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Abstract. We consider a period map Ψ from Teichmüller space to Hom(K2,H1)R, which

is a real vector bundle over the Siegel upper half space. This map lifts the Torelli map. We

study the action of the mapping class group on this period map. We show that the period

map from Teichmüller space modulo the Johnson kernel is generically injective. We derive

relations that the quadratic periods must satisfy. These identities are generalizations of the

symmetry of the Riemann period matrix. Using these higher bilinear relations, we show that

the period map factors through a translation of the subbundle (
∧

3H1)R and is completely

determined by the purely holomorphic quadratic periods. We apply this result to strengthen

some theorems in the literature. One application is that the quadratic periods, along with the

abelian periods, determine a generic marked compact Riemann surface up an element of the

kernel of Johnson’s homomorphism. Another application is that we compute the cocycle that

exhibits the mapping class group modulo the Johnson kernel as an extension of the group

Spg(Z) by the group (
∧

3H1)Z.

§0. Introduction.

The goal of this paper is to produce “higher bilinear period relations” for a compact
Riemann surface from a point of view which combines that of Gunning [4] and Jablow [9]
on quadratic periods with that of Hain [6] and Pulte [13] on variations of mixed Hodge
structure. The primary object arising from abelian periods on pure Hodge structures is the
Torelli map Ω : Tg → hg which sends a marked Riemann surface (f,M) from Teichmüller
space Tg to the period matrix Ωf in the Siegel upper half space hg; the notation (f,M)
refers to a map f from a fixed topological reference surface S to a Riemann surface M ,
thus giving a marking on M . The Torelli map Ω is equivariant with respect to the action
of the mapping class group Mg on Tg and the action of the symplectic group Spg(Z) on
hg. The symplectic group arises as the quotient of Mg by the Torelli group Ig, the normal
subgroup of Mg inducing the identity on H1(S,Z). The map [Ω] : Tg/Mg → hg/Spg(Z)
injects by Torelli’s theorem; alternatively, noting that Tg/Mg can be identified with the
moduli space of Riemann surfaces of genus g, one says the abelian periods Ωij completely
determine the Riemann surface. Our emphasis will be on the symmetry Ωij = Ωji of the
period map Ω; this symmetry is a consequence of Riemann’s bilinear relations which we
henceforth view as a period relation restricting the possible abelian periods. Gunning [4,
p.14] pointed out that the bilinear period relations of Riemann follow from the existence of
iterated integrals which are homotopy functionals. It is the generalization of these period
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relations to the period map giving classes of extensions of mixed Hodge structure that we
discuss in this paper.

The “higher periods” of a marked Riemann surface (f,M, z) are the values of iterated
integrals of 1-forms on M over loops in π1(M, z). We only consider iterated integrals
which are path homotopy functionals in order to restrict attention to homotopy classes of
loops. The classical abelian periods fit into this picture as the values

∫
γ
ω, for γ ∈ π1(M, z)

and ω ∈ H1(M,C), of iterated integrals of length one. For a 1-form ω, the integral
∫
ω

is a homotopy functional precisely when ω is closed. A standard basis ω1, . . . , ωg for
the holomorphic 1-forms on M is chosen in the following way. If a1, . . . , ag, b1, . . . , bg
are standard generators of π1(M, z) satisfying

∏g
i=1(ai, bi) = e, then the requirement∫

aj
ωi = δij for 1 ≤ i, j ≤ g uniquely determine the ωi. The period matrix Ωf is then

given by (Ωf )ij =
∫
bj
ωi for 1 ≤ i, j ≤ g. Since ω1, . . . , ωg, ω1, . . . , ωg give a basis for

H1(M,C), the abelian period matrix Ωf fully describes the periods in the length one
case. The length two case is immediately more complicated because iterated integrals of
the form I2 =

∑
i

∫
ξiηi +

∫
µ, for ξi, ηi, µ 1-forms on M , may not be homotopy path

functionals even when the ξi, ηi are closed. The condition that a µ exists such that I2
is a homotopy functional is in fact that

∑
i ξi ⊗ ηi lies in the kernel of the cup product

K2(M) = ker(∪ : H1 ⊗H1 → H2(M)). Although K2(M) does not seem to have a natural
basis in terms of ωi ⊗ ωj , ωi ⊗ ωj , etc., we can make some convenient choices and obtain
the corresponding homotopy functionals: the purely holomorphic homotopy functionals
σij =

∫
ωiωj , the mixed functionals τij (see Remark 2.11), and so on. The periods of

the ωi, σij , τij and their conjugates over loops in π1(M, z) fully describe the periods in
the length two case. Homotopy functionals of length two, moreover, provide information
about the length one periods; for example, if the σij for 1 ≤ i, j ≤ g are applied to the
commutator relation

∏g
i=1(ai, bi) = e, we obtain Riemann’s Equality (Ωf )ij = (Ωf )ji.

The question arises whether relations among the length two periods may be derived by
considering homotopy functionals of length three. This is indeed feasible, and all such
relations are generated by those in equations 5.15 and 5.16. The choice of a basis for
K2(M) is an unpleasant aspect of these equations, and one may ask for an intrinsic version.
The intrinsic meaning of these equations is better perceived in the context of mixed Hodge
structures, and it is in these terms that the paper is written.

A mixed Hodge structure (see [6]) may be put on homotopy functionals which are
iterated integrals of a fixed length. Let Bs(M) denote the iterated integrals onM of length
at most s, and let Bs(M) be those with no constant term. Let H0(Bs(M), z) denote the
homotopy functionals on π1(M, z) from Bs(M). The weight filtration on H0(Bs(M), z) is
given by the length of a representative iterated integral, and the Hodge filtration is given
by the “number of dz’s” in the iterated integral. To every pointed Riemann surface (M, z),
there is an associated extension of mixed Hodge structures given by

(*) 0 → H1(M,C) → H0(B2(M), z) → K2(M) → 0.

The congruence class of this extension is given by Ψ̃(M,z) ∈ Ext(K2(M), H1(M,C)) (see
[2] or [6]), which is computed via Ψ̃(M,z) = rZ◦s2 for a Hodge filtration preserving section
s2 : K2(M) → H0(B2(M), z) and an integral retraction rZ : H0(B2(M), z) → H1(M,C).
The important information given by picking a basis for K2(M) and computing higher
periods is equally well given by a section s2 from K2(M) to H0(B2(M), z). Riemann’s
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Equality, for example, is obtained by applying the section s2 to
∑g

i=1[ai, bi] ≡ 0 mod J3 in
the group ring Cπ1(M, z) with augmentation ideal J . Since the element Ψ̃(M,z) = rZ◦s2 ∈
Ext(K2(M), H1(M)) embodies all the length two periods and is intrinsic to M , we may
use Ψ̃(M,z) to construct an intrinsic version of the “higher bilinear period relations” found
in equations 5.15 and 5.16. In order to construct homotopy functionals of length three
it was necessary to consider K3(M) = (K2(M) ⊗ H1(M)) ∩ (H1(M) ⊗K2(M)) and the
exact sequence 0 → H0(B2(M), z) → H0(B3(M), z) → K3(M) → 0. In Definition 5.7, a
section s3 : K3(M) → H0(B3(M), z) is defined which provides homotopy functionals of
length three. The section s3 was constructed using Chen’s path functional derivative (see
Proposition 5.8 or [3]). Applying this section s3 to

∑g
i=1([ai, bi] − [ai, bi](ai − 1 + bi −

1)) ≡ 0 mod J4 provides the intrinsic version of the “higher bilinear relations” given in
Proposition 5.12. Instead of working with a fixed Riemann surface, however, we work over
Teichmüller space Tg,∗ (see beginning of §1).

We globalize these constructions using the abelian periods and the Torelli map as a
model. The Torelli map arises from trying to send each Riemann surface to its polarized
Hodge structure; however, it is easier to map marked Riemann surfaces and allow an
appropriate group action to identify changes of marking. The Torelli map Ω : Tg,∗ → hg is
equivariant with respect to Mg,∗ and Spg(Z); the group Mg,∗ identifies equivalent Riemann
surfaces and the group Spg(Z) identifies equivalent polarized Hodge structures. The Torelli
group Ig,∗ acts trivially on Ω, and we have Spg(Z) ∼= Mg,∗/Ig,∗. To each Z ∈ hg, we
may construct a principally polarized abelian variety AZ (see beginning of §1) whose first
cohomology group gives a weight one polarized Hodge structure H1(Z) with polarization
form qZ . We let K2(Z) = ker(qZ : H1 ⊗ H1 → C). We replace the Siegel upper half
space hg with a real vector bundle over hg, Hom(K2,H1)R, whose fiber over each Z ∈ hg is
Hom(K2(Z), H1(Z))R (see 1.7). We define a period map Ψ : Tg,∗ → Hom(K2,H1)R which
takes each marked Riemann surface to its congruence class of extension of mixed Hodge
structures given by (*). In Definition 2.8, we define Ψ̃f ∈ Hom(K2, H

1)R by Ψ̃f = rZ◦s2
using the section s2 and a retraction rZ which depends on the marking f . In Definition 2.10,
we define Ψf = (wf )∗Ψ̃f using the Abel-Jacobi map wf : M → AΩf

(see §1 prior to 1.8).
Then [Ψf ] ∈ Hom(K2(Ωf ), H1(Ωf ))R/Hom(K2(Ωf ), H1(Ωf ))Z ∼= Ext(K2(Ωf ), H1(Ωf ))
gives the correct extension class in Ext. Thus we have chosen not to map into a torus
bundle over hg with Ext(K2, H

1) as fibers but into a real vector bundle over hg with
Hom(K2, H

1) as fibers. The subgroup Ng,∗ of Mg,∗ which acts trivially on Ψ turns out
to be the kernel of Johnson’s homomorphism τ (see 3.1). The map Ψ is equivariant
with respect to Mg,∗ and the group Mg,∗/Ng,∗ which plays the role in the mixed Hodge
structure case that Spg(Z) plays in the pure Hodge structure case. We explicitly give
the structure of Mg,∗/Ng,∗ in Proposition 3.10. A global version of the “higher period
relations” is given by the factorization of Ψ through a subset of Hom(K2,H1)R in Theorem
5.24, part of which we state here. The definitions of the various symbols are given in the
main sections, so we mention them only briefly here: δ̂ is the cocycle extension (see §3) of

th0and λ identifies Hom(K2, H
1)

∼=−→ ((H1 ⊗H1)/q) ⊗H1.

Theorem 5.24. Let y ∈ Mg,∗ be any homology involution and λ−1δ̂(y) the corresponding
global section of Hom(K2,H1)Z. The period map Ψ : Tg,∗ → Hom(K2,H1)R factors
through the translation by − 1

2 λ
−1δ̂(y) of the subbundle λ−1ı−1(

∧
3H1)R so that we have:

Ψ : Tg,∗/Ng,∗ → (− 1
2 λ

−1δ̂(y) + λ−1ı−1∧3H1)R → Hom(K2,H1)R,
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and Ψ is equivariant with respect to the action of Mg,∗/Ng,∗.
We also have the factorization from Torelli space through the translation of a torus

bundle:

Ψ : Tg,∗/Ig,∗ → − 1
2 λ

−1δ̂(y) + λ−1ı−1(
∧

3H1)R
λ−1ı−1(

∧
3H1)Z

→ Hom(K2,H1)R
λ−1ı−1(

∧
3H1)Z

,

and Ψ is equivariant with respect to the affine action of Spg(Z) ∼= Mg,∗/Ig,∗.

The result of the bilinear relations in the case of the Torelli map Ω is that a corresponding
tensor in H1 ⊗H1 is symmetric. The result of the higher bilinear relations in the case of
Ψ is that a corresponding tensor in H1 ⊗H1 ⊗H1 is antisymmetric. In Theorem 5.24 we
see that Ψ : Tg,∗ → Ext(K2,H1) factors through the translation of

∧
3H1 by a half-lattice

element, and we see that Ψ : Tg,∗/Ig,∗ → Ext(K2,H1) factors through the translation of a
torus subbundle of Ext(K2,H1) by a two-torsion element. That Ψ factors in this manner
over Torelli space Tg,∗/Ig,∗ is a result due to Harris, Hain, and Pulte. Pulte [13] shows
that for each fixed Riemann surface M the difference of Ψ̃ at any two basepoints factors
through the intermediate Jacobian J2(Jac(M)) and also that 2Ψ̃ ∈ J2(Jac(M)):

M → Ext(K2,H1)
x �→ [Ψ̃M,x]

M ×M → J2(Jac(M)) ↪→ Ext(K2,H1)
(x, y) �→ Mx −My �→ [Ψ̃M,x] − [Ψ̃M,y]

The meaning of the higher bilinear period relations given in Proposition 5.12 and Lemma
5.1 is now clear: they give a new proof and a global version of the factorization of Ψ̃
through the intermediate Jacobian due to Harris, Hain and Pulte. They also show that
this factorization constitutes a global period relation in strict analogy with Riemann’s
bilinear relations. In §3, we also compute a global section of the 1

2Hom(K2,H1)Z bundle
which gives the two-torsion element needed to translate (

∧
3H1)R/(

∧
3H1)Z and show how

it arises from a homology involution. This allows us to exhibit the quotient of Mg,∗ which
acts on Ψ nontrivially, Mg,∗/Ng,∗, explicitly as an extension of Spg(Z) by (

∧
3H1)Z by

computing the cocycle in H2(Spg(Z), (
∧

3H1)Z) that does this in Proposition 3.10.
We turn to the relation our results have to other results in the literature. In Proposition

4.7 we use the result of Harris, Hain, Pulte and Koizumi to show that the map Ψ :
Tg,∗/Ng,∗ → Hom(K2,H1)R is generically injective. In Lemma 6.2 and Corollary 6.5 we
use the higher period relations to show that the map Ψ is completely determined by the
purely holomorphic quadratic periods. This result has implications for the earlier work on
higher periods which usually studied only the purely holomorphic periods; it shows that
on a Riemann surface the purely holomorphic periods already determine the congruence
class of the extension of mixed Hodge structure and hence determine all the periods of
mixed type. This result allows us to weaken the assumptions in two of Jablow’s results [9].
Proposition 6.6 says that if an element h ∈ Ig,∗ fixes all the purely holomorphic quadratic
periods then h ∈ Ng,∗ = Ker τ . Theorem 6.7 says that the abelian and purely holomorphic
quadratic periods generically determine a pointed marked Riemann surface up to elements
of Ng,∗. We end the paper by showing how to effectively compute any period of mixed
type in terms of the purely holomorphic periods.
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Finally, we try to give an indication of the importance of these results for the program
that we are following. The torus-bundle of translated intermediate Jacobians J2 over hg and
the affine action of Mg,∗/Ng,∗ give a moduli space for a class of (polarized) nilmanifolds
which have (polarized) abelian varieties as quotients and which are “like” the second
albanese manifold of a compact Riemann surface. Questions such as a global pointed
Torelli theorem, “Does Ψ : Tg,∗/Mg,∗ → Hom(K2,H1)R/(Mg,∗) inject?”, become “Is
(M, z) determined by the equivalence class of its second albanese as a polarized nilmanifold
in J2/(Mg,∗)?”. It is to study the second albanese directly as a member of a specific class of
nilmanifolds that we have endeavored to explicitly determine all of the polynomial relations
which bind the periods of Ψ.

The authors thank Richard Hain of Duke University for his helpful and interesting
discussions. We also thank the referee for detailed, excellent comments on a previous
version of this paper.

The main part of the paper is organized into six sections:
In §1, we make some preliminary definitions and prove some preliminary propositions.

We define the important bundle Hom(K2,H1)R. We also define various identification
maps.

In §2, we define our period map Ψ, which embodies the quadratic periods.
In §3, we define our cocycle δ̂ that extends Johnson’s homomorphism. We compute the

cocycle that gives the structure of the mapping class group modulo Johnson’s kernel.
In §4, we compute the action of mapping class group Mg,∗ on Ψ. We define an affine

action of the mapping class group on Hom(K2,H1)R, and we show that Mg,∗ acts equiv-
ariantly on Ψ. We also show that Ψ is generically injective modulo Johnson’s kernel.

In §5, we derive the “higher bilinear relations” and prove the main theorem that Ψ
factors through the translation of a certain subbundle isomorphic to

∧
3H1.

In §6, we show that Ψ is actually determined by the holomorphic quadratic periods. We
use this to strengthen some results in the literature. Finally, we show how to effectively
compute any period of mixed type in terms of the holomorphic periods.

§1. Preliminaries.

We let S be a compact real 2-manifold of genus g ≥ 1, and s ∈ S be a distinguished
point. We denote by βi, αi for i = 1, . . . , g, or by γi for i = 1, . . . , 2g if one symbol is
desired, the standard generators of π1(S, s). We note that the [γi] then give a standard
basis for H1(S,Z). Here, we use [·] to denote the element in homology corresponding to
an element in homotopy. We place a fixed complex structure on S and use it as a fixed
surface for the construction of the Teichmüller space Tg,∗ of marked, pointed Riemann
surfaces. Let A be the set of triples (f,M, z) where M is a compact Riemann surface of
genus g, z ∈ M and f : (S, s) → (M, z) is an orientation preserving homeomorphism of S
onto M taking s to z. Two elements of A are termed equivalent if there is a conformal map
φ : (M1, z1) → (M2, z2) such that f−1

2 ◦φ◦f1 : (S, s) → (S, s) is isotopic to the identity.
Tg,∗ is the set of equivalence classes in A and we view Tg,∗ as the moduli space of “marked”
Riemann surfaces. For (f,M, z) ∈ Tg,∗, a standard set of generators for π1(M, z) is given
by ai = f∗(αi), bi = f∗(βi) for i = 1, . . . , g and this is what is meant when f is referred
to as a “marking”. The mapping class group Mg,∗ is the group of isotopy classes of
orientation preserving homeomorphisms of (S, s) onto (S, s). We let the group Mg,∗ act
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on the right on Tg,∗ via:

(1.1) for h ∈ Mg,∗, h : Tg,∗ → Tg,∗
(f,M, z) �→ (f◦h,M, z) .

A class h ∈ Mg,∗ is given by an orientation preserving homeomorphism h : (S, s) → (S, s),
and h induces an automorphism h∗ of π1(S, s) which induces the identity on H2(S,Z)
as well as a symplectic automorphism of H1(S,Z) which we also denote by h∗. We let
ρh ∈ Spg(Z) be the 2g × 2g matrix which represents h∗ on H1(S,Z) with respect to the
standard basis [γi]. This gives a homomorphism ρ : Mg,∗ → Spg(Z), which is onto by a
theorem of Manger [12]; its kernel Ker (ρ) = Ig,∗ is known as the Torelli group.

We let hg denote the Siegel upper half space of g× g symmetric complex matrices with
positive definite imaginary part. For Z ∈ hg we let LZ = ZZg + Zg ⊆ Cg be a lattice and
recall that AZ = Cg/LZ has the structure of a principally polarized abelian variety. The
identification of lattice elements in LZ with loops based at 0 in AZ gives the canonical
identification H1(AZ ,Z) ∼= LZ . Given Z ∈ hg, we may use this identification to construct
a standard basis for H1(AZ ,Z). We let Ai ∈ H1(AZ ,Z) be given by the loop t ∈ [0, 1],
t �→ (δijt)

g
j=1 ∈ AZ , and Bi by the loop t ∈ [0, 1], t �→ (Zijt)

g
j=1 ∈ AZ , for i = 1, . . . , g.

We note that the polarization form is dual to the element qZ =
∑

iAi ∧ Bi ∈ H1 ⊗ H1.
The standard left action of Spg(Z) on hg is given by σ · Z = (aZ + b)(cZ + d)−1, for

σ =
(
a b
c d

)
∈ Spg(Z) and Z ∈ hg. We will use a right action of Spg(Z) on hg given by

Z · σ = tσ · Z.

Definition 1.2. We define our action on the right of Spg(Z) on the trivial bundle hg ×
H1(S,Z) as follows: (Z, ([β] [α])

(
n
m

)
) · σ = (tσ · Z, ([β] [α])σ−1

(
n
m

)
) for σ ∈ Spg(Z) and

n,m ∈ Zg. Here, [α], [β] stand for the row vector with components αi and βi, respectively.

The right action of Spg(Z) on hg × H1(S,Z) defined above is easily motivated. We
are imitating the right action of Mg,∗ on Tg,∗ × H1(S,Z) given by ((f,M), [γ]) · h =
((f◦h,M), h−1

∗ [γ]) for h ∈ Mg,∗.

Definition 1.3. Let H1(Z) =
∐
Z∈hg

H1(AZ ,Z).

Define  : hg ×H1(S,Z) → H1(Z)
by (Z, ([β] [α])

(
n
m

)
) �→ (B A)

(
n
m

)
∈ H1(AZ ,Z).

Here, A, B stand for the row vector with components Ai and Bi, respectively.

Definition 1.4. Let Spg(Z) act on H1(Z) on the right via

[(B A)
(
n

m

)
] · σ = (B A)σ−1

(
n

m

)
∈ H1(Atσ·Z ,Z)

for any given σ ∈ Spg(Z) and (B A)
(
n
m

)
∈ H1(AZ ,Z).
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Lemma 1.5.  is a bijection and gives H1(Z) the structure of a trivial bundle. For σ ∈
Spg(Z), the following diagram commutes:

hg ×H1(S,Z)


−−−−→ H1(Z)�·σ
�·σ

hg ×H1(S,Z)


−−−−→ H1(Z).

Proof. Left to the reader.

Note also that for i = 1, . . . , g, (•, [βi]) and (•, [αi]) are global sections of H1(Z) over
hg. If we tensor H1(Z) over Z in each fiber with C or R, we obtain a trivial complex or real
vector bundle H1(C) or H1(R), whose fibers may be treated as H1(AZ ,C) or H1(AZ ,R),
respectively. Furthermore the homology group H1(AZ ,C), often abbreviated H1(Z), has
a polarized Hodge structure of weight −1 dual to the weight 1 polarized Hodge structure
on H1(AZ ,C). The Hodge filtration on H1(AZ ,C) is given by F 0H1 = Ann(F 1H1) =
Ann(H1,0) = {(BA)

(
µ
ν

)
∈ H1 ⊗Z C : µ, ν ∈ Cg and (Z I)

(
µ
ν

)
= 0}. The action of σ ∈

Spg(Z) on each fiber is actually a morphism of polarized Hodge structures. To check this,
let (BA)

(
µ
ν

)
∈ H1(AZ ,C) and assume (Z I)

(
µ
ν

)
= 0. Then ((BA)

(
µ
ν

)
)·σ = (BA)σ−1

(
µ
ν

)
∈

H1(Atσ·Z ,C), and we verify that (tσ ·Z I)σ−1
(
µ
ν

)
= (Zb+d)−1(Z I)

(
µ
ν

)
= (Zb+d)−10 = 0.

Furthermore, (qZ) · σ = qZ·σ because the symplectic group fixes the symplectic form.

Proposition 1.6. H1(C) is a trivial vector bundle of polarized Hodge structures over hg.
If Γ ⊆ Spg(Z) is a subgroup that acts without fixed points on hg, then H1(C)/Γ is also a
vector bundle of polarized Hodge structures over hg/Γ.

Proof. Everything has been verified already except the part about the action of the sub-
group Γ. Spg(Z)/± I acts properly discontinuously on hg [8, p.25]. If Γ is fixed point free
then H1(C) → H1(C)/Γ will be a covering map so that hg/Γ will be a complex manifold
and H1(C)/Γ will be a vector bundle [8, p.117].

We have described the construction of the bundle H1(C) in some detail because we will
omit most details when constructing further bundles. The abelian category of polarized
Hodge structures admits both duals and tensor products. These two operations on vector
spaces induce corresponding operations on vector bundles. We have the vector bundle
H1(C) ⊗ H1(C), which will be a vector bundle of Hodge structures, and Spg(Z) acts
naturally on the right as morphisms on fibers. We continue to write the right action of
σ ∈ Spg(Z) as ·σ even when ·(σ⊗ σ) or ·(σ⊗ tσ−1) would be more precise; this convention
avoids the need to change our notation every time an intermediate isomorphism such as
H1(C)⊗H1(C) ∼= H1(C)⊗H1(C) is applied. Note that Z �→ (Z, qZ) will be a section of the
bundle H1(C) ⊗ H1(C); call this section q. Since each qZ may be thought of as a bilinear
map q : H1 ⊗H1 → C, then q is a vector bundle morphism from H1(C)⊗H1(C) → hg ×C.
The symplectic group leaves q invariant; so the symplectic group restricts to an action on
the kernel of q. Namely, we can construct vector bundles of polarized Hodge structures K2

and K3 where the fibers are given by the exact sequences of Hodge structures:
(1.7)

0 → K2(Z) → H1(AZ ,C) ⊗H1(AZ ,C)
qZ−→ C → 0,

0 → K3(Z) → H1(AZ ,C) ⊗H1(AZ ,C) ⊗H1(AZ ,C)
(qZ⊗id)⊕(−id⊗qZ)

−−−−−−−−−−−−→ H1 ⊕H1 → 0.
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So Spg(Z) will act on the vector bundles K2 and K3. Our main interest will be in the real
vector bundle Hom(K2,H1)R over hg, whose fibers are Hom(K2(Z), H1(Z))R. The space
Hom(K2(Z), H1(Z)) has a Hodge structure of weight −1. Because Hom(K2, H

1) has neg-
ative weight, the real space Hom(K2, H

1)R injects into Hom(K2, H
1)C/F 0Hom(K2, H

1).
For a quick proof, let A be a Hodge structure of negative weight. Then F 0A ∩ F 0

A = 0.
Since AR ∩ F 0A ⊆ AR is invariant under conjugation, we have AR ∩ F 0A = AR ∩ F 0

A =
AR ∩ (F 0A ∩ F 0

A) = 0, and so AR imbeds in AC/F 0A indeed. We define the torus

Ext(K2, H
1) =

Hom(K2, H
1)C

F 0Hom(K2, H1) + Hom(K2, H1)Z
∼= Hom(K2, H

1)R
Hom(K2, H1)Z

which gives the set of congruence classes of separated extensions of mixed Hodge structures
of K2 by H1 (see [2] or [6]). We may also define the torus bundle Ext(K2,H1) over hg
having these Ext(K2, H

1) as fibers.

Consider (f,M, z) ∈ Tg,∗ with its marking ai = f∗(αi), bi = f∗(βi) and its corresponding
abelian differentials ωi normalized by

∫
aj
ωi = δij and

∫
bj
ωi = (Ωf )ij . We also have the

Abel-Jacobi map wf : M → AΩf
given by x �→ (

∫ x
z
ωi)

g
i=1 and the induced isomorphism

on homology (wf )∗ : H1(M,Z) → H1(AΩf
,Z). Since (wf )∗(ai) =

∫
ai
ω• = δ•i = (Ωf , αi)

and (wf )∗(bi) =
∫
bi
ω• = Ω•i = (Ωf , βi), the following diagram commutes:

(1.8)

H1(M,Z)
(wf )∗

−−−−→ H1(AΩf
,Z)

f∗

 ∥∥∥
H1(S,Z)

Ωf

−−−−→ H1(AΩf
,Z).

If the homology basis
(
[b]
[a]

)
for H1(M,Z) is changed to

(
[b̃]
[ã]

)
= σ

(
[b]
[a]

)
for σ ∈ Spg(Z), then

the period matrix Ωf changes to σ · Ωf . We let (f,M, z) ∈ Tg,∗ have period matrix Ωf

and let h ∈ Mg,∗ act on (f,M, z) as (f,M, z) · h = (f◦h,M, z). The change of marking
f◦h◦f−1 has the homology matrix ρh with respect to the homology basis f∗[γ] ∈ H1(M,Z)
that was used to compute Ωf . Accordingly the action of f◦h◦f−1 on the homology basis(
[b]
[a]

)
is tρh

(
[b]
[a]

)
, and we conclude that Ωf◦h = tρh ·Ωf . This additional piece of information is
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enough to show that the following diagram commutes. For (f,M, z) ∈ Tg,∗ and h ∈ Mg,∗,

(1.9)

H1(S,Z)∥∥∥
H1(S,Z)

f∗−−−−→ H1(M,Z)h∗

∥∥∥
H1(S,Z)

(f◦h)∗
−−−−→ H1(M,Z)∥∥∥

H1(S,Z)

Ωf

−−−−−−−−−−−−−−−−−−−−→

Ωf◦h
−−−−−−−−−−−−−−−−−−−−→

H1(AΩf
,Z)∥∥∥

(wf )∗
−−−−−→ H1(AΩf

,Z)�·ρh

(wf◦h)∗
−−−−−→ H1(AΩf◦h ,Z)∥∥∥

H1(AΩf◦h ,Z).

Also, for any Z ∈ hg, we have the diagram

(1.10)

H1(S,Z)
Z−−−−→ H1(AZ ,Z)h∗

�·ρh

H1(S,Z)
Z·ρh−−−−→ H1(AZ·ρh ,Z)

We now introduce certain isomorphisms, λ, ı, and θ, which will be defined whenever
we have a principally polarized Hodge structure of weight one. In general, we use angular
brackets 〈 · , · 〉 to denote the pairing between a mixed Hodge structure and its dual.

Definition 1.11. Let (H1, q) be a principally polarized Hodge structure of weight one
with K2 = Ker q ⊆ H1 ⊗H1 and H1 = dual of H1. The map

λ : Hom(K2, H
1)

∼=−→ ((H1 ⊗H1)/q) ⊗H1

is defined by the property that 〈λφ , k ⊗ c 〉 = 〈φ(k) , c 〉 for all φ ∈ Hom(K2, H
1) and all

k ⊗ c ∈ K2 ⊗H1. Also, define

ı : ((H1 ⊗H1)/q) ⊗H1
∼=−→ ((H1 ⊗H1)/q) ⊗H1

by [a⊗ b] ⊗ c �→ [a⊗ b] ⊗ ((c⊗ idH1)(q)).

Let θ : H1 ⊗H1 ⊗H1 → H1 ⊗H1 ⊗H1 be the map defined by θ : a ⊗ b ⊗ c �→ b ⊗ a ⊗ c.
Since θ(q ⊗ c) = −q ⊗ c, we have the induced map

θ : ((H1 ⊗H1)/q) ⊗H1

∼=−→ ((H1 ⊗H1)/q) ⊗H1

defined by [a⊗ b] ⊗ c �→ [b⊗ a] ⊗ c.

We now prove a useful lemma.
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Lemma 1.12. The following diagram of vector spaces commutes, and the last three terms
of the middle row form an exact sequence. Here, we write

∧
2H1 to denote the vector

subspace of H1⊗H1 spanned by elements of the form a∧b = a⊗b−b⊗a; and more generally,
the exterior product

∧
3H1 is the subspace of

⊗3
H1 of elements which are antisymmetric

with respect to transpositions under the action of the symmetric group.

∧
3H1

injects
−−−−→

∧
2H1 ⊗H1

injects
−−−−→ H1 ⊗H1 ⊗H1∥∥∥ surjects

� surjects

�
∧

3H1

injects
−−−−→ (

∧
2H1/q) ⊗H1

injects
−−−−→ ((H1 ⊗H1)/q) ⊗H1

id+θ
−−−−→ Sym(H1 ⊗H1) ⊗H1∥∥∥ ∥∥∥ surjects

�
∧

3H1

injects
−−−−→ (

∧
2H1/q) ⊗H1

injects
−−−−→ (H1 ⊗H1 ⊗H1)/(q ⊗H1 +H1 ⊗ q)

Proof. The injections in the top row are clear. To show that
∧

3H1 ↪→ (
∧

2H1/q) ⊗ H1

is an injection, we need to show that (
∧

3H1) ∩ (q ⊗ H1) = 0. Pick a standard basis
Aj , Bj ∈ H1 so that q =

∑
Aj ∧Bj , and suppose q⊗h ∈

∧
3H1 where h =

∑
mjAj+njBj ,

with mj , nj ∈ C. We can cycle the three tensor components in q ⊗ h to obtain equal
representations of 2q ⊗ h:

2(
g∑
i=1

Ai ∧Bi) ⊗ (
g∑
j=1

mjAj + njBj) =
g∑
j=1

h ∧Aj ⊗Bj +Bj ∧ h⊗Aj .

Equating elements in
∧

2H1 paired with Aj or Bj in the third tensor component, we would
have 2mjq = Bj ∧ h and 2njq = h ∧ Aj . Since q is not decomposable, we conclude
mj , nj = 0, and hence h = 0. The subspace (

∧
2H1/q)⊗H1 ⊆ ((H1 ⊗H1)/q)⊗H1 is clearly

the kernel of id+θ since id+θ is twice the projection onto Sym(H1 ⊗H1)⊗H1. This shows
the exactness of the last three terms. The third row contains the map (

∧
2H1/q) ⊗H1 →

(H1 ⊗H1 ⊗H1)/(q ⊗H1 +H1 ⊗ q), and to show this is an injection, we must show

(1.13) (
∧2
H1 ⊗H1) ∩ (q ⊗H1 +H1 ⊗ q) = q ⊗H1.

Suppose q⊗h+h′ ⊗ q ∈
∧

2H1 ⊗H1. Then h′ ⊗ q ∈
∧

2H1 ⊗H1. This implies that h′ ⊗ q is
alternating when the first two tensor components are switched. Since h′ ⊗ q is alternating
when the last two tensor components are switched, we conclude that h′ ⊗ q ∈

∧
3H1. By

our previous argument, (H1 ⊗ q) ∩ (
∧

3H1) = 0, and so h′ ⊗ q = 0. This proves equation
1.13, and completes the proof.

For more details about Teichmüller space, see Bers [1]; about the Torelli group, see
Johnson [10]; about hg, see Igusa [8]; about extensions of mixed Hodge structures, see
Carlson [2].

§2. The map Ψ.

In this section we define the map Ψ : Tg,∗ → Hom(K2,H1)R which associates to
(f,M, z) ∈ Tg,∗ the period matrix Ωf and the element Ψf ∈ Hom(K2(AΩf

), H1(AΩf
))R.
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The element Ψf is the image of a Ψ̃f ∈ Hom(K2(M), H1(M))R giving the extension of
mixed Hodge structures for 0 → H1(M) → (J/J3)∗ → K2(M) → 0.

For a compact Riemann surface M with basepoint z, we have the following exact se-
quences of mixed Hodge structures [6]:

(2.1) 0 → H1(M) → H0(B2(M), z)
p2−→ K2(M) → 0,

and the dual sequence,

(2.2) 0 → (H1(M) ⊗H1(M))/qM
p∗2−→ (J(M, z)/J(M, z)3) → (J(M, z)/J(M, z)2) → 0.

Here, p∗2 is defined by p∗2([c1] ⊗ [c2]) = (c1 − 1)(c2 − 1) for ci ∈ π1(M, z); the complex
vector space H0(B2(M), z) is the space of homotopy functionals which can be expressed
as a reduced length two iterated integral; and the ring J(M, z) is the augmentation ideal
of the group ring Cπ1(M, z). We will denote the pairing (via integration) of an iterated
integral I ∈ H0(B2(M), z) with a loop c ∈ π1 by 〈 I , c 〉.

We denote the vector space of C∞ k-forms on M by Ak(M), and the subspace of
(p+ q)-forms of type p, q by Ap,q(M). Also, denote the subspace of closed forms by Zp,q.

Definition 2.3. K̂2(M) = {k ∈ A1(M) ⊗A1(M) : ∧k is exact}.

Lemma 2.4. There is a unique linear map u : K̂2(M) → A1,0(M) such that for all
k ∈ K̂2(M), ∧k + du(k) = 0 and u(k) − u(k) is exact.

Proof. We will first prove the claim that to each k ∈ K̂2(M) there exists a unique pair
u(k) and ũ(k) in A1,0(M) such that du(k) + ∧k = 0, dũ(k) + ∧k = 0, and u(k) − ũ(k) is
exact. Since ∧k is exact, there exists a 1, 0-form w ∈ A1(M) such that ∧k+ dw = 0. This
can be proven as follows. Consider the following diagram with exact rows,

A1,0(M)
∂̄

−→ A1,1(M) −→ 0⋂
‖

A1(M)
d

−→ A2(M) −→ 0.

This induces a surjective linear map,

C ∼= H1,1

∂̄
(M) ∼= A1,1(M)

∂̄A1,0(M)
−→ A2(M)

dA1(M)
∼= C.

So this map is an isomorphism, which means that ∧k ∈ dA1(M) implies ∧k ∈ ∂̄A1,0(M).
Hence there exists a 1, 0-form w ∈ A1(M) such that ∧k + dw = 0, as claimed. There is
also a 1, 0-form v ∈ A1(M) such that ∧k + dv = 0. Then we have dw − dv = 0, and so
w − v is closed. By the Hodge decomposition, we have

w − v = w′ − v′ + exact,

where w′, v′ ∈ Z1,0(M) are holomorphic 1-forms. Now let u(k) = w − w′, and let ũ(k) =
v− v′. Certainly, u(k) and ũ(k) are in A1,0(M), with du(k) + ∧k = 0 and dũ(k) + ∧k = 0.
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Also, we have u(k)−ũ(k) = w−w′−(v − v′) = (an exact form). To prove the uniqueness in
this claim, suppose also that u′ and ũ′ are in A1,0(M) such that du′+∧k = 0, dũ′+∧k = 0,
and u′ − ũ′ is exact. Then we have du − du′ = 0, so that u − u′ ∈ Z1,0(M). Similarly,
we have ũ − ũ′ ∈ Z1,0(M). Also, since u − ũ and u′ − ũ′ are exact, then their difference,
u − u′ − (ũ− ũ′) is exact. But (u − u′) is holomorphic and (ũ− ũ′) is antiholomorphic;
hence by the Hodge decomposition of closed 1-forms, they must both be 0. Thus u = u′

and ũ = ũ′, proving uniqueness and the claim.
Note that since dũ(k) + ∧k = 0, du(k) + ∧k = 0, and ũ(k) − u(k) is exact, we must

have that ũ(k) = u(k) by uniqueness in the claim. Thus we have proven that there exists
a set-theoretic map u : K̂2(M) → A1,0(M) such that du(k) + ∧k = 0 and and u(k) − u(k)
is exact. Such a map must be unique since any such map u would generate a pair u and
ũ that satisfies the above claim.

The uniqueness in the claim forces this map u to be linear since corresponding to any
element k1 + k2 ∈ K̂2(M), the pair (u(k1) + u(k2)) and (ũ(k1) + ũ(k2)) and the pair
(u(k1 + k2)) and (ũ(k1 + k2)) both satisfy the claim and hence must be the same.

This map u was constructed and used by Pulte in section 3 of [13]. We have repeated
the existence proof here because u is important in our computations.

Remark 2.5. By using harmonic representatives, we may viewK2(M) ⊆ K̂2(M): if
∑

[µi]⊗
[νi] ∈ K2(M) ⊆ H1 ⊗ H1 and µi and νi are the unique harmonic 1-forms representing
[µi], [νi] ∈ H1, then

∑
µi ⊗ νi ∈ K̂2(M). This allows us to use the restricted map u :

K2(M) → A1,0(M).

Proposition 2.6. Let (M, z) be a compact Riemann surface with basepoint. A Hodge
filtration preserving section of p2 is defined by

s2 : K2(M) → H0(B2(M), z)
k �→

∫
(k + u(k)).

Proof. (Pulte [13, p.730]) The iterated integral
∫

(k+u(k)) is a homotopy functional since
∧k + du(k) = 0. It preserves the Hodge filtration since u(k) ∈ A1,0 and u|F 2K2

= 0.

Remark 2.7. The section s2 also preserves the weight filtration. But s2 is not a morphism
of mixed Hodge structures because s2 does not preserve the lattice. For example, if h ∈
(H1(M))Z, then s2(h⊗ h) =

∫
hh = 1

2

∫
h

∫
h, which may take the value 1

2 on H1(M,Z).

Definition 2.8. Let (f,M, z) ∈ Tg,∗ be a marked Riemann surface. Define an integral
retraction rZ : H0(B2(M), z) → H1(M) for all I ∈ H0(B2(M), z) by

rZ(I) =
g∑
i=1

〈 I , ai 〉[ai]∗ + 〈 I , bi 〉[bi]∗,

where [ai]∗, [bi]∗ is the dual basis in H1, of the basis [ai], [bi] in H1. Also, define

Ψ̃f = rZ◦s2 ∈ Hom(K2(M), H1(M))C.
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Lemma 2.9. Let (f,M, z) ∈ Tg,∗. Then Ψ̃f ∈ Hom(K2(M), H1(M))R and [Ψ̃f ] ∈
Ext(K2(M), H1(M)) gives the congruence class of the extension of mixed Hodge struc-

tures in 0 → H1(M) → H0(B2(M), z)
p2−→ K2(M) → 0.

Proof. Since rZ(I) = rZ(I) and s2(k) = s2(k), we have Ψ̃f (k) = Ψ̃f (k) for all k ∈ K2(M)
and this means that Ψ̃f ∈ Hom(K2, H

1)R. That Ψ̃f gives the correct class in Ext(K2, H
1)

is proven in Pulte [13, Theorem 2.9] or Carlson [2, pp.116–117].

Definition 2.10. For (f,M, z) ∈ Tg,∗, define Ψf ∈ Hom(K2(Ωf ), H1(Ωf ))R by Ψf =
(wf )∗Ψ̃f where (wf )∗ : Hom(K2(M), H1(M))R → Hom(K2(Ωf ), H1(Ωf ))R is the map
induced by the Abel-Jacobi map wf : M → AΩf

.

Remark 2.11. If we wish to consider Ψ̃ as a period map, we select a basis for K2(M). Let
ω1, . . . , ωg be a normalized basis of abelian differentials on M so that 〈

∫
ωi , aj 〉 = δij

and 〈
∫
ωi , bj 〉 = Ωij . Then ωi ⊗ ωj , ωi ⊗ ωj , ωi ⊗ ωj − Λijω1 ⊗ ω1, ωi ⊗ ωj − Λijω1 ⊗ ω1,

and ω1 ⊗ω1 +ω1 ⊗ω1 form a basis for K2(M) where Λij = ImΩij/ImΩ11. Hence we have
the homotopy functionals, σij and τij defined by

σij(c) =
∫
c

ωiωj , (1 ≤ i, j ≤ g)

τij(c) =
∫
c

ωiωj − Λijω1ω1 + u(ωi ⊗ ωj − Λijω1 ⊗ ω1), ((i, j) != (1, 1))

etc.

for loops c ∈ π1(M, z). We may explictly give Ψ̃f as follows. For simplicity, write
c1, . . . , c2g for b1, . . . , bg, a1, . . . , ag. Then

λΨ̃f =
∑
i,j,k

(σij(ck)[ωi ⊗ ωj ]∗ ⊗ [ck]∗ + τij(ck)[ωi ⊗ ωj − Λijω1 ⊗ ω1]∗ ⊗ [ck]∗

+τ ij(ck)[ωi ⊗ ωj − Λijω1 ⊗ ω1]∗ ⊗ [ck]∗ + σij(ck)[ωi ⊗ ωj ]∗ ⊗ [ck]∗)

+
∑
k

〈
∫
ω1

∫
ω1 , ck 〉[ω1 ⊗ ω1 + ω1 ⊗ ω1]∗ ⊗ [ck]∗.

The functions σij(ck), τij(ck), etc. are well-defined functions on Tg,∗. The functions
σij(ak), σij(bk) arising from the purely holomorphic part of K2 are called the quadratic
periods, and the τij(ak), τij(bk) are called the mixed periods (see [9], [4]). The basis used
here is merely convenient and we know of no “natural” basis for K2(M). When one wishes
to present a statement about periods in a basis-free form, it is best to use the map Ψ̃.

§3. The cocycle δ̂.

In this section, we define a cocycle δ̂ ∈ Z1((Mg,∗, (H1 ⊗H1)/q)⊗H1)Z), a global section
η ∈

⊗3H1(Z), and a cocycle φ ∈ H2(Spg(Z), (
∧

3H1)Z). The cocycle δ̂ extends Johnson’s
homomorphism δ and will be used in the next section to compute the action of Mg,∗ on
Ψ in Proposition 4.2. The global section η gives the value ıδ̂(y) in ((H1 ⊗ H1)/q) ⊗ H1)
for some homology involution y ∈ Mg,∗, and among all such sections we show that η is
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intrinsically distinguished by its retracting to zero in
∧

3H1 (Lemma 3.9). This explicit
section η is then used to compute the cocycle φ which gives the group extension 0 →
(
∧

3H1)Z → Mg,∗/Ng,∗ → Spg(Z) → 0. Hence the structure of the mapping class group
modulo Johnson’s kernel, Mg,∗/Ng,∗, is given very explicitly.

We now recall D. Johnson’s homomorphism [10]. There are three equivalent versions,
which we denote by δ′, δ and τ ; these maps differ in their image spaces. The homomorphism
δ′,

δ′ : Ig,∗ → Hom(H1(S), (H1 ⊗H1)/qS)Z,

is defined for h ∈ Ig,∗ to be the element δ′(h) ∈ Hom(H1(S), (H1 ⊗H1)/qS) that sends each
[γ] ∈ H1(S) (where γ ∈ π1(S, s)) to γ−1h∗(γ) ∈ [π1(S, s), π1(S, s)] and then identifying
[π1, π1]/[π1, [π1, π1]] ∼= (H1 ∧H1)/q. The homomorphism δ,

(3.1) δ : Ig,∗ → ((H1(S,Z) ⊗H1(S,Z))/qS) ⊗H1,

is obtained from δ′ through the natural isomorphism Hom(H1, (H1 ⊗ H1)/q) ∼= ((H1 ⊗
H1)/q)⊗H1. Recalling the identification map of Definition 1.11, ı : ((H1⊗H1)/q)⊗H1

∼=−→
((H1 ⊗ H1)/q) ⊗ H1, we have the homomorphism τ = ıδ : Ig,∗ → ((H1 ⊗ H1)/q) ⊗ H1.
Johnson showed [10, p.170] that this map τ has the same image as

∧
3H1, and this is the

most important fact for us.
We will define a map δ̂ from Mg,∗ to (H1(S) ⊗H1(S))/qS ⊗H1(S) which restricts to

Johnson’s map δ on Ig,∗. A generalization of [π1, π1]/[π1, [π1, π1]] ∼= (H1 ∧H1)/q is that we

may identify J2/J3
∼=−→ (H1 ⊗H1)/q. This is accomplished via (p∗2)

−1
S as given in equation

2.2. Thus Johnson’s map δ′ is given by δ′(h)[γ] = (p∗2)
−1
S (γ−1h∗(γ) − 1). So δ(h) could be

written as δ(h) =
∑

γ(p
∗
2)

−1
S (γ−1h∗(γ) − 1) ⊗ [γ]∗, where the sum runs over a basis [γ] of

H1. We use this viewpoint to define our map δ̂; however, δ̂ is no longer a homomorphism
but a cocycle of some sort.

Definition 3.2. For h ∈ Mg,∗, recall that we let ρh ∈ Spg(Z) be the matrix representing
h∗ in the homology basis [γi] of H1(S,Z). For i = 1, . . . , 2g, define δ̂i : Mg,∗ → J(S, s)Z
by

δ̂i(h) =


 2g∑
j=1

[tρ−1
h ]ij(h∗(γj) − 1)


 − (γi − 1).

Lemma 3.3. For each i = 1, . . . , 2g, we have that δ̂i maps to J2(S, s)Z.

Proof. Let h ∈ Mg,∗. Since δ̂i(h) ∈ J(S, s), we only need to show that δ̂i(h) = 0 in
J/J2 ∼= H1(S). In H1(S) however, δ̂i(h) = (

∑2g
j=1[

tρ−1
h ]ij(h∗(γj) − 1)) − (γi − 1) is given

by (tρ−1
h

tρh[γ])i − [γi] = [γi] − [γi] = 0.

Definition 3.4. Define δ̂ =
∑2g

i=1(p
∗
2)

−1
S δ̂i ⊗ [γi]∗, so that

δ̂ : Mg,∗ → ((H1(S,Z) ⊗H1(S,Z))/qS) ⊗H1(S,Z)
h �→

∑2g
i=1((p

∗
2)

−1
S δ̂i(h)) ⊗ [γi]∗.



RELATIONS ON THE PERIOD MAPPING 15

Proposition 3.5. For h ∈ Ig,∗, we have δ̂(h) = δ(h). The map δ̂ is a group cocycle
in Z1((Mg,∗, ((H1 ⊗ H1)/q) ⊗ H1)Z), that is, for all h1, h2 ∈ Mg,∗, we have δ̂(h1h2) =
(h1)∗δ̂(h2) + δ̂(h1).

Proof. To show that δ̂(h) = δ(h) for h ∈ Ig,∗, notice that by definition ρh = I so that we
have δ̂i(h) = (h∗(γi) − 1) − (γi − 1). Observe also that h ∈ Ig,∗ implies γ−1

i h∗(γi) − 1 ∈ J2.
Then h∗(γi) − 1 − (γi − 1) − (γ−1

i h∗(γi) − 1) = (γi − 1)(γ−1
i h∗(γi) − 1) ∈ J3, and so we

have (h∗(γi) − 1) − (γi − 1) ≡ γ−1
i h∗(γi) − 1 modulo J3. Therefore, we have (p∗2)

−1
S δ̂i(h) =

(p∗2)
−1
S (γ−1

i h∗(γi) − 1), and so δ̂(h) =
∑2g

i=1(p
∗
2)

−1
S (γ−1

i h∗(γi) − 1) ⊗ [γi]∗, which is exactly
δ(h).

To prove the cocycle relation, let h ∈ Mg,∗. We have δ̂i(h) =
∑2g

j=1(
tρ−1
h )ij(h∗(γj) −

1) − (γi − 1). So we have δ̂i(h1h2) =
∑2g

j=1(
tρ−1
h1h2

)ij((h1h2)∗(γj) − 1) − (γi − 1) =∑2g
j=1(

tρ−1
h1

tρ−1
h2

)ij((h1)∗(h2)∗(γj) − 1) − (γi − 1). Then

(p∗2)
−1
S δ̂i(h1h2) =(p∗2)

−1
S


 2g∑
j,k=1

[tρ−1
h1

]ij [tρ−1
h2

]jk(h1∗(h2∗(γk)) − 1)

−
∑
j

[tρ−1
h1

]ij(h1∗(γj) − 1) +
∑
j

[tρ−1
h1

]ij(h1∗(γj) − 1) − (γi − 1)




=(h1)∗(p∗2)
−1
S


∑

j

(tρ−1
h1

)ij

(∑
k

(tρ−1
h2

)jk(h2∗(γk) − 1) − (γj − 1)

)
 + (p∗2)

−1
S δ̂i(h1)

=(h1)∗(p∗2)
−1
S


∑

j

(tρ−1
h1

)ij δ̂j(h2)


 + (p∗2)

−1
S δ̂i(h1).
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Therefore,

δ̂(h1h2) − δ̂(h1) =
2g∑
i=1

(
(p∗2)

−1
S (δ̂i(h1h2) − δ̂i(h1))

)
[γi]∗

=
2g∑
i=1

(h1)∗(p∗2)
−1
S


 2g∑
j=1

(tρ−1
h1

)ij δ̂j(h2)


 [γi]∗

=
2g∑
j=1

(h1)∗(p∗2)
−1
S δ̂j(h2)

(
2g∑
i=1

(ρ−1
h1

)ji[γi]∗
)

=
2g∑
j=1

(h1)∗(p∗2)
−1
S δ̂j(h2)

[
2g∑
i=1

(tρh1)jiγi

]∗

=
2g∑
j=1

(h1)∗(p∗2)
−1
S δ̂j(h2)([(h1)∗γj ]∗)

= (h1)∗


 2g∑
j=1

(p∗2)
−1
S δ̂j(h2)[γj ]∗




= (h1)∗δ̂(h2).

Remark 3.6. The cocycle δ̂ depends upon the marking of S. If the basis [γi] of H1(S,Z) is
replaced by [h̃∗γi] for some h̃ ∈ Mg,∗, then δ̂(h) will be replaced by h̃∗δ̂(h)+ h̃∗δ((h̃−1, h))
for all h ∈ Mg,∗, where (a, b) = aba−1b−1 denotes the group commutator.

We now compute δ̂(y) for a specific homology involution y.

Proposition 3.7. There is a y ∈ Mg,∗ such that y∗ maps αi �→ α−1
i (αi, βi) and βi �→

(βi, αi)β−1
i , and

δ̂(y) =
g∑
i=1

((−[βi] ∧ [αi] − [βi] ⊗ [βi]) ⊗ [βi]∗ + (−[αi] ∧ [βi] − [αi] ⊗ [αi]) ⊗ [αi]∗);

δ̂(y) =
g∑
i=1

((−Bi ∧Ai −Bi ⊗Bi) ⊗B∗
i + (−Ai ∧Bi −Ai ⊗Ai) ⊗A∗

i );

ıδ̂(y) =
g∑
i=1

(Bi ∧Ai ⊗Ai +Bi ⊗Bi ⊗Ai −Ai ∧Bi ⊗Bi −Ai ⊗Ai ⊗Bi).

Proof. Thinking of π1(S, s) as the quotient of the free group on αi, βi modulo the commu-
tator relation

∏
i(αi, βi) = 1, we let v ∈ Aut(π1(S, s)) be defined by

αi �→ α−1
i (αi, βi)

βi �→ (βi, αi)β−1
i .
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One needs to check that the commutator relation is preserved. Since it is easy to see
that each (αi, βi) �→ (αi, βi), the commutator relation is actually preserved exactly, and v
is indeed an automorphism of π1 which induces +1 on H2. Since S is a K(π1, 1), there
exists a homeomorphism y : (S, s) → (S, s) which induces y∗ = v on π1 and hence is
orientation preserving. Therefore, we have y ∈ Mg,∗. Finally we note that the action of
y∗ on H1

∼= π1/[π1, π1] is αi �→ −αi and βi �→ −βi so that y is a homology involution, that
is, ρy = −I = (−δij). By Definition 3.2, we have

δ̂i(y) =
2g∑
j=1

[tρ−1
y ]ij(y∗(γj) − 1) − (γi − 1)

=
2g∑
j=1

(−δij)(v(γj) − 1) − (γi − 1)

= −(v(γi) − 1) − (γi − 1).

Hence for i = 1, . . . , g, we have

δ̂i(y) = −(v(βi) − 1) − (βi − 1)

= −((βi, αi)β−1
i − 1) − (βi − 1)

= −((βi, αi) − 1) − (βi − 1)2 mod J3

so that we have (p∗2)
−1δ̂i(y) = −[βi] ∧ [αi] − [βi] ⊗ [βi]. In the same way, we have for

i = 1, . . . , g,

δ̂i+g(y) = −(v(αi) − 1) − (αi − 1)

= −(α−1
i (αi, βi) − 1) − (αi − 1)

= −((αi, βi) − 1) − (αi − 1)2 mod J3

so that we have (p∗2)
−1δ̂i+g(y) = −[αi] ∧ [βi] − [αi] ⊗ [αi]. This proves the first equation in

the proposition. The other two equations follow by applying the maps  and ı.

Lemma 3.8. For any homology involution y, and for any h ∈ Mg,∗, we have

δ̂(h) = 1
2 (δ̂(y) − h∗δ̂(y)) + 1

2δ((h, y)).

Proof. From δ̂(hy) = h∗δ̂(y) + δ̂(h), δ̂(yh) = y∗δ̂(h) + δ̂(y), and y∗ = −idH1 , we have
δ̂(hy) − δ̂(yh) = h∗δ̂(y) − δ̂(y) + 2δ̂(h), or δ̂(h) = 1

2 (δ̂(y) − h∗δ̂(y)) + 1
2 (δ̂(hy) − δ̂(yh)). For

any commutator (a, b) = aba−1b−1, we have δ̂((a, b)) = δ̂(ab) − (a, b)∗δ̂(ba). The centrality
of y∗ = −idH1 implies that (h, y)∗ = idH1 , so that δ̂((h, y)) = δ̂(hy)−δ̂(yh). This completes
the proof by noting that, since (h, y) ∈ Ig,∗, we have δ̂((h, y)) = δ((h, y)).
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Lemma 3.9. There is a unique global section η of
⊗3H1(Z) whose retraction to

∧
3H1(Q)

is zero and whose image in ((H1 ⊗ H1)/q) ⊗ H1 is ıδ̂(y) for some homology involution y.
This section is given by

η = −
g∑
j=1

(Aj ⊗Aj ⊗Bj +Aj ∧Bj ⊗Bj −Bj ⊗Bj ⊗Aj −Bj ∧Aj ⊗Aj).

Proof. The injection of
∧

3H1 into
⊗3
H1 is given by c1 ∧ c2 ∧ c3 =

∑
π∈S3

sgn(π)cπ(1) ⊗
cπ(2) ⊗ cπ(3), and the mentioned retraction, say r, of

⊗3
H1 onto

∧
3H1 is given by r(c1 ⊗

c2 ⊗ c3) = 1
6

∑
π∈S3

sgn(π)cπ(1) ⊗ cπ(2) ⊗ cπ(3) = 1
6c1 ∧ c2 ∧ c3. Clearly r(η) = 0 because

each summand of η has repeated factors. There is a homology involution y such that
[η] = ıδ̂(y) in ((H1 ⊗ H1)/q) ⊗ H1 by proposition 3.7. Now assume that η′ ∈

⊗3
H1

exists such that r(η′) = 0 and [η′] = ıδ̂(y′) in ((H1 ⊗ H1)/q) ⊗ H1 for some homology
involution y′. By proposition 3.8, we have δ̂(y′) = δ̂(y) + 1

2δ((y
′, y)) so that [η′ − η] =

ıδ̂(y′) − ıδ̂(y) = 1
2 ıδ((y

′, y)) ∈
∧

3H1 in ((H1 ⊗H1)/q) ⊗H1. Lemma 1.12 then implies
that η′ − η ∈

∧
3H1 ⊆

⊗3
H1. Since r(η′ − η) = 0, we have η′ = η.

As an application of the techniques used in the above proofs, we compute the cocycle
in H2(Spg(Z),

∧
3H1(S,Z)) which gives the extension

0 → (
∧3H1)Z

τ−1

−−→ Mg,∗/Ng,∗
ρ

−→ Spg(Z) → 0.

Recall that the existence of this extension follows from the two exact sequences

0 → Ig,∗ → Mg,∗
ρ

−→ Spg(Z) → 0,

0 → Ng,∗ → Ig,∗
τ

−→ (
∧3H1)Z → 0.

We mention some facts from group cohomology which can be directly verified. Let
M be a Z-module with no two-torsion, and let G be a group with a central element y.
Assume that M is also a G-module and that y acts on M as −1. We employ the usual
boundary operators: (δ0η)(σ) = ση−η, (δ1m)(σ1, σ2) = σ1m(σ2)−m(σ1σ2)+m(σ1), etc.;
we also define a homotopy yi : Ci(G,M) → Ci−1(G,M) of degree −1 via y1m = −m(y),
(y2φ)(σ) = φ(σ, y) − φ(y, σ), (y3ρ)(σ1, σ2) = −ρ(y, σ1, σ2) + ρ(σ1, y, σ2) − ρ(σ1, σ2, y),
etc. One computes that on Cn(G,M), we have yn+1δn + δn−1yn = 2 idCn , and this
shows that multiplication by 2 is homotopic to zero. Hence H∗(G,M) consists solely
of two-torsion elements. From the long exact cohomology sequence for the short exact
sequence 0 → 2M → M → M/2M → 0, we conclude further that Hn(G,M/2M) ∼=
Hn(G,M) ⊕Hn+1(G,M). We will apply these results to G = Spg(Z) with y = −I being
central and with M =

∧
3H1(S,Z). Here we use brackets, [ ], for classes mod 2. Let

V = ((H1(S,Z) ⊗H1(S,Z))/qS) ⊗H1(S,Z).

Proposition 3.10. Let g ≥ 2. Let φ ∈ H2(Spg(Z), (
∧

3H1)Z) be the cohomology class
giving the extension

0 → (
∧3H1)Z

τ−1

−−→ Mg,∗/Ng,∗
ρ

−→ Spg(Z) → 0
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where Spg(Z) acts naturally on H1(S,Z). Let η̄ = ıδ̂(y) ∈ V be given by equation 3.7:

η̄ =
g∑
i=1

([βi] ∧ [αi] ⊗ [αi] + [βi] ⊗ [βi] ⊗ [αi] − [αi] ∧ [βi] ⊗ [βi] − [αi] ⊗ [αi] ⊗ [βi]).

We have

H0(Spg(Z), (
∧3H1)Z) = 0,

H1(Spg(Z), (
∧3H1)Z) = 0, and

H2(Spg(Z), (
∧3H1)Z)

y2−→∼= H1(Spg(Z), (
∧3H1)Z ⊗ Z2).

Under the isomorphism y2,

H2(Spg(Z), (
∧3H1)Z)

y2−→ H1(Spg(Z), (
∧3H1)/2(

∧3H1)) ∼= H1(Spg(Z), (
∧3H1 + 2V )/2V ),

the extension class of φ is given by y2φ = [δ0η̄]. This class is nontrivial; so the extension
does not split.

Proof. The cocycle ıδ̂ ∈ Z1(Mg,∗, V ) gives a homomorphism Θ,

Θ : Mg,∗ → V × Spg(Z)
h �→ (ıδ̂(h), ρh)

from Mg,∗ to the semidirect product V × Spg(Z). We have Ker Θ = Ng,∗ because Ker (ρ) =
Ig,∗ and because for h ∈ Ig,∗, we have ıδ̂(h) = τ(h) = 0 if and only if h ∈ Ng,∗. The
restriction to Ig,∗ of Θ is τ × {I}, and the projection to Spg(Z) of Θ gives ρ. Therefore we
may compute a cocycle φ ∈ Z2(Spg(Z),

∧
3H1) defining the extension by using any section

of ρ, s : Spg(Z) → Mg,∗, and letting φ = δ1(ıδ̂◦s).
We choose s(−I) = y, where y ∈ Mg,∗ is the homology involution of Proposition 3.7.

We use the identity y2δ1 + δ0y1 = 2 id on C1(Spg(Z),
∧

3H1) to compute that

y2φ = y2δ1(ıδ̂◦s) = 2ıδ̂◦s− δ0y1(ıδ̂◦s)
= 2ıδ̂◦s+ δ0(ıδ̂◦s(−I)) = 2ıδ̂◦s+ δ0(ıδ̂(y)) = 2ıδ̂◦s+ δ0η̄.

We see that the image of y2φ in H1(Spg(Z),
∧

3H1/2
∧

3H1) is given by [2ıδ̂◦s+ δ0η̄]. If we
make the simple identification

∧
3H1/2

∧
3H1

∼= (
∧

3H1 +2V )/2V , then [2ıδ̂◦s+ δ0η̄] is given
by [δ0η̄]. This completes the computation of the class of φ.

In order to show that [δ0η̄] is a nontrivial element in H1(Spg(Z), (
∧

3H1 + 2V )/2V ) ∼=
H1(Spg(Z),

∧
3H1/2

∧
3H1), we first compute the values of the representative cycle (δ0η̄)(σ)

= ση̄−η̄ on generators of Spg(Z). Recall that a 1-cycle is determined by its values on group
generators (though an arbitrary prescription of such values need not define a 1-cycle). For
the remainder of this proof only we write ai instead of [αi], and bi instead of [βi]. If σ is
given by (type 1)

ai �→ bi; bi �→ −ai,
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then ση̄ − η̄ = 2
∑g

i=1(ai ⊗ ai ⊗ bi − bi ∧ ai ⊗ ai). Therefore the value in
∧

3H1 ⊗ Z2 is 0.
Next, if σ is given by (type 2)

bi �→ bi; ai �→ ai (i != =); a' �→ a' + b',

then ση̄− η̄ = −2a' ⊗ b' ⊗ b'. Therefore the value in
∧

3H1 ⊗Z2 is again 0. Finally, if σ is
given by (type 3)

bi �→ bi; ai �→ ai (i != m,n); am �→ am + bn; an �→ an + bm,

then ση̄ − η̄ = bm ∧ am ∧ bn + bn ∧ an ∧ bm + 2(bm ∧ bn ⊗ am − am ⊗ bn ⊗ bm + bn ∧ bm ⊗
an − an ⊗ bm ⊗ bn). Therefore the value in

∧
3H1 ⊗ Z2 is [bm ∧ am ∧ bn + bn ∧ an ∧ bm],

and so for g ≥ 2, δ0η̄ is at least not the boundary of the zero 0-cycle. The 1-cycle δ0η̄ is
then trivial precisely when there is an element x ∈

∧
3H1 ⊗Z2 such that the boundary δ0x

takes the above values on the corresponding generators of Spg(Z). We will show that for
x ∈

∧
3H1⊗Z2, no δ0x can take the above values on all three types of generators. We in fact

show more: if δ0x achieves the above values on the first two types of generators, then x = 0.
This will demonstrate that δ0η̄ does not represent a boundary in Z1(Spg(Z),

∧
3H1 ⊗ Z2),

that the class [δ0η̄] is nontrivial, and that the extension does not split.
Let x ∈

∧
3H1 ⊗ Z2 and write

x =
∑
i,j,k

(aijk ai ∧ aj ∧ ak + bijk ai ∧ aj ∧ bk + cijk ai ∧ bj ∧ bk + dijk bi ∧ bj ∧ bk)

where the coefficients are in Z2. Assume that σx − x = 0 when σ is the first type of
generator (type 1). The resulting condition on x is easily seen to be aijk = dijk and
bijk = ckij . Now write

x =
∑
i,j,k

(aijk(ai ∧ aj ∧ ak + bi ∧ bj ∧ bk) + bijk(ai ∧ aj ∧ bk + bi ∧ bj ∧ ak)),

and assume that σx− x = 0 when σ is the second type of generator (type 2). The linear
map L' :

∧
3H1 ⊗ Z2 →

∧
3H1 ⊗ Z2 given by L'(x) = [σx− x] sends a triple wedge to zero

if it has no a' factor or if it has both a' and b' facotrs. Conversely, a moment’s thought
shows that L' is nonsingular on the span of the triple wedges with an a' factor but no
b' factor. From the assumption L'x = σx − x = 0, we conclude that x does not contain
a term with an a' factor that does not also have a b' factor. Therefore x can contain no
ai∧aj∧ak terms, and so aijk = 0. Also, x can contain no ai∧aj∧bk terms, and so we have
bijk = 0. Hence we have x = 0. This shows that a nontrivial x cannot be simultaneously
fixed under the first two types of generators of Spg(Z) and completes the proof that the
class of δ0(η̄) is nontrivial. Notice that this same calculation implies that fixed elements of∧

3H1 ⊗Z2 are trivial, and so we have H0(Spg(Z),
∧

3H1 ⊗Z2) = 0. This vanishing implies
the vanishing of H1(Spg(Z),

∧
3H1) as well, showing that the clearly injective map y2 in

the statement of the theorem is actually an isomorphism.

§4. Equivariance of Ψ.

In this section we use the cocycle δ̂ to compute the action of Mg,∗ on Ψ in Proposi-
tion 4.2. An action of Mg,∗/Ng,∗ on Hom(K2,H1)R is defined so that Ψ : Tg,∗/Ng,∗ →
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Hom(K2,H1)R is equivariant with respect to Mg,∗/Ng,∗. The structure of Mg,∗/Ng,∗
was given in §3. This equivariance is analogous to the equivariance of the Torelli map
Ω : Tg,∗/Ig,∗ → hg with respect to Spg(Z) ∼= Mg,∗/Ig,∗. Finally, we use the work of
Harris, Hain, Koizumi and Pulte to show that Ψ is generically injective on Tg,∗/Ng,∗ in
Proposition 4.7.

The following lemma is essential in computing the action of Mg,∗ on Ψ. It is in this
computation that one can see how the cocycle δ̂ arises naturally.

Lemma 4.1. Let (f,M, z) ∈ Tg,∗ and h ∈ Mg,∗. In (H1(S) ⊗ H1(S))/qS ⊗ H1(S), we
have

λ(f∗)−1(Ψ̃f◦h − Ψ̃f ) = δ̂(h).

Proof. Recall from Definition 2.8 that Ψ̃f ∈ Hom(K2(M), H1(M))R is defined for an ele-
ment (f,M, z) ∈ Tg,∗ by Ψ̃f (k1) =

∑2g
i=1〈 s2(k1) , f∗(γi) 〉[f∗(γi)]∗ for k1 ∈ K2(M) and the

fixed standard marking γi on (S, s). So ((f∗)−1Ψ̃f )(k) =
∑2g

i=1〈 s2((f−1)∗k) , f∗(γi) 〉[γi]∗
for k ∈ f∗K2(M). For any h ∈ Mg,∗, we have

((f∗)−1Ψ̃f◦h)(k) =
2g∑
i=1

〈 s2((f−1)∗k) , (f◦h)∗(γi) 〉[h∗(γi)]∗

=
2g∑
i=1

〈 s2((f−1)∗k) , (f◦h)∗(γi) 〉[
2g∑
j=1

[tρh]ij [γj ]]∗

=
2g∑
i=1

〈 s2((f−1)∗k) , (f◦h)∗(γi) 〉
2g∑
j=1

[ρ−1
h ]ij [γj ]∗

=
2g∑
j=1

〈 s2((f−1)∗k) ,
∑2g

i=1[
tρ−1
h ]ji(f◦h)∗(γi) 〉[γj ]∗

= ((f−1
∗ )Ψ̃f )(k) +

2g∑
j=1

〈 s2((f−1)∗k) , f∗{
∑2g

i=1[
tρ−1
h ]jih∗(γi) − γj} 〉[γj ]∗.

We now apply the definition 3.2 of δ̂j(h), noting that s2((f−1)∗k) ∈ H0(B2(M), z) is zero
on constant loops. We have

((f∗)−1(Ψ̃f◦h − Ψ̃f ))(k) =
2g∑
j=1

〈 s2((f−1)∗k) , f∗δ̂j(h) 〉[γj ]∗

=
2g∑
j=1

〈 s2((f−1)∗k) , (p∗2)M (p∗2)
−1
M f∗δ̂j(h) 〉[γj ]∗

=
2g∑
j=1

〈 (p2)Ms2((f−1)∗k) , f∗(p∗2)
−1
S δ̂j(h) 〉[γj ]∗

=
2g∑
j=1

〈 (f−1)∗k , f∗(p∗2)
−1
S δ̂j(h) 〉[γj ]∗
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=
2g∑
j=1

〈 k , (p∗2)
−1
S δ̂j(h) 〉[γj ]∗

=
2g∑
j=1

(λ−1((p∗2)
−1
S δ̂j(h) ⊗ [γj ]∗))(k)

= (λ−1δ̂(h))(k).

Therefore, we have (f∗)−1(Ψ̃f◦h − Ψ̃f ) = λ−1δ̂(h). In step three of the above calculation

we used that the isomorphism (p∗2)
−1 : J2/J3

∼
−→ (H1 ⊗ H1)/q given by sending (γ1 −

1)(γ2 − 1) + J3 �→ [γ1] ⊗ [γ2] commutes with f in the following sense:

J2(M, z)/J3(M, z)
(p∗2)M

←−−−− H1(M) ⊗H1(M)/qMf∗ (on π1)

f∗ (on H1)

J2(S, s)/J3(S, s)
(p∗2)S

←−−−− H1(S) ⊗H1(S)/qS .

Recall from section §1 that Spg(Z) has a natural right action on the vector bundles H1

and K2. These actions are induced from the action given in Definition 1.4. Accordingly,
any h ∈ Mg,∗ acts on the vector bundle Hom(K2,H1)R by a map on the fibers ρh :
Hom(K2(Z), H1(Z))R → Hom(K2(Z · ρh), H1(Z · ρh))R.

Proposition 4.2. Let Ψ : Tg,∗ → Hom(K2,H1)R, as in Definition 2.10, be given by
(f,M, z) �→ Ψf . For all h ∈ Mg,∗, we have

Ψf◦h = (Ψf + Ωf
λ−1δ̂(h)) · ρh.

Proof. From Lemma 4.1, we have (f∗)−1(Ψ̃f◦h − Ψ̃f ) = λ−1δ̂(h). We apply Ωf
to

both sides and use Ωf
(f∗)−1 = (wf )∗ from diagram 1.9 to obtain (wf )∗(Ψ̃f◦h − Ψ̃f ) =

Ωf
λ−1δ̂(h). Since Ψf = (wf )∗Ψ̃f , we have (wf )∗Ψ̃f◦h = Ψf + Ωf

λ−1δ̂(h). Since also
ρh◦(wf )∗ = (wf◦h)∗ from diagram 1.9, we apply ·ρh to both sides to obtain Ψf◦h =
(wf◦h)∗Ψ̃f◦h = (Ψf + Ωf

λ−1δ̂(h)) · ρh as desired.

Corollary 4.3. For any h ∈ Ig,∗ and (f,M, z) ∈ Tg,∗, we have

Ψf◦h = Ψf + Ωf
λ−1δ(h) ∈ Hom(K2(Ωf ), H1(Ωf ))R.

Proof. This follows immediately from Proposition 4.2 by noticing that ρh = I since h ∈
Ig,∗, and also that δ̂(h) = δ(h) when h ∈ Ig,∗.

We may define an action on Hom(K2,H1)R to imitate the action of Mg,∗ on Ψ. There is
no apriori guarantee that such an action exists, but nonexistence would be more interesting
as it would furnish a special property of the image of Ω in hg.
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Definition 4.4. Define an action of Mg,∗/Ng,∗ on the Hom(K2,H1)R bundle over hg as
follows: for φ ∈ Hom(K2(Z), H1(Z))R and h ∈ Mg,∗,

φ · h = (φ+ Zλ−1δ̂(h)) · ρh ∈ Hom(K2(Z · ρh), H1(Z · ρh))R.

We call this the affine action of Mg,∗/Ng,∗.

We need to check that φ · h = (φ + Zλ
−1δ̂(h)) · ρh is a right group action and that

Ng,∗ acts trivially. This follows from the cocycle relations that δ̂ satisfies. We have
φ·(h1h2) = (φ+Zλ−1{(h1)∗δ̂(h2)+δ̂(h1)})·(ρh1ρh2) = φ·(ρh1ρh2)+{Zλ−1((h1)∗δ̂(h2))}·
(ρh1ρh2) + {Zλ−1(δ̂(h1))} · (ρh1ρh2). On the other hand, we have (φ · h1) · h2 = (φ ·
h1 + Z·ρh1

λ−1δ̂(h2)) · ρh2 = ((φ+ Zλ−1δ̂(h1)) · ρh1 + Z·ρh1
λ−1δ̂(h2)) · ρh2 = φ · ρh1ρh2 +

(Zλ−1δ̂(h1)) ·ρh1ρh2 +(Z·ρh1
λ−1δ̂(h2)) ·ρh2 . These are equal because (Zh∗l) ·ρh = Z·ρh l

for l ∈ Hom(K2(Z), H1(Z)) by diagram 1.9. Also, Ng,∗ acts trivially, so that Mg,∗/Ng,∗
acts on Hom(K2,H1). For if h ∈ Ng,∗, then h ∈ Ig,∗, hence ρh = I and δ̂(h) = δ(h) = 0 so
that φ · h = (φ+ Zλ−10) · I = φ.

Proposition 4.5. Let Ψ : Tg,∗ → Hom(K2,H1)R by (f,M, z) �→ Ψf be as defined in
Definition 2.10. Then Mg,∗/Ng,∗ acts equivariantly on Ψ; for all h ∈ Mg,∗,

Ψf◦h = (Ψf ) · h.

Proof. This is a result of the action of Mg,∗ on Ψf given in Proposition 4.2, Ψf◦h =
(Ψf + Ωf

λ−1δ̂(h)) · ρh, and the definition of the affine action of h as given in Definition
4.4, (Ψf ) · h = (Ψf + Ωf

λ−1δ̂(h)) · ρh.
We can now use the results of Harris, Hain, Pulte, and Koizumi to state that Ψ is

generically injective on Tg,∗/Ng,∗.

Definition 4.6. Let Eg ⊆ Tg,∗ be the set of (f,M, z) such that Jac(M) has no complex
multiplication for g ≥ 1 and M has nonzero harmonic volume for g ≥ 3.

Proposition 4.7. Ψ : Eg/Ng,∗ → Hom(K2,H1)R is injective.

Remark 4.8. B. Harris in [7] has shown that the generic curve has nonzero harmonic volume
and S. Koizumi [11] has shown that the generic curve has a Jacobian with no complex
multiplication. Since Eg ⊆ Tg,∗ is a generic subset, we may say that Ψ is generically
injective.

Proof of Proposition 4.7. Suppose that we are given (f1,M1, z1), (f2,M2, z2) ∈ Tg,∗ such
that Ωf1 = Ωf2 and Ψf1 = Ψf2 . Since Ωf1 = Ωf2 , we may conclude by the injectiv-
ity of the Torelli map that M1 and M2 are conformally equivalent, and hence, without
loss of generality, that they are the same. Therefore, we have one Riemann surface
M with points z1, z2 and markings f1 and f2. Recall that Ψfi = (wfi)∗Ψ̃fi where
Ψ̃fi ∈ Hom(K2(M), H1(M))R so that we have Ψ̃f1 = (wf1)

−1
∗ Ψf1 = (wf1)

−1
∗ Ψf2 =

(wf1)
−1
∗ (wf2)∗Ψ̃f2 = (Ωf1

(f1)−1
∗ )−1(Ωf1

(f2)−1
∗ )Ψ̃f2 = (f1)∗(f2)−1

∗ Ψ̃f2 . Now define F =
f1◦f−1

2 : (M, z2) → (M, z1) and notice that F is an orientation preserving homeomorphism
from M to M . We have a map F∗ : H1(M,Z) → H1(M,Z) which is a symplectic automor-
phism of H1(M,Z). Let σ ∈ Spg(Z) be the matrix representing F∗ with respect to the basis
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[(f2)∗(γ)] in H1(M,Z). Recall from the discussion in section §1 that ΩF◦f2 = tσ · Ωf2 , and
since Ωf1 = ΩF◦f2 = tσ ·Ωf2 = tσ ·Ωf1 , we see that Ωf1 is a fixed point of tσ. If σ !∈ {I,−I},
then tσ ·Ωf1 = Ωf1 is a special condition on Ωf1 which says that AΩf1

has a nontrivial com-
plex multiplication. The assumption that (M,fi, zi) ∈ Eg rules out that Jac(M) ∼= AΩf1

has nontrivial complex multiplication and implies that tσ = ±I; so F∗ = ±id on H1(M,Z).
Returning to the earlier equation, we see that Ψ̃f1 = (f1◦f−1

2 )∗Ψ̃f2 = F∗Ψ̃f2 = ±Ψ̃f2 .
In summary, from an image Ψf ∈ Hom(K2(Ωf ), H1(Ωf ))R in Hom(K2,H1)R and the as-
sumption that AΩf

∼= Jac(M) has no nontrivial complex multiplication, we can recover
{Ψ̃f ,−Ψ̃f} in Hom(K2(M), H1(M))R. The image [Ψ̃f ] ∈ Ext(K2(M), H1(M)) is indepen-
dent of f and determines the basepoint z of (f,M, z) for a fixed M (Pulte [13, Corollary
5.4]). Furthermore, the proof of the pointed Torelli theorem as proven by Pulte [13, The-
orem 5.5] implies that {[Ψ̃f ],−[Ψ̃f ]} determines the basepoint z except perhaps if M is a
nonhyperelliptic Riemann surface with zero harmonic volume. Riemann surfaces of genus
1 ≤ g ≤ 2 are hyperelliptic; if we assume that M has nonzero harmonic volume for g ≥ 3,
we can determine both the M and z of (f,M, z) from Ωf and Ψf . So we have z1 = z2.
Then we have f2 = f1◦h for h ∈ Mg,∗.

We next show that for (f,M, z) ∈ Eg if Ωf◦h = Ωf and Ψf◦h = Ψf for h ∈ Mg,∗,
then h ∈ Ker δ = Ng,∗. The assumption of no complex multiplication on AΩf

makes
Ωf◦h = tρh · Ωf = Ωf imply tρh = ±I. If tρh = I, then h ∈ Ig,∗. In this case, Corollary 4.3
says Ψf◦h = Ψf + jΩf

λ−1δ(h) = Ψf , from which we conclude that δ(h) = 0, which is
h ∈ Ng,∗. On the other hand, if tρh = −I, then h is a homology involution and Ψf◦h =
(Ψf + Ωf

λ−1δ̂(h)) · ρh = −Ψf − Ωf
λ−1δ̂(h) = Ψf implies that 2Ψf = −Ωf

λ−1δ̂(h) ∈
Hom(K2(Ωf ), H1(Ωf ))Z. By the earlier discussion, this implies that 2Ψ̃f = −f∗λ−1δ̂(h) ∈
Hom(K2(M), H1(M))Z, and hence that 2Ψ̃f = 0 in Ext(K2(M), H1(M)). An equivalent
definition of the harmonic volume of M due to Hain [6, Definition 8.4] shows that 2Ψ̃f = 0
in Ext implies that the harmonic volume of M is zero. Assuming that M has nonzero
harmonic volume consequently rules out the possibility that both ρh = −I and Ψf◦h = Ψf .
We have shown that for (M,fi, zi) ∈ Eg such that Ψf1 = Ψf2 and Ωf1 = Ωf2 , we have
z1 = z2 and f2 = f1◦h with h ∈ Ng,∗. The conditions which define Eg ⊆ Tg,∗ are invariant
under Mg,∗ so that Eg/Ng,∗ is well-defined.

§5. Higher bilinear period relations.

In this section we derive the “higher bilinear period relations” of Proposition 5.12. These
relations follow from the existence of the nontrivial commutator relation in π1(M, z) and of
nontrivial homotopy functionals of length 3 in H0(B3(M), z). We first construct a Hodge
filtration preserving section s3 into H0(B3(M), z) in Proposition 5.8. The “higher bilinear
relations” of Proposition 5.12 behave as a 3-cycle symmetry; along with the well-known
2-cycle skew-symmetry of Lemma 5.1, we show that the period map Ψ essentially lives on
the third exterior power of H1. The main theorem, Theorem 5.24, states that the map Ψ :
Tg,∗ → Hom(K2,H1)R factors through a translation of the subbundle

∧
3H1. Over Torelli

space Tg,∗/Ig,∗, Ψ factors through a translation of the torus bundle (
∧

3H1)R/(
∧

3H1)Z and
we discuss how this follows from the results of Pulte’s paper [13].

Let M be a compact Riemann surface. We let Sym(H1(M) ⊗ H1(M)) denote the
symmetric tensors inside of H1(M)⊗H1(M) and let Ksym

2 (M) = K2(M)∩Sym(H1(M)⊗
H1(M)). Actually, we have Ksym

2 (M) = Sym(H1(M)⊗H1(M)) because for any z1 ⊗ z2 +
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z2 ⊗z1 ∈ Sym(H1 ⊗H1), we see that z1 ∧z2 +z2 ∧z1 = 0 and so z1 ⊗z2 +z2 ⊗z1 ∈ K2(M).
The following simple lemma gives an essential symmetry of length two iterated integrals.

Lemma 5.1. Let (f,M, z) ∈ Tg,∗. We have

λ( Ψ̃f

∣∣∣
Ksym

2

) = 1
2

g∑
j=1

([aj ] ⊗ [aj ] ⊗ [aj ]∗ + [bj ] ⊗ [bj ] ⊗ [bj ]∗).

Proof. Recall that Ψ̃f = rZ◦s2. For z1 ⊗ z2 + z2 ⊗ z1 ∈ Ksym
2 (M), we must have u(z1 ⊗

z2 + z2 ⊗ z1) = 0 because z1 ∧ z2 + z2 ∧ z1 + d(0) = 0, 0 is exact, and u is unique. The
lemma then follows from the familiar identity

∫
γ
(z1z2 + z2z1) =

∫
γ
z1

∫
γ
z2:

Ψ̃f (z1 ⊗ z2 + z2 ⊗ z1) = rZ◦s2(z1 ⊗ z2 + z2 ⊗ z1)

= rZ(
∫

(z1z2 + z2z1)) = rZ(
∫
z1

∫
z2)

=
g∑
j=1

(
∫
aj

z1

∫
aj

z2 [aj ]∗ +
∫
bj

z1

∫
bj

z2 [bj ]∗)

= (λ−1(
g∑
j=1

([aj ] ⊗ [aj ] ⊗ [aj ]∗ + [bj ] ⊗ [bj ] ⊗ [bj ]∗)))(z1 ⊗ z2)

= (λ−1( 1
2

g∑
j=1

([aj ] ⊗ [aj ] ⊗ [aj ]∗ + [bj ] ⊗ [bj ] ⊗ [bj ]∗)))(z1 ⊗ z2 + z2 ⊗ z1).

Corollary 5.2. Let (f,M, z) ∈ Tg,∗. We have

λ Ψf |Ksym
2 (Ωf ) = 1

2

g∑
j=1

(Aj ⊗Aj ⊗A∗
j +Bj ⊗Bj ⊗B∗

j ).

Proof. This follows from the preceding lemma, the fact that (wf )∗[aj ] = Aj , (wf )∗[bj ] =
Bj , and the following commutative diagram

Ksym
2 (M)

Ψ̃f

−−−−→ H1(M)�(wf )∗

�(wf )∗

Ksym
2 (Ωf )

Ψf

−−−−→ H1(Ωf ).

Remark 5.3. In terms of periods, the lemma 5.1 represents well-known symmetries like

σij(c) + σji(c) = ωi(c)ωj(c)

τij(c) + τ ji(c) = ωi(c)ωj(c) − Λijω1(c)ω1(c)

for c ∈ π1(M, z) (see [4]).
We can reformulate the lemma using the map θ that switches tensor components, as

defined in Definition 1.11.
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Corollary 5.4. Let (f,M, z) ∈ Tg,∗. In ((H1(Ωf ) ⊗H1(Ωf ))/qΩf
) ⊗H1(Ωf ) we have

(id + θ)ıλΨf =
g∑
j=1

(Aj ⊗Aj ⊗Bj −Bj ⊗Bj ⊗Aj).

Proof. We have (id + θ)ıλΨf = 2 ıλΨf |Ksym
2

because id + θ is twice the projection onto
Sym(H1 ⊗H1) ⊗H1 as in Lemma 1.12. From Corollary 5.2 we have the desired result:

2 ıλΨf |Ksym
2

= 2 ı 12

g∑
j=1

(Aj ⊗Aj ⊗A∗
j +Bj ⊗Bj ⊗B∗

j )

=
g∑
j=1

(Aj ⊗Aj ⊗Bj −Bj ⊗Bj ⊗Aj).

We proceed to construct a section s3 : K3(M) → H0(B3(M), z) which preserves the
Hodge filtration. Recall that we have the exact sequences of mixed Hodge structures [6]:

0 → H0(B2(M), z) → H0(B3(M), z)
p3−→ K3(M) → 0,

0 → K3(M) → H1(M) ⊗H1(M) ⊗H1(M)
δ3−→ (H2 ⊗H1) ⊕ (H1 ⊗H2) → 0,

where the second exact sequence can be taken as the definition of K3(M). The map p3 for
I ∈ H0(B3(M), z) is defined as

〈 p3I , [γ1] ⊗ [γ2] ⊗ [γ3] 〉 = 〈 I , (γ1 − 1)(γ2 − 1)(γ3 − 1) 〉

and is thus dual to the map

p∗3 : H1 ⊗H1 ⊗H1 → J3/J4.

We mention that the kernel of p∗3 is Ker p∗3 = q ⊗H1 ⊕H1 ⊗ q. The map δ3 is defined by

δ3(ξ ⊗ η ⊗ ζ) = ξ ∧ η ⊗ ζ − ξ ⊗ η ∧ ζ.

Lemma 5.5. K3(M) = (K2(M) ⊗H1(M)) ∩ (H1(M) ⊗K2(M))

Proof. We have (K2 ⊗H1) ∩ (H1 ⊗K2) ⊆ K3 because
∑
ξi ⊗ ηi ⊗ ζi ∈ K2 ⊗H1 implies∑

ξi ∧ ηi ⊗ ζi = 0 and
∑
ξi ⊗ ηi ⊗ ζi ∈ H1 ⊗ K2 implies

∑
ξi ⊗ ηi ∧ ζi = 0. Therefore∑

ξi ⊗ ηi ⊗ ζi ∈ Ker (δ3) = K3(M). On the other hand, if we choose ξi, ηi, ζi from a basis
for H1, then

∑
ξi ∧ ηi ⊗ ζi = 0 implies that for each j,

∑
i:ζj=ζi

ξi ∧ ηi = 0, which means
that

∑
i:ζj=ζi

ξi ⊗ ηi ∈ K2. Hence, K3 ⊆ K2 ⊗H1. By the symmetry of the argument, we
also have K3 ⊆ H1 ⊗K2. This completes the proof.
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Lemma 5.6. For all k ∈ K2(M), h ∈ H1(M), we have u(k) ⊗ h, h⊗ u(k) ∈ K̂2(M).

Proof. We must show that u(k)∧h is exact. Since u(k) ∈ A1,0(M), we have u(k)∧h = 0 for
the case when h ∈ H1,0. For the case when h ∈ H0,1, we use the fact that u(k) = u(k)+df
for some exact 1-form df on M . We have u(k) ∧ h = (u(k) + df) ∧ h = df ∧ h = d(fh), so
that u(k) ∧ h is indeed exact. The general case follows from H1 = H1,0 ⊕H0,1.

This lemma and the linearity of u permit the following definition.

Definition 5.7. Let κ =
∑
ki ⊗ hi =

∑
h′i ⊗ k′i ∈ K3(M) where ki, k′i ∈ K2(M) and

hi, h
′
i ∈ H1(M). The map s3 is defined via:

s3 : K3(M) → H0(B3(M), z)

κ �→
∫
κ+

∑
i

∫
(u(ki)hi + h′iu(k

′
i)) +

∑
i

∫
u(u(ki) ⊗ hi + h′i ⊗ u(k′i)).

Proposition 5.8. The map s3 does indeed map into H0(B3(M), z) and is a Hodge filtra-
tion preserving section of p3 : H0(B3(M), z) → K3(M).

Proof. To show that an interated integral is a homotopy functional we make use of Chen’s
theory of differential forms on the path space ofM , (see [3, p.839] or [6, p.262]). According
to this theory s3(κ) is a homotopy functional on loops if it is closed with respect to Chen’s
functional derivative dC given by:

dC

∫
ω1ω2ω3 =

∫
dω1ω2ω3 +

∫
ω1dω2ω3 +

∫
ω1ω2dω3 +

∫
(ω1 ∧ ω2)ω3 +

∫
ω1(ω2 ∧ ω3)

dC

∫
ω1ω2 =

∫
dω1ω2 +

∫
ω1dω2 +

∫
ω1 ∧ ω2

dC

∫
ω1 =

∫
dω1.

In the computation that dCs3(κ) = 0 we must again use the representations κ =
∑
ki⊗hi

=
∑
h′i ⊗ k′i ∈ K3(M) because K3(M) is not spanned by its decomposable elements. We

have

dC

∫
κ =

∑
i

∫
(∧ki)hi +

∑
i

∫
h′i(∧k′i)

dC

∫
(u(ki)hi + h′iu(k

′
i)) =

∫
u(ki) ∧ hi +

∫
h′i ∧ u(k′i) −

∫
(∧ki)hi −

∫
h′i(∧k′i)

dC

∫
u(u(ki) ⊗ hi + h′i ⊗ u(k′i)) = −

∫
(u(ki) ∧ hi + h′i ∧ u(k′i)).

Summing these iterated integrals of 1-forms and 2-forms and using the definition 5.7 of
s3(κ) we obtain dCs3(κ) = 0. This shows that s3(κ) ∈ H0(B3(M), z).

To show that s3 is a section of p3 we compute 〈 p3s3(k) , [c1]⊗[c2]⊗[c3] 〉 = 〈 s3(κ) , (c1−
1)(c2 − 1)(c3 − 1) 〉 = 〈

∫
κ , (c1 − 1)(c2 − 1)(c3 − 1) 〉 = κ([c1] ⊗ [c2] ⊗ [c3]). This follows

from the familiar formulae 〈
∫
ω1ω2ω3 ,

∏3
j=1(cj − 1) 〉 =

∏3
j=1

∫
cj
ωj ; 〈

∫
ω1ω2 , J

3 〉 = 0;
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and 〈
∫
ω1 , J

3 〉 = 0 [6, Proposition 2.13]. That s3 preserves the F • filtration is easy and
is left to the reader.

Now that the section s3 has been constructed, we relate it as far as possible to the
sections s2 : K2 → H0(B2(M), z) and s1 : H1

∼
−→ H0(B1(M), z). Here, s1 is defined by

〈 s1(ω) , c 〉 =
∫
c
ω.

Definition 5.9. Let

= : (J/J3) ⊗ (J/J3) → J2/J4 ⊆ J/J4

c1 ⊗ c2 �→ c1c2

be defined by multiplication in Cπ1(M, z).

Remark 5.10. Using Chen’s Theorem that (J/Js+1)∗ ∼= H0(Bs(M), z) [6], it follows that
dual map

=∗ : H0(B3(M), z) → H0(B2(M), z) ⊗H0(B2(M), z)

is given by 〈 =∗I , c1 ⊗ c2 〉 = 〈 I , c1c2 〉 for I ∈ H0(B3(M), z).

Proposition 5.11. Let (f,M, z) ∈ Tg,∗ be a compact Riemann surface with basepoint z
and marking f . The following commutative diagram holds.

K3(M)
s3−−−−−−−−−−−−−−−−−−−−−−−→ H0(B3(M), z)∥∥∥ �'∗

(K2 ⊗H1) ∩ (H1 ⊗K2)
s2⊗s1+s1⊗s2−−−−−−−−−→ H0(B2(M), z) ⊗H0(B2(M), z)∥∥∥ �rZ⊗rZ

(K2 ⊗H1) ∩ (H1 ⊗K2)
Ψ̃f⊗id+id⊗Ψ̃f

−−−−−−−−−−−→ H1(M) ⊗H1(M).

Proof. Recall from definition 5.7 that s3(κ) =
∫
κ+

∑
i

∫
(u(ki)hi+h′iu(k

′
i))+

∑
i

∫
u(u(ki)⊗

hi+h′i ⊗u(k′i)) for κ ∈ K3(M). The element =∗s3(κ) is given by 〈 =∗s3(κ) , (c1 − 1) ⊗ (c2 −
1) 〉 = 〈 s3(κ) , (c1 − 1)(c2 − 1) 〉 for all c1, c2 ∈ π1(M, z). We have∫

(c1−1)(c2−1)

κ =
∑
i

(
∫
c1

ki

∫
c2

hi +
∫
c1

h′i

∫
c2

k′i)∫
(c1−1)(c2−1)

u(ki)hi + h′iu(k
′
i) =

∫
c1

u(ki)
∫
c2

hi +
∫
c1

h′i

∫
c2

u(k′i)∫
(c1−1)(c2−1)

u(u(ki) ⊗ hi + h′i ⊗ u(k′i)) = 0.

Hence we have that

〈 s3(κ) , (c1 − 1)(c2 − 1) 〉

=
∑
i

(∫
c1

ki

∫
c2

hi +
∫
c1

h′i

∫
c2

k′i +
∫
c1

u(ki)
∫
c2

hi +
∫
c1

h′i

∫
c2

u(k′i)
)

=
∑
i

(
(
∫
c1

ki + u(ki))
∫
c2

hi +
∫
c1

h′i (
∫
c2

k′i + u(k′i))
)
.
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This is exactly 〈 (s2⊗s1+s1⊗s2)(κ) , (c1−1)⊗(c2−1) 〉 and that proves the commutativity
of the diagram’s upper rectangle. We have not yet made use of the marking f whose
influence is only on the retraction rZ : H0(B2(M), z) → H1(M) that we used to define
Ψ̃f = rZ◦s2. The formula (rZ ⊗ rZ)(s2 ⊗ s1 + s1 ⊗ s2) = Ψ̃f ⊗ idH1 + idH1 ⊗ Ψ̃f completes
the diagram.

We will use the above proposition to find symmetries that Ψ must satisfy. Since the
identity e =

∏g
j=1(aj , bj) ∈ π1(M, z) is annihilated by H0(B3(M), z), and since the aspect

of the pairing with J3 which is not determined by K3 factors through =∗, we may in
essence apply e to Ψ ⊗ id + id ⊗ Ψ. More precisely, we have the following proposition
which contains the “higher bilinear period relations” mentioned in the introduction. Here,
(a, b) = aba−1b−1 denotes a group commutator, whereas [a, b] = ab − ba denotes the ring
commutator.

Proposition 5.12 (Higher Bilinear Relations). Let (f,M, z) ∈ Tg,∗. For all κ ∈
K3(M), we have

〈 (Ψ̃f ⊗ id + id ⊗ Ψ̃f )(κ) , qM 〉 = 〈κ ,
g∑
j=1

([aj ] ⊗ [bj ] − [bj ] ⊗ [aj ]) ⊗ ([aj ] + [bj ]) 〉.

Proof. We recall the following algebra from J/J4. For a, b ∈ π1, we have (a, b) − 1 =
[a− 1, b− 1] − [a− 1, b− 1](a− 1 + b− 1) mod J4. So we also have

g∏
j=1

(aj , bj) − 1 =
g∑
j=1

([aj − 1, bj − 1] − [aj − 1, bj − 1](aj − 1 + bj − 1)) mod J4.

Since any homotopy functional on M annihilates
∏g
j=1(aj , bj), and any iterated integral

of length 3 annihilates J4, we have the following equation for any κ ∈ K3:

0 = 〈 s3(κ) ,
g∏
j=1

(aj , bj) 〉 = 〈 s3(κ) ,
g∏
j=1

(aj , bj) − 1 〉

= 〈 s3(κ) ,
g∑
j=1

([aj − 1, bj − 1] − [aj − 1, bj − 1](aj − 1 + bj − 1) 〉

=
g∑
j=1

(〈 s3(κ) , (aj − 1)(bj − 1) − (bj − 1)(aj − 1) 〉

−〈 p3s3(κ) , (p−1
3 )∗((aj − 1)(bj − 1)(aj − 1) + (aj − 1)(bj − 1)(bj − 1)

−(bj − 1)(aj − 1)(aj − 1) − (bj − 1)(aj − 1)(bj − 1)) 〉)

=
g∑
j=1

(〈 =∗s3(κ) , (aj − 1) ⊗ (bj − 1) − (bj − 1) ⊗ (aj − 1) 〉

−〈κ , [aj ] ⊗ [bj ] ⊗ [aj ] + [aj ] ⊗ [bj ] ⊗ [bj ] − [bj ] ⊗ [aj ] ⊗ [aj ] − [bj ] ⊗ [aj ] ⊗ [bj ] 〉) .
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Now we make use of the retraction rZ : H0(B2(M), z) → H1(M), its dual r∗
Z

: H1(M) →
J/J3, and the double tensor of its dual r∗

Z
⊗ r∗

Z
: H1 ⊗ H1 → J/J3 ⊗ J/J3. We have

(r∗
Z

⊗ r∗
Z
)(qM ) = (r∗

Z
⊗ r∗

Z
)(

∑g
j=1[aj ]∧ [bj ]) =

∑g
j=1((aj −1)⊗ (bj −1)− (bj −1)⊗ (aj −1)).

Then we have
g∑
j=1

〈κ , [aj ] ⊗ [bj ] ⊗ [aj ] + [aj ] ⊗ [bj ] ⊗ [bj ] − [bj ] ⊗ [aj ] ⊗ [aj ] − [bj ] ⊗ [aj ] ⊗ [bj ] 〉

= 〈 =∗s3(κ) , (r∗Z ⊗ r∗Z)(qM ) 〉 = 〈 (rZ ⊗ rZ)=∗s3(κ) , qM 〉 = 〈 Ψ̃f ⊗ id + id ⊗ Ψ̃f , qM 〉,

where the last step makes use of Proposition 5.11.

Corollary 5.13. Let (f,M, z) ∈ Tg,∗. For all κ ∈ K3(Ωf ), we have

〈 (Ψf ⊗ id + id ⊗ Ψf )(κ) , qΩf
〉 = 〈κ ,

g∑
j=1

(Aj ⊗Bj −Bj ⊗Aj) ⊗ (Aj +Bj) 〉.

Proof. This will follow from Theorem 5.12 in the same manner that Corollary 5.2 followed
from Lemma 5.1. We use (wf )∗qM = qΩf

and the commutativity of

K3(M) −−−−→ H1(M) ⊗H1(M) ⊗H1(M)�(wf )∗

�(wf )∗

K3(Ωf ) −−−−→ H1(Ωf ) ⊗H1(Ωf ) ⊗H1(Ωf ).

Remark 5.14. As with Lemma 5.1, we may also view this Proposition 5.12 as a set of
genuine period relations on the pure and mixed quadratic periods. For example, if we let
κ = ωi ⊗ ωj ⊗ ωk, then

(Ψ̃f ⊗ id + id ⊗ Ψ̃f )(κ) =
g∑
'=1

(σij(a')[a']∗ ⊗ ωk + σij(b')[b']∗ ⊗ ωk

+ σjk(a')ωi ⊗ [a']∗ + σjk(b')ωi ⊗ [b']∗).

If we apply this to qM =
∑g

m=1[am] ∧ [bm], Proposition 5.12 gives us:

g∑
'=1

(σij(a')ωk([b']) − σij(b')ωk([a']) − σjk(a')ωi([b']) + σjk(b')ωi([a']))

= 〈ωi ⊗ ωj ⊗ ωk ,
g∑
'=1

([a'] ⊗ [b'] − [b'] ⊗ [a']) ⊗ ([a'] + [b']) 〉.

Taking the normalization of the abelian periods ωi([aj ]) = δij and ωi([bj ]) = Ωij into
account, this becomes: for all i, j, k,

(5.15)
σij(bk) −

g∑
'=1

σij(a')Ω'k = σjk(bi) −
g∑
'=1

σjk(a')Ω'i

+ ΩijΩjk − ΩijΩik + δjkΩij − δikΩij .
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The same process applied to κ = ωi ⊗ ωj ⊗ ωk − Λijω1 ⊗ ω1 ⊗ ωk ∈ K3(M) will produce
the following period relation: for any i, j, k,

(5.16)

τij(bk) −
g∑
'=1

τij(a')Ω'k = σjk(bi) −
g∑
'=1

σjk(a')Ω'i

+ δjkΩij − δikΩij + ΩijΩjk − ΩijΩik

− Λij [σ1k(b1) −
g∑
'=1

σ1k(a')Ω'1

+ δ1kΩ11 − δ1kΩ11 + Ω11Ω1k − Ω11Ω1k].

We reformulate the “higher bilinear relations” of Proposition 5.12 by introducing a map
which, like θ, permutes tensor components. Also, recall the map ı of 1.11.

Definition 5.17. Let (H1, q) be a principally polarized Hodge structure of weight 1, and
let H1 be the dual of H1. Define

z : ((H1 ⊗H1)/q) ⊗H1 → H1 ⊗ ((H1 ⊗H1)/q)

by sending [a⊗ b] ⊗ c �→ c⊗ [a⊗ b].
Remark 5.18. Since both the domain and range of z have projections onto (H1 ⊗ H1 ⊗
H1)/(q ⊗H1 +H1 ⊗ q), we have the induced map

id − z : ((H1 ⊗H1)/q) ⊗H1 → (H1 ⊗H1 ⊗H1)/(q ⊗H1 +H1 ⊗ q)
given by x �→ x− z(x).
Corollary 5.19. Let (f,M, z) ∈ Tg,∗. On K3(Ωf ), we have

ıλΨf − z(ıλΨf ) =
g∑
j=1

(Aj ⊗Bj −Bj ⊗Aj) ⊗ (Aj +Bj).

Proof. We are simply shuffling the tensor components in Corollary 5.13. For k ⊗ h ∈
K2 ⊗H1, we have

〈 ıλΨf , k ⊗ h 〉 = 〈λΨf , ı
∗(k ⊗ h) 〉 = 〈λΨf , k ⊗ (id ⊗ h)(q) 〉

= 〈 Ψf (k) , (id ⊗ h)(q) 〉 = 〈 Ψf (k) ⊗ h , q 〉 = 〈 (Ψf ⊗ id)(k ⊗ h) , q 〉.
Similarly, for h⊗ k ∈ H1 ⊗K2, we have

〈 zıλΨf , h⊗ k 〉 = 〈 ıλΨf , z
∗(h⊗ k) 〉 = 〈 ıλΨf , k ⊗ h 〉

= 〈 (Ψf ⊗ id)(k ⊗ h) , q 〉 = −〈 (id ⊗ Ψf )(h⊗ k) , q 〉.
Therefore, for all κ ∈ K3 = (K2 ⊗H1) ∩ (H1 ⊗K2), we have

〈 ıλΨf − zıλΨf , κ 〉 = 〈 (Ψf ⊗ id + id ⊗ Ψf )(κ) , q 〉

= 〈
g∑
j=1

(Aj ⊗Bj −Bj ⊗Aj) ⊗ (Aj +Bj) , κ 〉

by Corollary 5.13.

Up until now, we have been studying the element λΨf ∈ ((H1 ⊗ H1)/q) ⊗ H1, but it
will be more convenient now to describe ıλΨf ∈ ((H1 ⊗H1)/q) ⊗H1.
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Corollary 5.20. Let (f,M, z) ∈ Tg,∗. Let φ = ıλΨf ∈ ((H1 ⊗H1)/q)⊗H1 on AΩf
. Then

φ satisfies the following two inhomogeneous equations.

(a) (id + θ)φ =
g∑
j=1

(Aj ⊗Aj ⊗Bj −Bj ⊗Bj ⊗Aj)

in ((H1 ⊗H1)/q) ⊗H1.

(b) (id − z)φ =
g∑
j=1

(Aj ⊗Bj −Bj ⊗Aj) ⊗ (Aj +Bj)

in (H1 ⊗H1 ⊗H1)/(H1 ⊗ q + q ⊗H1).

Proof. This repeats the conclusions of Corollaries 5.4 and 5.19.

We proceed to solve these inhomogeneous equations because the image ıλΨ of the period
map Ψ must lie inside their solution set. We produce a particular solution of the inhomoge-
neous equation over every Z ∈ hg, and then demonstrate that the homogeneous solutions
correspond to (

∧
3H1)R. The following remark can be verified by a direct computation, and

since we do not make use of this lemma, we leave the proof to the reader.

Remark 5.21. Let Z ∈ hg, then on AZ ,

− 1
2η = 1

2

g∑
j=1

(−Bj ⊗Bj ⊗Aj −Bj ∧Aj ⊗Aj +Aj ⊗Aj ⊗Bj +Aj ∧Bj ⊗Bj)

satisfies the inhomogeneous equations of 5.20.

Lemma 5.22. Let (H1, q) be a principally polarized Hodge structure of weight one, and
let H1 be the dual of H1. Then φ ∈ ((H1 ⊗H1)/q) ⊗H1 satisfies the homogeneous

(id + θ)φ = 0 in ((H1 ⊗H1)/q) ⊗H1 and

(id − z)φ = 0 in (H1 ⊗H1 ⊗H1)/(q ⊗H1 +H1 ⊗ q)

if and only if φ ∈
∧

3H1 ↪→ ((H1 ⊗H1)/q) ⊗H1.

Proof. If φ ∈
∧

3H1, then as an element of H1 ⊗H1 ⊗H1, φ will change by the sign of the
permutation when we apply θ and z; hence θφ = −φ and zφ = φ in H1 ⊗H1 ⊗H1, and in
its images.

On the other hand, let φ ∈ ((H1 ⊗H1)/q) ⊗H1, and suppose that θφ = −φ in ((H1 ⊗
H1)/q) ⊗H1 and that zφ = φ in (H1 ⊗H1 ⊗H1)/(q⊗H1 +H1 ⊗ q). We must show that φ
is contained in the image

∧
3H1 in ((H1 ⊗H1)/q)⊗H1. Since (id+θ)φ = 0, we may choose

a preimage in (
∧

2H1/q) ⊗H1 and hence a preimage φ̂ ∈
∧

2H1 ⊗H1. Use the diagram of
Lemma 1.12 to compute φ̂−zφ̂ and push it into (H1⊗H1⊗H1)/(q⊗H1+H1⊗q) where it is
φ−zφ = 0; therefore, φ̂−zφ̂ = q⊗h+h′⊗q for h, h′ ∈ H1. So φ̂−q⊗h = h′⊗q+zφ̂ ∈

∧
3H1

because it is alternating in the first two tensor components and in the last two tensor
components. Therefore, φ is in the image of

∧
3H1 because it is an image of φ̂− q ⊗ h.

The special conditions on the image of Ψ given by Corollary 5.20 of course imply special
conditions on the images of elements of the Torelli group under the map δ. We will
momentarily have need of these conditions; they are in fact a theorem of D. Johnson.
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Corollary 5.23 (Johnson). τ(Ig,∗) ⊆
∧

3H1(S)Z.

Proof. Let h ∈ Ig,∗ and select any (f,M, z) ∈ Tg,∗. Then Ψf and Ψf◦h both lie in
the fiber of Hom(K2,H1)R over Ωf = Ωf◦h. By Corollary 5.20, we know that ıλΨf◦h
and ıλΨf each satisfy the inhomogeneous equations of 5.20. Therefore, their difference
ıλΨf◦h − ıλΨf = ıΩf

δ(h) satisfies the homogeneous equations and hence by Corollary
5.22 is in

∧
3H1(Ωf ). This shows that τ(h) = ıδ(h) ∈

∧
3H1(S), and so we have τ(h) ∈

(
∧

3H1(S))R ∩ (((H1 ⊗H1)/q) ⊗H1)Z.

We are now ready to state our main result. For the convenience of the reader, we
now repeat some of the notation. The map Ψ : Tg,∗ → Hom(K2,H1)R → Ext(K2,H1)
is defined by sending (f,M, z) ∈ Tg,∗ to the abelian period matrix Ωf ∈ hg and the
period map Ψf ∈ Hom(K2(Ωf ), H1(Ωf ))R. Ψf is the image of a uniquely chosen ele-
ment in Hom(K2(M), H1(M))R which gives the congruence class in Ext(K2, H

1) of the
extension of mixed Hodge structures associated to (M, z). The mapping class group Mg,∗
acts on Tg,∗ by sending (f,M, z) to (f◦h,M, z) and on the Hom(K2,H1)R bundle by
the affine action of sending (Z, φ) to (Z · ρh, (φ + Zλ

−1δ̂(h)) · ρh). The cocycle δ̂ is in
Z1(Mg,∗, ((H1 ⊗H1)/q) ⊗H1(S)). The map Ψ is equivariant with these two (right) ac-
tions of Mg,∗, and in each case we have induced actions by Mg,∗/Ng,∗ because Ng,∗, the
kernel of Johnson’s homomorphism, acts trivially. By a homology involution, we mean
an element y ∈ Mg,∗ whose induced map y∗ on H1(S,Z) is −id. We view λ−1ı−1

∧
3H1

as a subbundle of Hom(K2,H1) via the injection
∧

3H1 ↪→ ((H1 ⊗ H1)/q) ⊗ H1 and the

identification Hom(K2, H
1)

λ
−→∼= ((H1 ⊗H1)/q) ⊗H1

ı
−→∼= ((H1 ⊗H1)/q) ⊗H1.

Theorem 5.24. Let y ∈ Mg,∗ be any homology involution and λ−1δ̂(y) the corresponding
global section of Hom(K2,H1)Z. The period map Ψ : Tg,∗ → Hom(K2,H1)R factors
through the translation by − 1

2 λ
−1δ̂(y) of the subbundle λ−1ı−1(

∧
3H1)R so that we have:

Ψ : Tg,∗/Ng,∗ → (− 1
2 λ

−1δ̂(y) + λ−1ı−1∧3H1)R → Hom(K2,H1)R,

and Ψ is equivariant with respect to the action of Mg,∗/Ng,∗.
We also have the factorization from Torelli space through the translation of a torus

bundle:

Ψ : Tg,∗/Ig,∗ → − 1
2 λ

−1δ̂(y) + λ−1ı−1(
∧

3H1)R
λ−1ı−1(

∧
3H1)Z

→ Hom(K2,H1)R
λ−1ı−1(

∧
3H1)Z

,

and Ψ is equivariant with respect to the affine action of Spg(Z) ∼= Mg,∗/Ig,∗. The induced
map Ψ : Tg,∗/Mg,∗ → Hom(K2,H1)R/(Mg,∗) factors in each fiber over Z through the
affine quotient of the translated torus (− 1

2 Zλ
−1δ̂(y)+λ−1ı−1(

∧
3H1)R)/λ−1ı−1(

∧
3H1)Z by

all σ ∈ Spg(Z) that fix Z.

Proof. By Corollary 5.20, the map ıλΨ factors through the solution space of the inho-
mogeneous equations of 5.20. Let (f,M, z) ∈ Tg,∗ and let y ∈ Mg,∗ be a homology in-
volution. Then both Ψf and Ψf◦y are in the same fiber Hom(K2(Ωf ), H1(Ωf ))R over
Ωf so that ıλ(Ψf − Ψf◦y) satisfies the homogeneous equations and so is in

∧
3H1 by

Lemma 5.22. By Proposition 4.2, Ψf◦y = (Ψf + Ωf
λ−1δ̂(y)) · ρy = (Ψf + Ωf

λ−1δ̂(y)) ·



34 CRIS POOR, DAVID S. YUEN

(−I) = −Ψf − Ωf
λ−1δ̂(y). Therefore Ψf − Ψf◦y = 2Ψf + Ωf

λ−1δ̂(y) is in the sub-
space λ−1ı−1(

∧
3H1(Ωf ))R. This demonstrates that for any f , Ψf ∈ −1

2 Ωf
λ−1δ̂(y) +

λ−1ı−1(
∧

3H1(Ωf ))R as asserted. The map Ψ is known by Corollary 4.5 to be equivariant
with respect to the affine action of Mg,∗/Ng,∗. We also need to check that this action
stabilizes − 1

2 λ
−1δ̂(y) + λ−1ı−1

∧
3H1 over the entire hg.

The stability of − 1
2 λ

−1δ̂(y) + λ−1ı−1
∧

3H1 under the action of Mg,∗ follows by:

(− 1
2 Ωf

λ−1δ̂(y) + λ−1ı−1(
∧3H1(Ωf ))R) · h

= (− 1
2 Ωf

λ−1δ̂(y) + Ωf
λ−1ı−1(

∧3H1(S))R + Ωf
λ−1δ̂(h)) · ρh

(by Definition 4.4 of action)

= (Ωf
λ−1(− 1

2h∗δ̂(y) + 1
2δ((h, y)) + ı−1(

∧3H1(S)R)) · ρh
(by Lemma 3.8)

= Ωf ·ρhh
−1
∗ λ−1(− 1

2h∗δ̂(y) + ı−1(
∧3H1(S))R)

(by diagram 1.10 and Corollary 5.23)

= − 1
2 Ωf ·ρhλ

−1δ̂(y) + λ−1ı−1(
∧3H1(Ωf · ρh))R.

We now quotient the domain and range of Ψ by the Torelli group Ig,∗. By Definition
4.4, h ∈ Ig,∗ acts on (Z, φ) by Z · h = Z and φ · h = φ + jZλ

−1δ(h), so that Ig,∗ acts
on Hom(K2(Z), H1(Z))R merely by translation. By Johnson’s results, we have τ(Ig,∗) =
ıδ(Ig,∗) = (

∧
3H1)Z, so that

Hom(K2,H1)R/(Ig,∗) =
Hom(K2,H1)R
λ−1ı−1(

∧
3H1)Z

.

To show that the induced Ψ is well-defined, we in fact only need Corollary 5.23 that
ıδ(Ig,∗) ⊆ (

∧
3H1)Z; but to call λ−1ı−1(

∧
3H1)R/Ig,∗ a torus, we need to know that the image

of the Torelli group is all of (
∧

3H1)Z. The normality of Ig,∗ in Mg,∗ is all that is needed
to induce the affine action of Mg,∗/Ig,∗ on Hom(K2,H1)R; however, this affine action of
Spg(Z) (as set up here) is not the natural bundle action. We may quotient by Mg,∗ and by
the equivariance of Ψ obtain a map Ψ : Tg,∗/Mg,∗ → Hom(K2,H1)R/Mg,∗. An element
φ in the fiber over Z gets identified with (φ+ Zλ−1δ̂(h)) ·ρh for every h ∈ Mg,∗ such that
Z · ρh = Z. Generically, only Torelli elements and homology involutions fix Z; a homology
involution stabilizes − 1

2 Zλ
−1δ̂(y) + λ−1ı−1(

∧
3H1)R, acting by −id on λ−1ı−1(

∧
3H1)R,

and the Torelli elements mod out by the lattice λ−1ı−1(
∧

3H1)Z. We may therefore ignore
further action by Torelli elements and simply pick representatives σ ∈ Spg(Z) which fix Z.

As mentioned in the introduction, the second paragraph of the above theorem provides
a new proof for, and provides a global version of, some previously known results due to
Harris, Hain, and Pulte. We now compare the above theorem to Theorem 4.10 in [13]. For
each fixed compact Riemann surface M with Jacobian Jac(M), let A1

0(Jac(M)) denote the
algebraic 1-cycles homologous to 0 on Jac(M) modulo rational equivalence. Let

J2(Jac(M)) =
Hom(F 2H3(Jac(M)),C)

H3(Jac(M),Z)
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be the intermediate Jacobian and

Φ : A1
0(Jac(M)) → J2(Jac(M))

be the Abel-Jacobi map of Griffiths (see [13], p.734). For two markings of M , (f1,M, z1)
and (f2,M, z2), let Mzi denote the image (wfi)∗(M) of M in Jac(M), so that Mz1 −Mz2 ∈
A1

0(Jac(M)) and in fact Mz1 −M−
z2 ∈ A1

0(Jac(M)) as well. Pulte showed that there is an
injection of the torus J2(Jac(M)) into the torus Ext(K2(M), H1(M)) such that

Φ(Mz1 −Mz2) = [Ψ̃(f1,M,z1)] − [Ψ̃(f2,M,z2)], and

Φ(Mz1 −M−
z2) = [Ψ̃(f1,M,z1)] + [Ψ̃(f2,M,z2)] in Ext(K2(M), H1(M)).

Therefore, the difference of the images of (f1,M, z1) and (f2,M, z2) into Ext under the Ψ̃
map factors through J2(Jac(M)). This should be compared with the second paragraph of
the Main Theorem which says that any two points (f2,M, z2) and (f1,M, z1) in Teichmüller
space which have the same abelian period matrix Ωf1 = Ωf2 will have [Ψf1 ] and [Ψf2 ]
that both lie in (− 1

2 Ωf1
λ−1δ(y) + λ−1ı−1(

∧
3H1(Ωf1))R)/λ−1ı−1(

∧
3H1)Z. The difference

[Ψf1 ]−[Ψf2 ] therefore lies in λ−1ı−1(
∧

3H1(Ωf1))R)/λ−1ı−1(
∧

3H1)Z, which can be identified
with J2(Jac(M)) ([13, Lemma 3.5]). From the second part of Pulte’s Theorem 4.10 (in
[13]), we can also conclude that Φ(Mz − M−

z ) = 2[Ψ̃f,M,z] also lies in J2(Jac(M)) ↪→
Ext(K2(M), H1(M)), so that Ψ̃(f,M,z) ∈ 1

2Hom(K2, H
1)Z + J2(Jac(M)). Since the torus

bundle J2 with fibers J2(AZ) exists over hg, this part of Pulte’s result implies that over
Torelli space, the Ψ map always lies in a translate of the J2(AZ) torus by half a lattice
element in Hom(K2, H

1)Z. Furthermore, Pulte’s work gives a nice reason why Ψ̃(f1,M,z1) −
Ψ̃(f2,M,z2) should factor through J2(Jac(M)) by showing that [Ψ̃f1 ] − [Ψ̃f2 ] is the Abel-
Jacobi image of Mz1 −Mz2 . In this paper we knew that the higher bilinear relations imply
that Ψ satisfies certain constraints and were interested to determine what those constraints
were. We have here referred to only a few of the results in Pulte’s paper [13].

§6. Holomorphic quadratic periods.

In this section we show in Lemma 6.2 that if a φ ∈ Hom(K2, H
1)R comes from an

element of
∧

3H1, then φ is completely determined by its values on F 2K2. This observation
shows that Ψ is completely determined by its purely holomorphic quadratic periods and
allows us to improve several theorems in the literature [9]. Finally, in Theorem 6.8 we go
further and compute the remaining mixed periods of Ψ in terms of the purely holomorphic
ones.

Definition 6.1. Let (H1, q) be a principally polarized Hodge structure of weight one and
K2 = Ker q ⊆ H1 ⊗H1. Define

π : Hom(K2, H
1)R → Hom(F 2K2, H

1)C

to be the map given by restriction of the domain K2 to F 2K2.

Recall the isomorphisms λ and ı of Definitions 1.11, and note that by Lemma 1.12,
λ−1ı−1 gives an injection λ−1ı−1 : (

∧
3H1)R → Hom(K2, H

1)R.
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Lemma 6.2. Let (H1, q) be a principally polarized Hodge structure of weight one with
K2 = Ker q ⊆ H1 ⊗H1 and H1 = dual of H1. Then the map π◦λ−1◦ı−1 is an injection:

π◦λ−1◦ı−1 : (
∧3H1)R

ı−1

−−→ ((H1⊗H1/q)⊗H1)R
λ−1

−−→ Hom(K2, H
1)R

π
−→ Hom(F 2K2, H

1)C.

Proof. For this proof only, denote a standard basis ofH1(Z) by aj , bj where j = 1, . . . , g. A
basis for (

⊗3
H1)Z is obtained by forming all possible triple tensors of these basis elements.

For an element φ ∈ Hom(K2, H
1)C we may choose a representative of ıλφ in (

⊗3
H1)C and

write

ıλφ =
∑

[caaaijk ai ⊗ aj ⊗ ak + caabijk ai ⊗ aj ⊗ bk + cabaijk ai ⊗ bj ⊗ ak + etc.]

where c•••ijk ∈ C. The condition that φ ∈ Hom(K2, H
1)R is just that we may choose all

c•••ijk ∈ R, or equivalently that φ = φ. Since we wish to say something regarding F 2K2, we
consider instead a basis of H1 = H1,0 ⊕H0,1 given by zi, zi for zi ∈ H1,0 and i = 1, . . . , g.
The dual basis in H1 then has the form xi, xi for i = 1, . . . , g. In this basis we have a
corresponding expression for ıλφ:

(6.3) ıλφ =
∑

[cxxxijk xi ⊗ xj ⊗ xk + cxxxijk xi ⊗ xj ⊗ xk + cxxxijk xi ⊗ xj ⊗ xk + etc.].

The condition that φ ∈ Hom(K2, H
1)R, which is φ = φ, becomes the equalities

cxxxijk = cx x xijk , cxxxijk = cx x xijk , cxx xijk = cx xxijk , etc.

Assume now that πφ = 0 so that for all zm, zn ∈ H1,0, we have zm ⊗ zn ∈ F 2K2 and
φ(zm ⊗ zn) = 0 in H1. This implies that ıλφ annihilates zm ⊗ zn ⊗H1 because we have
〈 ıλφ , zm ⊗ zn ⊗ H1 〉 = 〈λφ , zm ⊗ zn ⊗ H1 〉 = 〈φ(zm ⊗ zn) , H1 〉 = 0. From 6.3 we
therefore have:

(6.4)
∑
k

(cxxxmnkxk + cxxxmnkxk) = 0 in H1

so that cxxxmnk = cxxxmnk = 0 for all m,n, k. The condition φ ∈ Hom(K2, H
1)R then implies

that cx x xmnk = cx x xmnk = 0 as well. Finally, the assumption that ıλφ ∈
∧

3H1 implies that the
c•••ijk are alternating when the three columns of indices are permuted. Hence we have that
cxxxijk = 0 implies cxxxikj = 0 and cxxxkij = 0 as well. Likewise, cx x xijk = 0 implies that cx x xikj = 0
and cxx xkij = 0 as well. Thus ıλφ = 0.

Corollary 6.5. The period map Ψ : Tg,∗ → Hom(K2,H1)R is determined by its image in
Hom(F 2K2,H1)C.

Proof. For (fi,Mi, zi) ∈ Tg,∗, the values Ψfi are in Hom(K2(Ωfi), H
1(Ωfi))R. If Ωf1 = Ωf2

so that Ψf1 and Ψf2 are in the same fiber, then we have shown in Corollary 5.20 and Lemma
5.22 that ıλ(Ψf1 − Ψf2) ∈

∧
3H1(Ωfi). By the above Lemma 6.2, then πΨf1 = πΨf2 if and

only if Ψf1 = Ψf2 .
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One way to interpret this corollary is to say that the quadratic periods σij(ak), σij(bk)
completely determine Ψ. This is interesting with regard to the works of Gunning [4] and
Jablow [9] who studied only these quadratic periods. The τij periods are hence determined
by the σij periods, and we actually tell how to compute the τij periods from the σij periods
at the end of this section.

From the point of view of variation of mixed Hodge structure as discussed in Hain [6],
we have the injection J2(Jac(M)) ↪→ Ext(K2(M), H1(M)) and the isomorphism

Ext(K2, H
1) ∼= Hom(F 2(K2 ⊗H1),C)C

Hom(K2 ⊗H1,Z)Z
.

We have F 2(K2 ⊗H1) = (F 2K2 ⊗H1) ⊕ (K1,1
2 ⊗H1,0) and the above Lemma 6.2 shows

that the image of the intermediate Jacobian in Ext is in fact determined by its restriction
to (F 2K2) ⊗H1.

E. Jablow [9] proved the following proposition with the additional assumption that
Jac(M) has no complex multiplication.

Proposition 6.6. Let (f,M, z) ∈ Tg,∗ be a marked compact Riemann surface of genus
g ≥ 1. Let h ∈ Ig,∗. If σij(c) · h = σij(c) for all quadratic periods σij and for all
c ∈ π1(M, z),then τ(h) = 0 (where τ is Johnson’s homomorphism).

Proof. Since Ψf (ωi ⊗ ωj)([ck]) = σij(ck) for generators ck of π(M, z), the assumption
that h fixes all quadratic periods is the assumption that Ψf = Ψf◦h on F 2K2(Ωf ). By
Corollary 6.5, this implies that Ψf = Ψf◦h. Since h ∈ Ig,∗, we have by Corollary 4.3 that
Ψf◦h = Ψf + Ωf

λ−1δ(h), which immediately implies that τ(h) = ıδ(h) = 0.

E. Jablow [9] proved the following theorem for g = 3 with a different generic set than
Eg. The definition of Eg was given in Definition 4.6.

Theorem 6.7. Two marked compact Riemann surfaces from Eg ⊆ Tg,∗ have equal abelian
and quadratic periods if and only if they differ by an element of Ng,∗ = Ker τ .

Proof. The two marked surfaces have the same abelian periods, so we have that Ωf1 = Ωf2

and that Ψf1 and Ψf2 are in the same fiber Hom(K2(Ωf ), H1(Ωf ))R. By Corollary 6.5, we
obtain Ψf1 = Ψf2 since they have equal quadratic periods and hence are equal on F 2K2.
However, by Proposition 4.7, Ψ injects on Eg/Ng,∗ ⊆ Tg,∗/Ng,∗.

Corollary 6.5 says that the quadratic periods completely determine Ψ, and we now give
explicit formulae for this phenomenon. The mixed periods τij(c) =

∫
c
(ωiωj−Λijω1ω1+uij),

where uij = u(ωi ⊗ωj −Λijω1 ⊗ω1), are rather mysterious because the 1, 0-forms uij such
that duij + ωi ∧ ωj − Λijω1 ∧ ω1 = 0 are not familiar. We can, however, give the following
formulae for the computation of the mixed periods.
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Theorem 6.8. Let N = (Ω − Ω)−1. For any i, j, k, we have

τij(bk) −
g∑
'=1

τij(a')Ω'k = σjk(bi) −
g∑
'=1

σjk(a')Ω'i

+ δjkΩij − δikΩij + ΩijΩjk − ΩijΩik

− Λij [σ1k(b1) −
g∑
'=1

σ1k(a')Ω'1

+ δ1kΩ11 − δ1kΩ11 + Ω11Ω1k − Ω11Ω1k].

τij(ak) =
g∑

m=1

{−σjm(bi) − σim(bj) +
g∑
'=1

(σjm(a')Ω'i + σim(a')Ω'j)}Nmk

+ δikΩij − δjkΩij +
g∑

m=1

{ΩimΩjm − δijΩim}Nmk

+ Λij

[
g∑

m=1

{σ1m(b1) + σ1m(b1) −
g∑
'=1

(σ1m(a')Ω'1 + σ1m(a')Ω'1)}Nmk

−δ1k(Ω11 − Ω11) +
g∑

m=1

{−Ω1mΩ1m + Ω1m}Nmk
]
.

Proof. These formulae may be derived by manipulating the formulae given in Remark 5.3,
equation 5.15, and equation 5.16.
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