that $c \hat{c}=1 \bmod 3$; for $c=3$, we can take $\hat{c}=-1$ so that $c \hat{c}=1 \bmod 2$. Thus we have

$$
\begin{align*}
\left(\phi_{H}^{*} f \mid I\right)(\tau) & =\phi_{H}^{*} f(\tau), \\
\left(\phi_{H}^{*} f \mid \sigma_{2}\right)(\tau) & =3^{-10} \phi_{H \square \sigma_{2}}^{*} f(\tau-1), \\
\left(\phi_{H}^{*} f \mid \sigma_{3}\right)(\tau) & =4^{-10} \phi_{H \square \sigma_{3}}^{*} f(\tau-1), \\
\left(\phi_{H}^{*} f \mid J\right)(\tau) & =12^{-10} \phi_{H \square J}^{*} f(\tau) . \tag{3.1}
\end{align*}
$$

Hence the Fourier expansions may be computed from the numbers $\mathcal{V}(j, H \square \sigma, t)$ given in Tables 4, 5, 6 and 7. Among the computations we perform, the computation of these representation numbers is by far the most expensive.

Table 4. $\mathcal{V}(j, H, t)$

j	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}	B_{7}	B_{8}	B_{9}
6	1									
7	12	36								
8	96	168	114	24	6					
9	196	760	384	108	60	168	108	96	12	4

Table 5. $\mathcal{V}\left(j, H \square \sigma_{2}, t\right)$

j	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}	B_{7}	B_{8}	B_{9}
$10 / 3$	1									
$11 / 3$	4	12								
$12 / 3$	24	24	6							
$13 / 3$	12	96	24	12						
$14 / 3$	78	192	120	24	6	12				1
$15 / 3$	144	312	192	24	28	84	48	36		

Table 6. $\mathcal{V}\left(j, H \square \sigma_{3}, t\right)$

j	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}	B_{7}	B_{8}	B_{9}
$6 / 2$	5	4								
$7 / 2$	24	72	12							
$8 / 2$	120	264	138	48	15	12	12			

Table 7. $\mathcal{V}(j, H \square J, t)$

j	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}	B_{7}	B_{8}	B_{9}
$10 / 6$	1									
$11 / 6$		8								
$12 / 6$	24	12	6		1					
$13 / 6$	24	96	12				8			

From these expansions we see that $\phi_{H}^{*} f$ vanishes to order at least 6 at every cusp so that there are pararmeters $\alpha_{0}, \ldots, \alpha_{8}$ and $\beta_{0}, \ldots, \beta_{7} \in \mathbb{C}$ such that

$$
\phi_{H}^{*} f=(D)^{6}\left(\alpha_{0} A^{8}+\alpha_{1} A^{7} B+\cdots+\alpha_{8} B^{8}+C\left(\beta_{0} A^{7}+\beta_{1} A^{6} B+\cdots+\beta_{7} B^{7}\right)\right) .
$$

Without introducing any new parameters we also have equalities for any $\sigma \in \Gamma_{1}$:

$$
\begin{equation*}
\phi_{H}^{*} f \mid \sigma=(D \mid \sigma)^{6}\left(\alpha_{0}(A \mid \sigma)^{8}+\ldots+\alpha_{8}(B \mid \sigma)^{8}+(C \mid \sigma)\left(\beta_{0}(A \mid \sigma)^{7}+\ldots+\beta_{7}(B \mid \sigma)^{7}\right)\right) . \tag{3.2}
\end{equation*}
$$

For $\sigma=I, \sigma_{2}, \sigma_{3}, J$ the left side of equation 3.2 is computed from equations 3.1, equation 1.2 and Tables 4 through 7 . The right side is computed from the expansions of the elliptic modular forms A, B and C. At the cusp $[I]$ we equate the coefficents for $j=6, \ldots, 9$; at the cusp $\left[\sigma_{2}\right]$ for $j=6 / 3, \ldots, 15 / 3$; at the cusp $\left[\sigma_{3}\right]$ for $j=6 / 2, \ldots, 8 / 2$ and at the cusp $[J]$ for $j=6 / 6, \ldots, 13 / 6$. Elimination of the 17 parameters α_{i}, β_{i} from the $4+10+3+8=25$ linear equations results in 8 linearly independent equations:

$$
\begin{aligned}
& a\left(B_{2}\right)=-86 / 21 a\left(B_{0}\right)-188 / 21 a\left(B_{1}\right) \\
& a\left(B_{3}\right)=100 / 3 a\left(B_{0}\right)+58 / 3 a\left(B_{1}\right) \\
& a\left(B_{4}\right)=-300 / 7 a\left(B_{0}\right)+24 / 7 a\left(B_{1}\right) \\
& a\left(B_{5}\right)=-1892 / 21 a\left(B_{0}\right)+568 / 21 a\left(B_{1}\right) \\
& a\left(B_{6}\right)=288 / 7 a\left(B_{0}\right)-53 / 7 a\left(B_{1}\right) \\
& a\left(B_{7}\right)=2860 / 63 a\left(B_{0}\right)-8738 / 63 a\left(B_{1}\right) \\
& a\left(B_{8}\right)=656 / 7 a\left(B_{0}\right)+3872 / 7 a\left(B_{1}\right) \\
& a\left(B_{9}\right)=21016 / 21 a\left(B_{0}\right)+15532 / 21 a\left(B_{1}\right) .
\end{aligned}
$$

When we combine these 8 linear relations with the 2 linear relations in equation 1.5 obtained by considering $\phi_{D_{4}}^{*}$, we see that the rank is actually 9 , so that we have a total of 9 linearly independent relations in $a\left(B_{0}\right), \ldots, a\left(B_{9}\right)$:

$$
\begin{align*}
& a\left(B_{1}\right)=2 a\left(B_{0}\right) \\
& a\left(B_{2}\right)=-22 a\left(B_{0}\right) \\
& a\left(B_{3}\right)=72 a\left(B_{0}\right) \\
& a\left(B_{4}\right)=-36 a\left(B_{0}\right) \\
& a\left(B_{5}\right)=-36 a\left(B_{0}\right) \\
& a\left(B_{6}\right)=26 a\left(B_{0}\right) \\
& a\left(B_{7}\right)=-232 a\left(B_{0}\right) \\
& a\left(B_{8}\right)=1200 a\left(B_{0}\right) \\
& a\left(B_{9}\right)=2480 a\left(B_{0}\right) . \tag{3.3}
\end{align*}
$$

These relations and Theorem 1.1 imply that $\operatorname{dim} S_{4}^{10} \leq 1$. Since we can come up with one nonzero cusp form G_{10} in S_{4}^{10} we have a theorem.

Theorem 3.4. We have $\operatorname{dim} S_{4}^{10}=1$ and $S_{4}^{10}=\mathbb{C} G_{10}$.

§4. Final Comments.

The computations that have been performed for the form H are largely independent of the weight k. Applied to the space S_{4}^{8} we may extend the Fourier expansion of the Schottky form J beyond that given in [1]. Table 8 gives the Fourier coefficients $a\left(B_{i}\right)$ for $J / 2^{16}$ and $G_{10} / 2^{18} 3^{4} 5$.

Table 8. (Fourier Coefficients)

f	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}	B_{7}	B_{8}	B_{9}
$J / 2^{16}$	1	-1	2	6	-12	-12	11	2	-72	116
$G_{10} / 2^{18} 3^{4} 5$	1	2	-22	72	-36	-36	26	-232	1200	2480

Although the parameters α_{i} and β_{i} were simply eliminated in section $\S 3$, their values are also determined by this process. It may be of interest to present the images of $\phi_{s}^{*} f$ for $s=D_{4}, H$ and $f=J, G_{10}$.

$$
\begin{aligned}
\phi_{D_{4}}^{*} J & =2^{16}\left(C_{8,2}^{+}\right)^{4} \\
\phi_{D_{4}}^{*} G_{10} & =2^{18} 3^{4} 5\left(C_{8,2}^{+}\right)^{4}\left(\left(E_{2,2}^{-}\right)^{4}+48 C_{8,2}^{+}\right) \\
\phi_{H}^{*} J & =2^{12} D^{6}(A+C)^{4} \\
\phi_{H}^{*} G_{10} & =2^{14} 3^{3} 5 D^{6}(A+C)^{4}\left(25 A^{4}-8 A^{3} B-7 A^{3} C-8 A^{2} B C-A B C^{2}+4 A C^{3}-B C^{3}-C^{4}\right)
\end{aligned}
$$

It is interesting to note that the image of G_{10} comes out to a multiple of the image of J under both $\phi_{D_{4}}^{*}$ and ϕ_{H}^{*}. As a final comment we note that linear relations among Fourier coefficients can be viewed as linear relations among Poincare series.

References

1. B. Brinkman, L. Gerritzen, The lowest term of the Schottky modular form, Math. Annalen 292 (1992), 329-335.
2. U. Christian, Selberg's Zeta-, L-, and Eisenstein series, Lecture Notes in Math., vol. 1030, Springer Verlag, Berlin Heidelberg New York, 1983.
3. W. Duke and Ö. Imamoḡlu, Siegel Modular Forms of Small Weight, Math. Ann. 308 (1997), 525-534.
4. M. Eichler, Über die Anzahl der linear unabhängigen Siegelschen Modulformen von gegebenem Gewicht, Math. Ann. 213 (1975), 281-291.
5. M. Eichler, Erratum: Über die Anzahl der linear unabhängigen Siegelschen Modulformen von gegebenem Gewicht, Math. Ann. 215 (1975), 195.
6. V. A. Erokhin, Theta series of even unimodular 24-dimensional lattices, LOMI 86 (1979), 82-93, also in JSM 17 (1981), 1999-2008.
7. V. A. Erokhin, Theta series of even unimodular lattices, LOMI 199 (1981), 59-70, also in JSM 25 (1984), 1012-1020.
8. E. Freitag, Siegelsche Modulfunktionen, Grundlehren der mathematische Wissenschaften 254, Springer Verlag, Berlin, 1983.
9. J. I. Igusa, Schottky's invariant and quadratic forms, Christoffel Symposium, Birkhäuser Verlag, 1981.
10. G. Nipp, Quaternary Quadratic Forms, Computer Generated Tables, Springer-Verlag, New York.
11. C. Poor and D. Yuen, Dimensions of Spaces of Siegel Modular Forms of Low Weight in Degree Four, Bull. Austral. Math. Soc. 54 (1996), 309-315.
12. C. Poor and D. Yuen, Dimensions of Spaces of Siegel Modular Cusp Forms and Theta Series with Pluri-Harmonics, Far East Journal of Mathematical Sciences (FJMS) 16 (1999), 849-863.
13. C. Poor and D. Yuen, Linear dependence among Siegel Modular Forms, Math. Ann. 318 (2000), 205-234.
14. R. Salvati Manni, Modular forms of the fourth degree (Remark on a paper of Harris and Morrison), Classification of irregular varieties (Ballico, Catanese, Ciliberto Eds.), Lecture Notes in Math. 1515 (1992), 106-111.

Department of Mathematics, Fordham University, Bronx, NY 10458
Email: poor@fordham.edu

Math/CS Department, Lake Forest College, 555 N. Sheridan Rd., Lake Forest, IL 60045
Email: yuen@lfc.edu

[^0]: 1991 Mathematics Subject Classification. 11F46.
 Key words and phrases. Siegel modular forms, dyadic trace.

