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1. INTRODUCTION

My current research concerns the theory and computation of Siegel
modular forms. Complex analytic techniques are the main tool al-
though, besides being a part of several complex variables and tran-
scendental algebraic geometry, the field of automorphic functions in-
creasingly falls under the domain of number theory. I also publish
results in the geometry of numbers, although I do not stray far from
applications to Siegel modular forms.

In the past I have published in the fields of mixed Hodge theory,
Riemann surfaces, theta functions and particle coagulation. I may
return to these fields and write up unpublished results but currently I
am completely occupied with questions about Siegel modular forms.

Let I' be a group commensurable with Sp,(Z). Siegel modular forms
of weight k for I' are holomorphic functions on the Siegel upper half
space that are bounded at the cusps and invariant under an action
of I' that depends upon the weight k. They give mappings of A,(T),
the moduli space of principally polarized abelian varieties with level
structure I', into projective spaces. The moduli space 4, has many
important subvarieties such as modular curves, the hyperelliptic locus
and the Jacobian locus. One important topic is the behavior of Siegel
modular forms on these subvarieties; for example, the Schottky prob-
lem asks for the ideal of Siegel forms vanishing on the Jacobian locus.
Articles 1, 2, 3, 5 and 15 concern these subvarieties.

The L-functions of Siegel modular Hecke eigenforms are a second
important topic. As part of the Langlands program, we should look
for generalizations of A. Wiles’ Modularity Theorem to higher genera.
Articles 20 and 22 are directly concerned with L-functions of Siegel
modular Hecke eigenforms.

Every Siegel modular form has a Fourier expansion.

[(Z)=7 al)e(Z.1)).
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The Fourier coefficients a(7") encode geometric, number theoretic and
combinatorial information and there are surprising identities among
modular forms arising from quite different sources. For proofs of these
identities, the dimension of a space of Siegel modular cusp forms is
crucial information; in concrete examples, determining sets of Fourier
coefficients will sometimes suffice. For genus g < 3, many generating
functions giving these dimensions are known but none are known for
g > 4. Prof. D. Yuen and I have been developing general methods to
compute dimensions of Siegel forms in specific cases. From a compu-
tational point of view, Siegel cusp form are huge objects. Each stage
of progress in the computation of spaces of Siegel modular cusp forms
has been due to a new theoretical insight, not merely to increased
computing power. First, the Vanishing Theorems giving estimations
for determining sets of Fourier coefficients were improved in articles 8
and 11. This goal required extensions to the geometry of numbers that
were given in articles 11 and 16; these extensions have proven useful in
their own right, resolving one conjecture of J. Martinet, see article 17.
Second, the Restriction Technique, see articles 14, 18, 19 and 20, was
introduced to find linear relations among Fourier coefficients. Third,
in article 22, a method of computing integral closures is introduced
for paramodular forms of genus two. The next innovation, using the
pullback of Eisenstein series, will appear in article 26. Our current
project, articles 22 and 24, is building evidence for higher modularity
theorems according to the Paramodular Conjecture as explained to us
by my colleague A. Brumer.

2. THESIS

1. Cross-Ratio Identities for Theta Functions on Jacobi Varieties,
Princeton University, (1-24), 1988.

My thesis derived the cross-ratio identities for Jacobian theta func-
tion in general and for hyperelliptic theta functions in particular. For
the hyperelliptic case, this work was directly continued in article 3.
The cyclic-covering case was further developed in [7] by H. Farkas.

3. PUBLISHED REFEREED ARTICLES

2. Fay’s Trisecant Formula and Cross-Ratios,
Proc. AMS, vol. 114. no. 3, (667-671), 1992.

This proof of Fay’s trisecant formula is based on the Riemann sur-
face function theory developed by my thesis advisor, R. C. Gunning. I
regret not explicitly including a similar proof of the multisecant iden-
tity. One can find it hidden on page 848 of article 3. An exposition
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of R. Gunning’s cross-ratio function is in the final section added to
the second edition of Riemann Surfaces by H. Farkas and I. Kra, the
excellent text book whose first edition I used as a graduate student.

3. The Hyperelliptic Locus,

Duke Math. J., vol. 76. no. 3, (809-884), 1994.

Here it is proved that irreducible hyperelliptic Jacobians are charac-
terized among all principally polarized abelian varieties by their van-
ishing nullwerte, an unresolved problem for over a century. In 1984,
D. Mumford [22] proved that hyperelliptic Jacobians are characterized
among all principally polarized abelian varieties by the vanishing and
nonvanishing of their nullwerte. Neither result seems to be a corollary
of the other. This article is a continuation of article 1. H. J. Weber
28] used this result to locate hyperelliptic Jacobians related to modu-
lar curves. I have unpublished results that hyperelliptic Jacobians are
characterized by their vanishing nullwerte alone in genera four and five.

4. Relations on the Period Mapping giving Eztensions of Mixed
Hodge Structures on Compact Riemann Surfaces.

Geometriae Dedicata, vol. 59, (243-291), 1996. (with D. Yuen)

R. Gunning [10] gave a novel proof of the symmetry of the Riemann
period matrix by studying the periods of iterated integrals of holomor-
phic differentials, work continued by his student E. Jablow [18]. R. Hain
[11] and his student M. Pulte [26] studied the mixed Hodge structure
on compact Riemann surfaces via periods of homotopy functionals con-
sisting of twice iterated integrals of holomorphic and anti-holomorphic
differentials. We attempted to unify these two approaches. We proved
that the holomorphic periods alone generically determine the mixed
Hodge structure. We found all higher order symmetries of the period
map arising from homotopy functionals among triple iterated integrals.
An intrinsic formulation of these symmetries is that that period map
from Teichmiiller space factors through a third exterior power bun-
dle over A,. This subject as been furthered [19] in the thesis of R.
Kaenders.

5. Schottky’s Form and the Hyperelliptic Locus
Proc. AMS, vol. 124, no. 7, (1987-1991), 1996.

J. I. Igusa proved [17] that Schottky’s form in genus four was given by
the difference of the theta series for the two classes of even unimodular
lattices in dimension sixteen. Schottky’s form vanishes on the Jacobian
locus in genus four. Here it is proven that this difference of theta series
vanishes on the hyperelliptic locus in every genus. S. Grushevsky and
R. Salvati Manni recently proved [9] that this difference does not vanish
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on the Jacobian locus in genus five but rather cuts out the trigonal
divisor on M.

6. Dimensions of spaces of Siegel modular forms of low weight in
degree four.
Bull. Austral. Math, Soc., vol. 54, (309-315), 1996. (with D. Yuen)

We found the dimensions of genus four Siegel cusp forms in weights 6,
8 and 12. The initial classification of the theta series of the Niemeier
lattices [5][6] by V. A. Erokhin was the main tool. The cases of weight 6
and 8 are corollaries of a theorem [27] by R. Salvati Manni but we were
unaware of this at the time. This note was immediately responded to
by W. Duke and O. Imamoglu in an article [3] using explicit formulae.
Our results were also used by E. Freitag and M. Oura in [8].

7. Scaling theory and solutions for steady-state coagulation and set-
tling of fractal aggregates in aquatic systems.
Colloids and Surfaces A, vol. 107, (155-174), 1996. (S. Grant, S. Relle)

The Smoluchowski coagulation equation, in integro-differential form,
is used to model steady-state coagulation in combination with gravi-
tational settling. Our model fits the particle volume concentrations of
Lake Zurich, Switzerland pretty well except for the large aggregates
which are likely being removed from the water column by other means.

8. Estimates for Dimensions of Spaces of Siegel Modular Cusp Forms
Abh. Math. Sem. Univ. Hamburg, vol. 66, (337-354), 1996. (D. Yuen)

This paper grew from a desire to explicitly compute with theta series
in higher genera. Siegel gave a constructive proof of the finite dimen-
sionality of vector spaces of Siegel modular forms. He showed that the
vector spaces were determined by Fourier coefficients with indices of
bounded trace. M. Eichler has a sharper vanishing theorem [4] that
uses the Minimum function m(v) = mingeze\ (0} 2've and relies on Her-
mite’s constant from the geometry of numbers. We interpolated the
proofs of Siegel and Eichler to get a reasonably sharp estimation the-
orem for any convex function. As an application, we reproved Witt’s
conjecture [29] by computing just one Fourier coefficient. In this sense,
this article is a sequel to [29], where Witt lamented the ungeheuere
Rechnungen. This work is continued in article 11.

9. Particle coagulation and the memory of initial conditions.
J. Phys. A., vol. 31, (9241-9254), 1998. (A. Boehm, S. Grant)

The Smoluchowski coagulation equations are a countably infinite set
of coupled nonlinear ordinary differential equations. When there is
uniform attraction among particles of different size, the large particle
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normalized distributions converge to a fixed function of the scaling pa-
rameter, independent of the initial conditions. The scaling parameter
is a ratio of particle size to time. It had been widely assumed that the
long time particle distributions were independent of the initial condi-
tions as well but we showed that this is not the case. The small particle
distributions retain a memory of the initial conditions indefinitely. The
magnitude of the effect depends upon the proximity to the unit circle
of the the complex roots of the generating function given by the initial
conditions.

10. Dimensions of Spaces of Siegel Modular Forms and Theta-Series
with Pluri-harmonics.

Far East J. Math. Sci., vol. 1. no. 6, (849-863), 1999. (D. Yuen)

We classified spaces of Siegel modular forms spanned by theta series
with pluriharmonic coefficients in some cases in genus four. The main
value of the article lies in the computational techniques. In particular,
we symmetrized the pluriharmonic polynomials under the automor-
phism group of the lattice and used the automorphisms to reduce the
complexity of the computations.

11. Linear dependence among Siegel modular forms.
Math. Ann., vol. 318. (205-234), 2000. (with D. Yuen)

The intrinsic “vanishing order” of a Fourier series f is a convex set
v(f): the convex semihull of the support of f. We prove the Semihull
Theorem: For Siegel modular cusp forms f of weight k, if Y*/2|f(Z)|
attains its maximum at Xy + Y, then Y5 " € v(f). From the Semi-
hull Theorem, we may recover the estimates for convex functions first
proven in article 8. The theorems proven here are used in articles 13,
14, 15, 16, 17, 18, 19 and 22.

We introduce an important convex function, the dyadic trace, and
use it to give improved determining sets of Fourier coefficients. For
example, in weight 12 and genus 4, a determining set consists of the 23
classes whose dyadic trace is less than or equal to 4; whereas the trace
estimate of Siegel requires over 100,000 classes. The dyadic trace has
been defined and applied in the case of Hermitian modular forms in
the thesis [20] of M. Klein.

12. Kinetic Theories for the Coagulation and Sedimentation of Par-
ticles. (S. Grant, J. Kim)

J. Colloid and Interface Science, vol. 238. (238-250), 2001.

The Smoluchowski coagulation equations are modified to include sed-
imentation. We assume that there is uniform attraction among par-
ticles of different size and that sedimentation increases linearly with
particle size. A solution is obtained for the corresponding nonlinear
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partial differential equation and we compare the solutions with the
predictions of two common approximations: the similarity theory and
the quasi-steady-state hypothesis. The latter does not fare well but the
similarity theory predicts critical exponents that are within about 20%
of those of our solution. The boundary of the coagulation dominated
zone is found by analyzing a nonlinear ordinary differential equation.

13. The Dyadic Trace and Odd Weight Computations For Siegel
Modular Cusp Forms.
Bull. Austral. Math, Soc., vol. 63, (269-271), 2001. (with D. Yuen)
We illustrate the results of article 11 in the case of odd weights. A
Fourier coefficient is no longer a class function but its vanishing is.

14. Restriction of Siegel modular forms to modular curves.
Bull. Austral. Math, Soc., vol. 65, (239-252), 2002. (with D. Yuen)

The Restriction Technique is introduced to produce linear relations
among the Fourier coefficients of Siegel modular forms. Siegel forms are
restricted to modular curves and the known linear relations among el-
liptic modular forms are pulled back. After article 11 provided tractable
determining sets of Fourier coefficients, a method was needed to find the
linear relations among these Fourier coefficients. This is an old prob-
lem, equivalent to finding the linear relations among certain Poincare
series. As an application, we computed the dimension of S1° a space
just beyond the reach of the explicit formula method [3]. If you wish
to learn the Restriction Technique, this is the article to read. Further
applications of the Restriction Technique are given in articles 18, 19
and 20.

15. Slopes of Integral lattices.

J. of Number Theory, vol. 100. (363-380), 2003. (with D. Yuen)

J. I. Igusa found critical slopes for the hyperelliptic locus [16]. J. Har-
ris and I. Morrison found critical slopes for the trigonal locus and gave
an elegant conjecture for the Jacobian locus [12]. We use the dyadic
trace to find critical slopes for the modular curves from article 14. Our
modular curves arise from lattices and the slope of a lattice is a new
integral invariant. The dyadic traces and slopes of all root lattices are
computed. The main result is that a Siegel modular cusp form vanishes
on a modular curve if the slope of the cusp form is less than the slope
of the lattice.

16. The Extreme Core.
Abh. Math. Sem. Univ. Hamburg, vol. 75, (51-75), 2005. (D. Yuen)
This article is a continuation of article 11 and advances the geometry
of numbers for its applications to Siegel modular forms. The topics
include kernels, cores and noble forms. We show the existence of the
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extreme core in each genus. This is a core Cey such that &k Cexy C v(f)
for every nontrivial cusp form f of weight k. Thus the existence of the
extreme core is a generalization of the Valence Inequality in genus one.
We estimate the extreme core in all genera and almost specify it in
genus two, leaving the true value of wy = sup;inf(A4y, t(f)) as an
open problem. The constants in the Vanishing theorems are improved
and the improvements are used in articles 19 and 22 and in [20].

17. The Bergé-Martinet constant and slopes of Siegel Cusp Forms.
Bull. London Math. Soc., vol. 38. (913-924), 2006. (with D. Yuen)

This is a topic in the geometry of numbers. We use the dyadic trace
to determine the value of the Bergé-Martinet constant for degrees 5,6
and 7. We prove Conjecture 6.4.16 in J. Martinet’s recent book [21]
by finding all dual-critical pairs. As an application to Siegel modular
forms, we use these newly found values of the Bergé-Martinet constant
to improve upon M. Eichler’s lower bound [4] for the optimal slope of
a cusp form in degrees 5,6 and 7.

18. Computations of spaces of Siegel modular cusp forms.

J. Math. Soc. Japan, vol. 59. no. 1, (185-222), 2007. (with D. Yuen)

This is a systematic exposition of the Restriction Technique written
with Professor David S. Yuen, a preliminary version was published in
[24]. Advances are made in both theory and computation. Determining
sets of Fourier coefficients from article 11 and the Restriction Technique
from article 14 are combined into a systematic method for computing
individual spaces of Siegel modular cusp forms. For g > 3, most known
cases are recovered and some new cases are computed in genera 4, 5
and 6. We compute Hecke eigenforms in the nontrivial cases.

It is natural to ask whether our method of computing spaces of
Siegel modular cusp forms always works. We were able to prove a
partial result: the linear relations generated by the Restriction Tech-
nique characterize the Fourier expansions of Siegel modular cusp forms
from among all convergent Fourier series. Whether or not the linear re-
lations generated by the Restriction Technique characterize the Fourier
expansions of Siegel modular cusp forms from among all formal Fourier
series is an open problem.

A similar open problem will appear in article 25. The natural ap-
plication of our method to congruence subgroups is in article 19. The
L-functions of the new Hecke eigenforms will appear in article 21.

19. Dimensions of Cusp Forms for T'g(p) in Degree Two and Small
Weights.
Abh. Math. Sem. Univ. Hamburg, vol. 77, (59-80), 2007. (D. Yuen)
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We explain how to use the method of article 18 and the constants
of article 16 for spaces of Siegel modular cusp forms of finite index in
the Siegel modular group. We applied our method to the weight one
spaces S3(Lo(p)) and found that they were trivial for primes p < 97.
This was unexpected and brought attention to the weight one case. T.
Ibukiyama and N. Skoruppa proved that S3(T'o(N)) always vanishes
[14] and their article appears in the same volume of the Abhandlungen.
In weight two, we examined the cases p < 41 and found only Saito-
Kurokawa and Yoshida lifts; unlike the weight one case, this pattern
cannot continue indefinitely. An enumeration of weight two forms will
require connections with rational abelian surfaces, see article 22 below.

In weights three and four, we verified conjectures of K. Hashimoto
[13] in some cases. T. Ibukiyama has since proven [15] these conjec-
tures. The obstruction to the weight three case was the weight one
case, which vanishes as mentioned above.

20. Toward the Siegel Ring in Genus Four.
Inter. J. Number Th. vol. 4. no. 4, (563-586), 2008. (M. Oura, D. Yuen)

In [8], E. Freitag and M. Oura found the first second-order theta
relation in genus four. This article is a direct continuation of that work
but the computations require the Restriction Technique from articles 14
and 18. We classify all relations through degree 32, finding six new
relations. A sequel to this paper, showing that the Thy map is not
surjective in genus four, has already been written by M. Oura and R.
Salvati Manni [23].

4. RESEARCH ACCEPTED FOR PUBLICATION

21. Lifting Puzzles in Degree Four.
(authors: C. Poor, N, Ryan, D. Yuen)
(accepted to: The Bulletin of the Australian Mathematical Society)
Dr. N. Ryan wrote his thesis on the computation of Satake parame-
ters. We use his work and the Hecke eigenforms found in article 18 to
compute Euler factors of L-functions in genus four. These are the first
examples of their type in genus four. Not all the Satake parameters in
our examples are unimodular; therefore, if the Generalized Ramanujan-
Petersson conjecture can be properly reformulated at all, there must
be two new types of lifts yet to be discovered.
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