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Abstract. It is shown in theorem 2.6.1 that the vanishing properties of the thetan-

ullwerte of hyperelliptic Jacobians characterize them among all irreducible principally

polarized abelian varieties. An alternate proof of Mumford’s theorem characterizing

hyperelliptic Jacobians among all principally polarized abelian varieties by vanishing

and nonvanishing properties is sketched in section 2.7.

Introduction

The Schottky problem is the problem of characterizing Jacobians among all
abelian varieties. In 1888, for genus four, Schottky gave a homogeneous polyno-
mial in the theta constants which vanishes on H4 precisely at the Jacobian points;
a proof of this was finally published by Igusa in 1981 [11]. A solution of the Schottky
problem in general, such as given by Schottky and Igusa in genus four, would be a
set of polynomials in the theta constants which vanish precisely on the Jacobian lo-
cus ofHg, the Siegel upper half space. These equations have proved elusive, whereas
other interesting methods of characterizing Jacobians have met with more success;
here however we restrict ourselves to the approach which requires the specification
of a sufficient number of equations.

Along the same lines as the Schottky problem we may consider other Schottky–
type problems; such as the characterization of hyperelliptic Jacobians among all
abelian varieties, the topic of this paper. It was known to Schottky by 1880 [12,763]
that a Jacobian of genus three is hyperelliptic precisely when an even theta constant
vanishes. Great progress was made in 1984 when Mumford, using the methods of
dynamical systems, characterized hyperelliptic Jacobians among all abelian varieties
by the vanishing and nonvanishing of certain theta constants [14]. For simplicity and
strength this theorem can hardly be improved; from the point of view of the original
Schottky problem however, and from the desire to have an algebraic description
of moduli space, it is beneficial to replace the nonvanishing conditions by further
equalities. That the vanishing conditions define hyperelliptic Jacobians among all
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irreducible abelian varieties is proven in Theorem 2.6.1 and is a solution of the
Schottky–type problem for hyperelliptic curves of arbitrary genus. One still wonders
if the irreducibility hypothesis can be removed. The result is new for g ≥ 5 and
is encouraging because it is a result for each genus which does not demand the
existence of auxiliary parameters or nonvanishing conditions.

2.6.1 Main Theorem. Let η ∈ Ξg and Ω ∈ Hg. The following two statements
are equivalent.

(1) Ω is irreducible and Ω satisfies the equations Vg,η.
(2) There is a marked hyperelliptic Riemann surface M of genus g which has

Ω as its period matrix and Jac(M) = Cg/(Zg + ΩZg). Furthermore, there
is a model of M , y2 =

∏
i∈B(x − ai), with a∞ as the basepoint of the

Abel–Jacobi map w : M → Jac(M) such that w(ai) = [(ΩI)ηi] in Jac(M).

The set Ξg is an explicit set of maps from B = {1, 2, . . . , 2g + 1,∞} to 1
2Z

2g

satisfying certain conditions given in definition 1.4.11. Attached to any map η ∈ Ξg
is a certain U ⊆ B and a function εU on B taking the values ±1. If an Ω ∈ Hg is
the period matrix of a marked hyperelliptic curve then there is change of basepoint
which does not change Ω and an η ∈ Ξg such that w(ai) = (ΩI)ηi and Ω satisfies
the vanishing equations for η, Vg,η. The content of the main theorem 2.6.1 is the
converse: that if an irreducible Ω satifies the vanishing equations Vg,η for some η
then Ω is hyperelliptic. The vanishing equations Vg,η only depend upon the class
of η ∈ Ξg as a map into 1

2Z
2g/Z2g and the classes of Ξg are a finite set canonically

bijective with the azygetic bases of 1
2Z

2g/Z2g and hence in noncanonical bijection
with Γ/Γ2. An irreducible Ω ∈ Hg is then hyperelliptic if and only if one of its
|Spg(Z/2Z)| representatives in Hg/Γ2 satisfies a fixed choice of vanishing equations.
Certain sets of equations play an important role in this paper so we list these now
for easy reference.

1.4.18 Definition. Let η ∈ Ξg. The set of equations Vg,η called the vanishing
equations is defined by

θ[ηS ](0,Ω) = 0, ∀S ⊆ B : |S| ≡ 0 mod 2 and |U ◦ S| �= g + 1.

1.4.21 Definition. Let η ∈ Ξg. Define ξijkl = 1
2 (Ω I)(ηi + ηj − ηk − ηl). The set

of equations Fg,η called Fay’s trisecant formula is defined by all the 3 × 3 minors
which express the rank condition:

rank{�θ2(ξijkl,Ω), �θ2(ξiklj ,Ω), �θ2(ξiljk,Ω)} ≤ 2.

1.6.1 Definition. Let Ω ∈ Hg and η ∈ Ξg. The following equation is called the
generalized Frobenius theta formula, Frobg,η.

∀ ai, zi ∈ Cg :
4∑
i=1

ai =
4∑
i=1

zi = 0,
∑
J∈B

εU (J)
4∏
i=1

θ[ai + ηJ ](zi,Ω) = 0
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This paper uses many results of Mumford [14]; however the methods used here are
classical compared with the dynamical systems approach, and Mumford’s theorem
characterizing hyperelliptic curves is not used, so that the most powerful techniques
are quite different than those in Tata II. The motivation for the proof is that the
moduli of the hyperelliptic curve may be recovered in terms of the theta expressions
( θ[η1](0,Ω)
θ[η3](0,Ω)

θ[η2](0,Ω)
θ[η4](0,Ω) )

2 using the crossratio identities of section 1.5 in the hyperellip-
tic case. Then using these hyperelliptic curve moduli a hyperelliptic Ω′ may be
constructed such that for any Ω ∈ Hg which satisfies the crossratio identities we
have

(*) (
θ[η1](0,Ω)
θ[η3](0,Ω)

θ[η2](0,Ω)
θ[η4](0,Ω)

)2 = (
θ[η1](0,Ω′)
θ[η3](0,Ω′)

θ[η2](0,Ω′)
θ[η4](0,Ω′)

)2.

The existence of these theta expressions, however, requires that the theta constants
be nonzero. This requirement is equivalent to the nonvanishing conditions in Mum-
ford’s theorem, here seen to behave as a nondegeneracy condition. The first main
obstacle then was to translate this nondegeneracy condition into a different form.
Using Fay’s trisecant formula as presented in Gunning [6] we translate another non-
degeneracy condition, that the rank is two in Fay’s trisecant formula above, into
an irreducibility condition on Ω, which is much easier to work with. A version of
the multisecant formula follows from the trisecant formula and implies the needed
nonvanishing of the above theta constants. The second obstacle is that the equal-
ity (*) of the theta expressions is not immediately sufficient to conclude that Ω
is Γ–equivalent to Ω′. A number of invariant theory calculations are used to take
appropriate square roots of these expressions which are then sufficient to show that
Ω is Γ2–equivalent to Ω′. As further questions, we can ask whether the vanishing
conditions alone define the hyperelliptic locus, whether the vanishing conditions
define the hyperelliptic locus in some closure of moduli space, and how far is this
characterization from giving all modular forms of a certain level which vanish on
the hyperelliptic locus?

I wish to thank David Yuen, Colgate University, and Robert Gunning, Princeton
University, for many helpful discussions concerning this work. I also thank the
referee of an earlier version of this paper for careful criticisms.

1. Chapter One
§1.1 Abelian varieties and theta functions.

We review the well–known ideas and formulas we will need from the theory
of abelian varieties and theta functions. Here the citations after the proposition
headings are references for the reader’s convenience and not necessarily attributions.
The Siegel upper half–space of rank g is the set of all symmetric g × g complex
matrices with positive definite imaginary part and is denoted by Hg. For any
Ω ∈ Hg we construct a lattice L ⊂ Cg by setting L = Zg + ΩZg. Any w ∈ Cg

can be uniquely written as w = (Ω I)ζ = Ωζ ′ + Iζ ′′ for ζ = [ζ ′|ζ ′′] ∈ R2g. A
canonical R–valued alternating form on Cg which is Z–valued on L may be defined

by E((Ω I)ζ, (Ω I)ξ) = tζ

(
0 1
−1 0

)
ξ = tζJξ. Since we will not make reference
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to more intrinsic definitions the complex torus A = Cg/L along with the above
alternating form E will be referred to as a principally polarized abelian variety
(p.p.a.v.).

Two of these principally polarized abelian varieties, (A1, E1) and (A2, E2) given
by Ω1,Ω2 ∈ Hg, will be called equivalent when there is an analytic group isomor-
phism φ : A1 → A2 whose lift φ̂ : Cg → Cg maps E1 to E2. This amounts to

the requirement that there exists a symplectic matrix σ =
(
a b
c d

)
∈ Spg(Z) such

that Ω1 = (d + Ω2b)−1(c + Ω2a); here Spg(Z) = {σ ∈ Gl2g(Z) : σJ tσ = J} will be
denoted by Γ. Letting Γ act on Hg in this way we see that the equivalence classes of
principally polarized abelian varieties are in bijection with Hg/Γ, called the moduli
space of p.p.a.v.s. Actually, in order for the above action of Γ to agree with Igusa’s
[10, 24] we must compose it with the antiautomorphism of Γ given by σ �→ tσ; this

agreed upon, σ =
(
a b
c d

)
∈ Γ acts on Ω ∈ Hg as σ · Ω = (aΩ + b)(cΩ + d)−1.

1.1.1 Definition (First order theta function). Let Ω ∈ Hg and ζ = [ζ ′|ζ ′′] ∈
R2g. The first order theta function with characteristic ζ, θ[ζ](w,Ω), is defined for
all w ∈ Cg by

θ[ζ](w,Ω) =
∑
n∈Zg

eee2πi{ 1
2
t(n+ζ′)Ω(n+ζ′)+(n+ζ′)·(w+ζ′′)}.

The positive definiteness of ImΩ implies that θ[ζ](w,Ω) converges and is analytic
for all w ∈ Cg. The standard abbreviations for θ[0](w,Ω) are θ(w,Ω) and θ(w), and
in place of θ[ζ](0,Ω) one often writes θ[ζ]. Hereafter we take the liberty of dropping
the transpose t(n+ ζ ′)Ω(n+ ζ ′) = (n+ ζ ′)Ω(n+ ζ ′) when it occurs in an exponent.
The function θ[ζ](w,Ω) is not periodic with respect to L but instead transforms by
a certain factor of automorphy; indeed the first order theta function is characterized
up to a constant factor by its transformation property.

1.1.2 Definition. The factor of automorphy ξ : L × Cg → C· for l = (ΩI)λ =
Ωλ′ + Iλ′′ ∈ L and w ∈ Cg is given by

ξ(l, w) = eee−2πi{ 1
2λ

′Ωλ′+λ′·w}.

The map e : R2g × R2g → C· for all ζ, η ∈ R2g is given by

e(ζ, η) = eee2πi{ζ′·η′′−η′·ζ′′} = eee2πiζJη.

1.1.3 Proposition. [13, 121-123] For all l = (ΩI)λ ∈ L we have

θ[ζ](w + l,Ω) = e(ζ, λ)ξ(l, w)θ[ζ](w,Ω).

And conversely, for any holomorphic f : Cg → C such that for all l ∈ L, f(w + l) =
e(ζ, λ)ξ(l, w)f(w), there is a unique c ∈ C such that f(w) = c θ[ζ](w,Ω).

Under the action of the lattice L the theta function θ(w,Ω) transforms by the
factor of automorphy ξ and so the zero divisor of θ(w,Ω) is well–defined in A. We
call this divisor the theta locus and write Θ = { [w] ∈ A : θ(w,Ω) = 0} although we
occasionally speak as if Θ ⊂ Cg. Translations of the theta locus by an element a of
A are conveniently written Θa = {w ∈ A : w − a ∈ Θ}.
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1.1.4 Lemma. [10, 186] [13, 164] θ(w,Ω) vanishes simply on Θ, and for a ∈ A
we have Θa = Θ ⇐⇒ a = 0 in A.

We call Ω ∈ Hg symplectically reducible if there exists a σ ∈ Spg(Z) such that

σ ·Ω is in block diagonal form
(

Ω1 0
0 Ω2

)
for some Ωi ∈ Hgi , g1+g2 = g. Otherwise

we call Ω symplectically irreducible. The theta locus Θ is irreducible as an analytic
divisor in A if and only if Ω is symplectically irreducible [11, 539-540]. This last fact
will not be used in any forceful way but only to allow us to speak unambiguously
of an element Ω as irreducible.

A special role is played by the theta functions θ[ζ](w,Ω) with ζ ∈ 1
2Z

2g. For
purposes such as vanishing orders the class of ζ in 1

2Z
2g/Z2g is the relevant notion

because for n ∈ Z2g we have:

(1.1.5 ) θ[ζ + n](w,Ω) = eee2πiζ′·n′′
θ[ζ](w,Ω).

These 22g theta functions with half–integral characteristics, one choice of ζ from
each coset of 1

2Z
2g mod Z2g, arise because Θ is not intrinsically distinguished as a

symmetric divisor with first Chern class E from among its translates Θa, a ∈ 1
2L,

when the equivalence of abelian varieties is considered. Therefore any symmetrical
account will treat the 22g functions θ[ζ](w,Ω) together; of these 2g−1(2g + 1) are
even functions of w and 2g−1(2g − 1) are odd.

1.1.6 Lemma. ∀ζ ∈ 1
2Z

2g, θ[ζ](−w,Ω) = eee4πiζ′·ζ′′θ[ζ](w,Ω).

For ζ ∈ R2g the unit eee4πiζ′·ζ′′ is denoted by e∗(ζ) and due to 1.1.6 when ζ ∈ 1
2Z

2g

we have e∗(ζ) = ±1 accordingly as θ[ζ](w,Ω) is even or odd. The characteristics
ζ ∈ 1

2Z
2g are then also refered to as even or odd. When w = 0 the θ[ζ](0,Ω) for

ζ ∈ 1
2Z

2g/Z2g are functions of only Ω and are called thetanullwerte. For odd ζ
we have θ[ζ](0,Ω) = 0 but for even ζ the thetanullwerte play an important role.
In this connection the principal congruence subgroups Γn = {σ ∈ Γ : σ ≡ I2g
mod n} are relevant as well as Igusa’s intermediate normal subgroups, Γn,2n, for

which Γ2n % Γn,2n % Γn. For even n, Γn,2n consists of the σ =
(
a b
c d

)
∈ Γn such

that 2n divides the diagonals of b and c.

1.1.7 Theorem (Igusa). [10, 189] The quotient space Hg/Γ4,8 is a complex
manifold with Hg as its universal cover. The map I : Hg/Γ4,8 → PN given by
Ω �→ {θ[ζ](0,Ω)}ζ∈ 1

2Z
2g/Z2g is holomorphic, locally biholomorphic with its image,

and injective.

The above result of Igusa shows that for Ω ∈ Hg the equivalence class of A as
a p.p.a.v. is completely determined by the thetanullwerte θ[ζ](0,Ω), ζ ∈ 1

2Z
2g/Z2g.

Actually they separate the points ofHg/Γ4,8 which is a finite cover ofHg/Γ; if we let
the group Γ2 act onHg/Γ4,8 then a certain Γ2–invariant subfield of C(θ[ζ])ζ∈ 1

2Z
2g/Z2g

determines Hg/Γ2. We will write F0(C[θ[ζ]]ζ) for the subfield of C(θ[ζ]) generated
by quotients of homogeneous polynomials of the same degree.
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1.1.8 Lemma. [13, 190,207] [10, 175-176] Γ2 is generated by elements of the form(
I 2B
0 I

)
,

(
I 0

2C I

)
, and

(
A 0
0 tA−1

)
where A = I + 2Ā ∈ Glg(Z), B = tB, C = tC, and Ā, B, C are integral g × g
matrices. The projective action of these generators on the thetanullwerte for ζ ∈
1
2Z

2g is:

θ[ζ](0, σ · Ω) =

 eee+2πiζ′Bζ′

eee±4πiζ′Āζ′′

eee−2πiζ′′Cζ′′

 θ[ζ](0,Ω).

For any integral Ā there is an integral D such that I +2Ā+4D ∈ Glg(Z) so that
Ā may be selected arbitrarily in the induced action of Γ2. By the projective action
of Γ2 on the thetanullwerte we mean the action on θ[ζ](0,Ω)

θ[0](0,Ω) . This projective action

is determined by the values tζ
(

B Ā
tĀ C

)
ζ = (ζ⊗ζ)

(
B Ā
tĀ C

)
and so for a product

P =
∏k
i=1 θ[ζi](0,Ω) the action is determined by the values (

∑k
i=1 ζi⊗ζi)

(
B Ā
tĀ C

)
.

The condition for P to be projectively invariant is then that
∑k

i=1 ζi ⊗ ζi send all
symmetric integral 2g × 2g matrices into Z.

1.1.9 Lemma. Let Ω1, Ω2 ∈ Hg. There exists a σ ∈ Γ2 such that σ · Ω1 = Ω2 if
and only if the following conditions are satisfied:

(1) ∀ζ ∈ 1
2Z

2g/Z2g, θ[ζ](0,Ω1) = 0 ⇐⇒ θ[ζ](0,Ω2) = 0
(2) ∀Γ2–invariant ψ ∈ F0(C[θ[ζ](0,Ω)]ζ) such that Ω1, Ω2 ∈ Domain(ψ) we

have ψ(Ω1) = ψ(Ω2).

Proof. Suppose that σ ·Ω1 = Ω2 for σ ∈ Γ2. We have θ[ζ](0,Ω2) = θ[ζ](0, σ ·Ω1) =
(unit)θ[ζ](0,Ω1) which implies (1). If ψ is Γ2–invariant and defined at Ω2 then
ψ(Ω2) = ψ(σ · Ω1) = ψ(Ω1) and this verifies (2).

Now suppose that (1) and (2) hold. Since all the thetanullwerte of Ω1 do not
vanish we deduce from (1) that there exists a δ ∈ 1

2Z
2g such that θ[δ](0,Ω1) �= 0

and θ[δ](0,Ω2) �= 0. In what follows δ is fixed. Consider the field E = C(x·, ξ·)
and the polynomial domain E[z] where z, xζ , and ξζ are indeterminants for all
even ζ ∈ 1

2Z
2g/Z2g. We let Γ2 act on E[z] by fixing z and the xζ and using the

projective action of Γ2 on the thetanullwerte to move the ξζ . So for σ ∈ Γ2 we
have (ξζ)σ = uζξζ if and only if we have θ[ζ](0,σ·Ω)

θ[δ](0,σ·Ω) = uζ
θ[ζ](0,Ω)
θ[δ](0,Ω) . Define an element

r =
∑

ζ xζξζ ∈ E and the polynomial P of degree d = [Γ2 : Γ4,8] by

P (z; �x; �ξ ) =
∏

σ∈Γ4,8rΓ2

(z − rσ).

P (z; �x; �ξ ) is Γ2–invariant because the ξζ are Γ4,8–invariant by the existence of
Igusa’s map I in 1.1.7 and because Γ2 just permutes the cosets of Γ4,8 r Γ2. If
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P is written as a polynomial in z and the xζ with coefficients in C[ξ·], P (z; �x; �ξ ) =∑
i

∑
multi–index α qi;α(ξ·)zi(x·)α, then we conclude that the polynomials qi;α(ξ·)

must be Γ2–invariant. Hence qi;α( θ[ζ](0,Ω)
θ[δ](0,Ω) ) is a Γ2–invariant element of F0(C[θ[ζ]]ζ)

which is defined for both Ω1 and Ω2. By (2) we have qi;α( θ[ζ](0,Ω1)
θ[δ](0,Ω1)

) = qi;α( θ[ζ](0,Ω2)
θ[δ](0,Ω2)

)

or P (z; �x; θ[ζ](0,Ω1)
θ[δ](0,Ω1)

) = P (z; �x; θ[ζ](0,Ω2)
θ[δ](0,Ω2)

). All d roots of these two polynomials are
known to us and must coincide; hence there exists a σ1 ∈ Γ2 such that in C(x·) we
have: ∑

ζ

xζ
θ[ζ](0,Ω1)
θ[δ](0,Ω1)

=
∑
ζ

xζ
θ[ζ](0, σ1 · Ω2)
θ[δ](0, σ1 · Ω2)

.

This implies for all ζ that θ[ζ](0,Ω1)
θ[δ](0,Ω1)

= θ[ζ](0,σ1·Ω2)
θ[δ](0,σ1·Ω2)

and that I(Ω1) = I(σ1 · Ω2) in
PN . By Igusa’s theorem 1.1.7 there exists a σ2 ∈ Γ4,8 such that Ω1 = σ2 · (σ1 · Ω2)
and this concludes the proof.

The second order theta functions have a theory parallel to that of the first order
theta functions. They transform by e(ζ, ·) ξ2 and this characterizes them. The
vector �θ2(w,Ω) is a convenient basis for the vector space of analytic functions which
transform by ξ2, each member of which is an even function. The second order theta
functions have no common zeros. The two parallel theories are intertwined in the
addition formula of Weierstraß and its inversion which are given below.

1.1.10 Definition (Second order theta functions). Let Ω ∈ Hg and ζ ∈ R2g.
A second order theta function with characteristic ζ is defined ∀w ∈ Cg by:

θ2[ζ](w,Ω) = θ[ ζ
′

2 |ζ ′′](2w, 2Ω).

1.1.11 Proposition. [13, 124] For all l = (Ω I)λ ∈ L we have θ2[ζ](w + l,Ω) =
e(ζ, λ)ξ(l, w)2θ2[ζ](w,Ω).

1.1.12 Definition. The vector of second order theta functions �θ2(w,Ω) is defined
as {θ2[ν|0](w,Ω), ν ∈ Zg/2Zg}.
1.1.13 Proposition. [13, 124] Let f : Cg → C be analytic and satisfy: ∀l =
(Ω I)λ ∈ L, f(w + l) = ξ(l, w)2f(w); then ∃1 �c ∈ C2g

: f(w) = �c · �θ2(w,Ω).

1.1.14 Lemma. [10, 168] Let Ω ∈ Hg. Then for all w ∈ Cg, �θ2(w,Ω) �= 0.

1.1.15 Proposition (Weierstraß’s addition formula). [4, 3] Let Ω ∈ Hg.

∀ x, y ∈ Cg, �θ2(x,Ω) · �θ2(y,Ω) = θ(x + y,Ω) θ(x− y,Ω).

1.1.16 Proposition (Inversion). [4, 3] Let Ω ∈ Hg. ∀x, y ∈ Cg,∀ν1, ν2 ∈ Rg,
θ2[ν1|0](x,Ω) θ2[ν2|0](y,Ω) =

2−g
∑

p∈Zg/2Zg

eee−2πip·ν1θ[ν1+ν22 |p2 ](x + y,Ω)θ[ν1−ν22 |p2 ](x− y,Ω).

Finally, a few words about göpel systems. Their main significance lies in the fact
that for any Ω ∈ Hg there will be at least one thetanullwerte in every göpel system
which does not vanish.
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1.1.17 Definition. A göpel system Σ ⊂ 1
2Z

2g/Z2g is a set of 2g even character-

istics ζ ∈ 1
2Z

2g/Z2g such that Σ + Σ + Σ = Σ.

1.1.18 Lemma. [10, 219-220] Let Ω ∈ Hg and let Σ ⊂ 1
2Z

2g/Z2g be a göpel
system. Then ∃ζ ∈ Σ : θ[ζ](0,Ω) �= 0.

The typical göpel system is Σ = { [ν|0] : ν ∈ 1
2Z

g/Zg}, and the addition formula
1.1.15 can be seen to imply 1.1.18 in this case. I have tried to string the formulas
together with some prose but here are two that didn’t fit in.

1.1.19 Lemma. ∀Ω ∈ Hg, w ∈ Cg, ζ, η ∈ R2g,

θ[ζ + η](w,Ω) = eee2πiη′·{w+ζ′′+η′′+ 1
2Ωη′}θ[ζ](w + (Ω I)η,Ω).

1.1.20 Lemma. ∀x, a, b, c, d ∈ R2g,

θ((Ω I)(x + a− c),Ω)
θ((Ω I)(x + a− d),Ω)

θ((Ω I)(x + b− d),Ω)
θ((Ω I)(x + b− c),Ω)

=

θ[x]((Ω I)(a− c),Ω)
θ[x]((Ω I)(a− d),Ω)

θ[x]((Ω I)(b− d),Ω)
θ[x]((Ω I)(b− c),Ω)

= eee2πi(a−b)′Ω(c−d)′

eee2πi{(a−b)′·(c−d)′′+(c−d)′·(a−b)′′} θ[x + a− c](0,Ω)
θ[x + a− d](0,Ω)

θ[x + b− d](0,Ω)
θ[x + b− c](0,Ω)

.

§1.2 Riemann Surfaces, Jacobians, and Riemann’s Vanishing Theorem.
Let M be a compact Riemann surface of genus g ≥ 1. Let A1, . . . , Ag, B1, . . . , Bg

be “canonical” generators for π1(M,p0); so that we have
∏g
i=1(AiBiAi

−1Bi
−1) = 1.

We also take [Ai], [Bi], as a basis for H1(M,Z) so that the intersection pairing

in this basis is J =
(

0 1
−1 0

)
. We immediately go up to the universal cover

M̂ with π : M̂ → M and make our constructions on this “marked” surface. A
marking of M is a choice of z0 ∈ M̂ such that π(z0) = p0 and a choice of canonical
generators for π1(M,p0). We select a base point z0 ∈ M̂ in order to identify the
fundamental group π1(M,p0) with G = Deck(M̂/M) in the following manner: given
T ∈ G = Deck(M̂/M) any path δT from z0 to Tz0 defines πδT ∈ π1(M,p0).

Standard existence theorems produce certain meromorphic 1–forms on M and
meromorphic functions on copies of M̂ . The 1–forms when pulled back to M̂ will be
G–invariant but the functions on (M̂)r that we consider will transform by certain
factors of automorphy with respect to G. We mention only those analytic objects
we will need later.

1.2.1 Proposition. The complex vector space of holomorphic 1–forms on M ,
H0(M,O1,0), has dimension g. Elements of this space are called abelian differen-
tials.
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1.2.2 Lemma. Given a marked Riemann surface M with g ≥ 1 there exists a
unique basis ω1, . . . , ωg of abelian differentials called a canonical basis such that∫
Aj

ωi = δij .

1.2.3 Definition. For all t ∈ Cg define the character ρt : G→ C· by ρt(Ai) = 1,
and ρt(Bi) = eee2πiti .

1.2.4 Proposition (Gunning). [5, 25] Given a marked Riemann surface M there

exists a unique meromorphic function p on (M̂)4 such that:

(1) The only zeros and poles of p(z1, z2, a1, a2) are simple zeros when z1 = a1

or z2 = a2 mod G, and simple poles when z1 = a2 or z2 = a1 mod G.
The function p(z1, z2, a1, a2) is identically 1 when z1 = z2 or a1 = a2.

(2) p(z1, z2, a1, a2) = p(a1, a2, z1, z2) = p(z2, z1, a1, a2)−1 = p(z1, z2, a2, a1)−1

(3) For T ∈ G, p(Tz1, z2, a1, a2) = ρt(T )p(z1, z2, a1, a2) where tj =
∫ a1

a2
ωj .

1.2.5 Proposition (Gunning). [8, 52-53] Given a marked Riemann surface M

there exists a holomorphic function q on (M̂)2 such that:

(1) The only zeros of q(z1, z2) are simple zeros when z1 = z2 mod G.
(2) q(z1, z2) = −q(z2, z1)
(3) p(z1, z2, a1, a2) = q(z1,a1)

q(z1,a2)
q(z2,a2)
q(z2,a1)

The function p(z1, z2, a1, a2) is Gunning’s crossratio function. It is the generaliza-
tion of the usual crossratio 〈z1, z2, a1, a2〉 = z1−a1

z1−a2

z2−a2
z2−a1

on P1 and will figure promi-
nently in all that follows. The function q is Gunning’s prime function and is closely
realted to the prime function of Klein and Fay. We have not listed its most important
properties and merely want to point out that the crossratio function can be factor-
ized as in (3) by a skew function q. From the existence of such a factorization we
immediately verify that, just like 〈z1, z2, a1, a2〉, p(z1, z2, a1, a2) satisfies the follow-
ing symmetries which will henceforth be termed the crossratio symmetries. Notice
that 〈z1, z2, a1, a2〉 satisfies the further relation 〈z1, z2, a1, a2〉+ 〈z1, a1, z2, a2〉 = 1;
Fay’s trisecant formula is the generalization of this, see [15].

1.2.6 Lemma (The crossratio symmetries). Let M be a marked Riemann

surface. Gunning’s crossratio function p satisfies: ∀ distinct I, J,K,L,N ∈ M̂ ,

(1) p(I, J,K,L) = p(J, I, L,K) = p(K,L, I, J) = p(L,K, J, I)
(2) p(I, J,K,L)p(J, I,K,L) = 1
(3) p(I, J,K,L)p(I,K,L, J)p(I, L, J,K) = −1
(4) p(I, J,K,L)p(I, J, L,N) = p(I, J,K,N).

We now construct the Jacobian of M , Jac(M). Use the vector �ω = (ω1, . . . , ωg)
formed by the canonical basis of abelian differentials to construct the Abel–Jacobi
map w : M̂ → Cg, w(z) =

∫ z
z0

�ω. The deck group G acts on w via translations in
Cg; for T ∈ G we have w(Tz) = w(z) +

∫
T
�ω. These translations form a lattice in

Cg given by L = {
∫
T
�ω, T ∈ G} and a Z–basis for L is (

∫
Aj

ωi,
∫
Bj

ωi)
def= (I Ω). We

can now view w as a map from M to Cg/(Zg + ΩZg) which is the Jacobian of M ,
Jac(M).
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1.2.7 Proposition. [13, 142] Let M be a marked Riemann surface, then Ωij =∫
Bj

ωi ∈ Hg and Jac(M) is a principally polarized abelian variety.

If the marking of M is changed then a different period matrix Ω results. The pe-
riod matrix Ω is independent of the base point and dependent only on the homology
classes [Ai] and [Bi]. A different homology basis Ã, B̃ which preserves the intersec-

tion matrix J will be related to A,B by
(

Ã
B̃

)
= σ

(
A
B

)
for σ =

(
a b
c d

)
∈ Spg(Z).

This will change Ω to Ω̃ = (c + dΩ)(a + bΩ)−1 and consequently the equivalence
class of the p.p.a.v. Jac(M) depends only upon M and not upon the marking. The
Abel–Jacobi map will become w̃(z) = (ta + Ωtb)−1w(z).

Since Jac(M) is an abelian group we can extend the Abel–Jacobi map w to a
homomorphism w : Div(M) → Jac(M) where Div(M) is the free abelian group on
points of M . The map from divisors of degree zero is independent of the base point
and by Abel’s theorem has kernel equal to the principal divisors. For D ∈ Div(M)
elements [D] ∈ Pic(M) = Div(M)/(principal divisors) are called divisor classes.

1.2.8 Proposition. [2, 92] w : Pic0(M)→ Jac(M) is a group isomorphism.

When we are considering a Jacobian the theta functions on it are often called
Jacobian instead of or as well as abelian theta functions. There is an important
theorem due to Riemann which relates the vanishing of the Jacobian theta function
to the dimensions of sections of divisor classes on M . Recall that the canonical
divisor class KM ∈ Pic2g−2(M) is the divisor class of any meromorphic differential.

1.2.9 Definition. For D ∈ Div(M) let L(D) = {f meromorphic on M : div(f) +
D ≥ 0}.

1.2.10 Theorem (Riemann Vanishing). [2, 298] Let M be a marked compact
Riemann surface of genus g ≥ 1 and let J be its Jacobian. ∃r ∈ Cg : [2r] =
w(KM ) in J and for all D ∈ Div g−1(M)

ordz=0θ(r − w(D) + z,Ω) = dimCL(D)

We follow [7] in calling r the riemann point. The classical terminology [2, 290]
is the vector of Riemann constants.

1.2.11 Definition (Theta characteristic). A divisor class χ ∈ Picg−1(M) such
that 2χ = KM in Pic2g−2(M) is called a theta characteristic.

These theta characteristics exist and hence there are 22g of them. One of these
theta characteristics is mapped onto [r] by w and we can rewrite Riemann’s van-
ishing theorem in terms of it.

1.2.12 Corollary. Let χ ∈ Picg−1(M) such that w(χ) = [r] then for all E ∈
Pic0(M) we have ord0θ(w(E) + z,Ω) = dimCL(χ− E).

We may describe the theta locus Θ of Jac(M) quite explicitly in these terms.
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1.2.13 Corollary. [13, 164] Let J be the Jacobian of a marked Riemann surface,
M , of genus g ≥ 1. Then the theta locus Θ = {[z] ∈ J : θ(z,Ω) = 0} is irreducible
and equal to {[r]− w(D) ∈ J : D ∈ Divg−1(M), and L(D) �= 0}.

§1.3 Addition Theorems.
Powerful identities special to Jacobian theta functions center around the trise-

cant formula of Fay [4, 34]. Identities which can be formulated solely in terms of
the period matrix Ω are then necessary conditions for an abelian variety to be a
Jacobian.

1.3.1 Definition. [8, 53] Let M be a marked Riemann surface. Let K = {ki}ni=1,

L = {li}ni=1 for a, b, ki, li ∈ M̂ . The higher crossratio functions p(a, b;K;L) are
defined by

p(a, b;K;L) =
n∏
i=1

p(a, b, ki, li).

For n = 1 we simply have Gunning’s crossratio function from §1.2 because
p(a, b; {k1}; {l1}) = p(a, b, k1, l1). The higher crossratio functions occur naturally in
the inhomogeneous forms of the multisecant identity. In the homogeneous forms the
expression c(K;L) occurs and is of course related to the higher crossratio functions.

1.3.2 Definition. Let M be a marked Riemann surface. Let K = {ki}Ni=1, L =
{li}Ni=1 for ki, li ∈ M̂ . Define c(K;L) by 1.3.2 or inductively by 1.3.3 .

c(K;L) =

∏
1≤m<n≤N

q(km, kn)q(ln, lm)∏
1≤m,n≤N

q(km, ln)
(1.3.2 )

c(K;L)p(ki, lj ;L\lj ;K\ki) = (−1)i+jc(K\ki;L\lj)/q(ki, lj)
(1.3.3 )

1.3.4 Proposition (Fay). [4, 33] Let J = Cg/(Zg + ΩZg) be the Jacobian of a

marked Riemann surface M with genus g ≥ 1 and universal cover M̂ , π : M̂ →M .

Let w : M̂ → Cg be the Abel–Jacobi map. Let πK ∩ πL = ∅ for K = {ki}Ni=1,

L = {li}Ni=1 where ki, li ∈ M̂ . Then for all y ∈ Cg the following is true.

det
1≤m,n≤N

{θ(y + w(km − ln),Ω)
q(km, ln)

} = c(K;L) θ(y,Ω)N−1θ(y + w(K − L),Ω)

When we write w(K−L) we treat K and L as positive divisors. We may expand
the determinant in 1.3.4 by minors of the ith row and use 1.3.4 again to evaluate
these minors. We then use 1.3.3 to write the coefficients in terms of the higher
crossratio functions p.



12 CRIS POOR

1.3.5 Proposition (Multisecant formula). Let the notation be as in proposi-
tion 1.3.4. For any i, j we have:

θ(y,Ω) θ(y + w(K − L),Ω) =
N∑
j=1

p(ki, lj ;L\lj ;K\ki) θ(y + w(ki − lj),Ω) θ(y + w(K\ki − L\lj),Ω).

This may be rewritten by applying Weierstraß’s addition formula 1.1.15.

1.3.6 Proposition. [8, 47] Let the notation be as in proposition 1.3.4. For ti =
1
2w(K\ki − L− ki) we have:

�θ2(ti + w(ki),Ω) =
N∑
j=1

p(ki, lj ;L\lj ;K\ki)�θ2(ti + w(lj),Ω).

1.3.7 Corollary. For ti = 1
2w(K\ki − L− ki) we have:

rank{�θ2(ti + w(ki),Ω), �θ2(ti + w(l1),Ω), . . . , �θ2(ti + w(lN ),Ω)} ≤ N.

This rank condition is useful in studying general abelian varieties, at least when
the w(ki), w(li) may be written in terms of Ω, because it does not involve the higher
crossratio functions. R. Gunning has proven [7] [8, 43] a remarkable converse to the
above corollary which says that if ti ∈ Cg satisfies the above rank condition for a
Jacobian then 2ti is of the required form. Fay’s trisecant formula is the case N = 2
of 1.3.4–1.3.7.

1.3.8 Proposition (Fay’s trisecant formula). [4, 34] Let J = Cg/(Zg+ΩZg) be

the Jacobian of a marked Riemann surface M with genus g ≥ 1. Let w : M̂ → Cg be

the Abel–Jacobi map. For y ∈ Cg and z1, z2, a1, a2 ∈ M̂ : {πz1, πa2}∩{πz2, πa1} =
∅ we have:

∣∣∣∣∣∣∣
θ(y + w(z1 − z2),Ω)

q(z1, z2)
θ(y + w(a2 − z2),Ω)

q(a2, z2)
θ(y + w(z1 − a1),Ω)

q(z1, a1)
θ(y + w(a2 − a1),Ω)

q(a2, a1)

∣∣∣∣∣∣∣ =

q(z1, a2)q(a1, z2)
q(z1, z2)q(z1, a1)q(a2, z2)q(a2, a1)

θ(y,Ω)θ(y + w(z1+a2−z2−a1),Ω)

(1.3.9 )

θ(y,Ω) θ(y + w(z1+a2−z2−a1),Ω) =

p(z1, z2, a1, a2) θ(y+w(z1 − z2),Ω) θ(y + w(a2 − a1),Ω)

+p(z1, a1,z2, a2) θ(y + w(z1 − a1),Ω) θ(y + w(a2 − z2),Ω)

(1.3.10 )
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�θ2( 1
2w(z1+a2−z2−a1),Ω) =

p(z1, z2, a1, a2) �θ2( 1
2w(z1+a1−z2−a2),Ω) + p(z1, a1, z2, a2) �θ2( 1

2w(z1+z2−a1−a2),Ω)

(1.3.11 )

rank{�θ2( 1
2w(z1+a2−z2−a1)), �θ2( 1

2w(z1+a1−z2−a2)), �θ2( 1
2w(z1+z2−a1−a2))} ≤ 2.

(1.3.12 )

We can obtain a nice expression for Gunning’s crossratio function p by substitut-
ing y = α+w(a1− z1) in 1.3.10. If α ∈ Θ and α is not in Θ(1), the singular locus of
Θ, then θ(α+w(p−q)) �≡ 0, see [2, 298]. The term θ(y+w(z1−a1),Ω) in 1.3.10 van-
ishes and we have θ(α+w(a1− z1),Ω) θ(α+w(a2− z2)),Ω) = p(z1, z2, a1, a2) θ(α+
w(a1 − z2),Ω) θ(α + w(a2 − z1),Ω) which gives the following corollary.

1.3.13 Corollary (Gunning). [7, 155] For all α ∈ Θ ∼ Θ(1) p is given as a

meromorphic function on M̂4 via:

p(a1, a2, z1, z2) =
θ(α + w(a1 − z1),Ω)
θ(α + w(a1 − z2),Ω)

θ(α + w(a2 − z2),Ω)
θ(α + w(a2 − z1),Ω)

.

We can obtain a similar expression for p(a, b;A;B) when |A| = |B| = g by
substituting y = r − w(K − ki − li) for N = g + 1 into 1.3.5. Again all but two of
the terms vanish and we have:

θ(r − w(K − ki − li),Ω)θ(r − w(L− ki − li),Ω) =

p(ki, li;L\li;K\ki)θ(r + w(ki −K\ki),Ω)θ(r + w(li − L\li),Ω).

We rewrite this to obtain the next corollary by making the denotations B = K\ki,
A = L\li, k = ki, and l = li.

1.3.14 Corollary. Let r be the riemann point. The higher crossratio function p

for |A| = |B| = g is given as a meromorphic function on M̂2g+2 via:

p(k, l;A;B) =
θ(r + w(k)− w(A),Ω)
θ(r + w(k)− w(B),Ω)

θ(r + w(l)− w(B),Ω)
θ(r + w(l)− w(A),Ω)

.

§1.4 Hyperelliptic Review.
We review the standard results on hyperelliptic curves as given by D. Mumford in

[14] and follow this notation (almost) entirely. It is important to point out that all of
the constructions of this section are well–defined once 2g+2 distinct points of P1 are
given. We will use this fact in §2.4. Let g ≥ 1 and let a1, a2, . . . a2g+1, a∞ be 2g + 2
distinct points of P1. If none of the ai are∞ then we construct the Riemann surface
M associated to the plane curve y2 =

∏
i∈B(x−ai) where B = {1, 2, . . . 2g+1,∞}.

If one of the ai is ∞ we permute them so that a∞ = ∞ and let M be given by
y2 =

∏
i∈B\∞(x − ai). The Riemann surface is hyperelliptic because x has degree

2 as a function from M to P1; all hyperelliptic Riemann surfaces are known to be
given in this way. In the first case y has degree 2g+2 and in the second case 2g+1.
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The hyperelliptic involution is the automorphism, I, of M which sends (x, y) to
(x,−y). For g ≥ 2 the function x is the unique function of degree 2 on M up to
linear fractional transformations, and so the unordered crossratios of the branch
points of x, 〈ai, aj , ak, al〉 = (ai−ak)

(ai−al)
· (aj−al)
(aj−ak) , give true invariants of M . Conversely,

a choice of ai and hence M can be recovered from these crossratios so that there
are 2g + 2− 3 = 2g − 1 complex parameters in the family of hyperelliptic curves of
genus g. For g = 1 the crossratios of the four ai also specify M [9, 318].

The (ai, 0) are the ramification points of x on M and we denote these by their
images in P1, ai, as is traditional. If we denote the divisor at infinity by L∞ then L∞
is of the form∞1+∞2 in the first case and 2∞ in the second. We use L∞ =∞+I∞
for a notation which includes both cases. The divisor of y is a1 + · · ·+a2g+1 +a∞−
(g+1)L∞ and the divisor of x−x(p) is p+Ip−L∞; hence L = [L∞] ∈ Pic2(M) is a
divisor class given by p+Ip for any p ∈M and is called the hyperelliptic point. An
unnormalized basis of abelian differentials is given by dx/y, x1dx/y, . . . , xg−1dx/y,
and since div(dx/y) = (g − 1)L∞, the canonical class KM ∈ Pic2g−2(M) is given
by (g − 1)L. The integral domain of meromorphic functions with poles only on
multiples of L∞ is C[x, y], and this knowledge can be used to compute dimensions
of sections of divisor classes. We now give the parameterization of the two–torsion
and the theta characteristics in Pic(M) as presented in [14].

1.4.1 Definition. ∀S ⊆ B : |S| ≡ 0 mod 2, define eS ∈ Pic0(M) by

eS =
∑
i∈S

ai −
|S|
2

L.

1.4.2 Definition. ∀T ⊆ B : |T | ≡ g − 1 mod 2, define fT ∈ Pic g−1(M) by

fT =
∑
i∈T

ai +
g − 1− |T |

2
L.

1.4.3 Lemma. [14, 3.32] In Pic0(M) we have for all S, S1, S2 ⊆ B such that
|S| ≡ |S1| ≡ |S2| ≡ 0 mod 2,

(1) 2eS = 0
(2) eS1 + eS2 = eS1◦S2 (where S1 ◦ S2 = S1\S2 " S2\S1)
(3) eS1 = eS2 ⇐⇒ S1 = S2 or S1 = S2

c

(4) Hence the set of eS in Pic0(M) forms a group isomorphic to (Z/2Z)2g.

1.4.4 Lemma. [14, 3.95] In Pic g−1(M) we have for all S, T, T1, T2 ⊆ B such that
|T | ≡ |T1| ≡ |T2| ≡ g − 1 mod 2, |S| ≡ 0 mod 2,

(1) 2fT = KM = (g − 1)L in Pic 2g−2(M)
(2) fT + eS = fT◦S
(3) fT1 = fT2 ⇐⇒ T1 = T2 or T1 = T2

c

(4) The set of fT in Picg−1(M) gives all theta characteristics for M .

(5) dimC L(fT ) = | g+1−|T |
2 |.
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The set B = {1, 2, . . . , 2g + 1,∞} forms a group under the symmetric difference,
◦, and lemma 1.4.3 says that {S ⊆ B : |S| ≡ 0 mod 2, ◦}/{∅, B} is isomorphic
to the two–torsion in Pic0(M). Lemma 1.4.4 says that {T ⊆ B : |T | ≡ g − 1
mod 2}/{∅, B} is isomorphic to the set of theta characteristics in Picg−1(M) as a
homogeneous space. Item (5) of lemma 1.4.4 is remarkable and important but we
do not repeat the proof here.

Mark the Riemann surface M as in §1.2 so that we have an Abel–Jacobi map
w : Div(M̂)→ Cg, and w : Pic0(M)→ Cg/L, where L = Zg +ΩZg. We choose lifts
âi ∈ M̂ such that πâi = ai ∈M and we choose the base point of our marking to be
â∞. Since ai − a∞ is two–torsion in Pic0(M) we conclude that w(âi) ∈ 1

2L.

1.4.5 Definition. For all i ∈ B, define ηi ∈ 1
2Z

2g by w(âi) = (Ω I)ηi. For all
T ⊆ B, define ηT =

∑
i∈T ηi so that we have w(

∑
T âi) = (Ω I)ηT .

The existence of point sections in the hyperelliptic case allows us to define these
ηi and to formulate Jacobian theta identities for general abelian theta functions.
We now describe the possible maps η abstractly. The properties of the eS in lemma
1.4.3 become properties of the ηS .

1.4.6 Lemma. In 1
2Z

2g/Z2g we have for all S, S1, S2 ⊆ B such that |S| ≡ |S1| ≡
|S2| ≡ 0 mod 2,

(1) 2ηS = 0
(2) ηS1 + ηS2 = ηS1◦S2

(3) ηS1 = ηS2 ⇐⇒ S1 = S2 or S1 = S2
c

(4) A group isomorphism of {S ⊆ B : |S| ≡ 0 mod 2, ◦}/{∅, B} to 1
2Z

2g/Z2g

is given by the map S �→ ηS .

1.4.7 Definition. For all ζ, ξ ∈ R2g, define e2 by e2(ζ, ξ) = eee4πitζJξ.

1.4.8 Lemma. For all ζ, ξ ∈ R2g, we have e2(ζ, ξ) =
e∗(ζ + ξ)
e∗(ζ) e∗(ξ)

.

This e∗ was defined after lemma 1.1.6.

1.4.9 Proposition. [14] Let M be a marked hyperelliptic curve given by y2 =∏
i∈B(x − ai) with â∞ ∈ M̂ as the base point. There exists a map η : B → 1

2Z
2g

and a U ⊆ B such that ηS =
∑

i∈S ηi, η∞ = �0, and |U | ≡ g + 1 mod 4, and such
that the following conditions hold.

(1) η : {S ⊆ B : |S| ≡ 0 mod 2, ◦}/{∅, B} ∼= 1
2Z

2g/Z2g.

(2) e∗(ηS) = (−1)
g+1−|S◦U |

2 , ∀ |S| ≡ 0 mod 2.
(3) e2(ηS1 , ηS2) = (−1)|S1∩S2|, ∀ |S1|, |S2| ≡ 0 mod 2.
(4) w(eS) = (ΩI)ηS in Jac(M), ∀ |S| ≡ 0 mod 2.
(5) w(fT ) = (ΩI)ηT in Jac(M), ∀ |T | ≡ g − 1 mod 2.
(6) w(fU ) = (ΩI)ηU = r = the riemann point in Jac(M).

Proof. Item (1) is item (4) of lemma 1.4.6 and η∞ = �0 because â∞ is the base point
of our marking. For item (4) we have w(eS) = w(

∑
i∈S ai − |S|

2 L) =
∑

i∈S w(ai)−
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|S|
2 w(2â∞) =

∑
i∈S(ΩI)ηi = (ΩI)ηS . For item (5) we have w(fT ) = w(

∑
i∈T ai +

g−1−|T |
2 L) =

∑
i∈T (ΩI)ηi + g−1−|T |

2 2(ΩI)η∞ = (ΩI)ηT . For item (6) we know by
item (4) of lemma 1.4.4 that the riemann point r is the image of a half–canonical
divisor class and so there exists a U ⊆ B such that |U | ≡ g − 1 mod 2, and
w(fU ) = r in Jac(M). Corollary 1.2.12 of the Riemann vanishing theorem tells us
that ord0 θ((ΩI)ηS +z,Ω) = ord0 θ(w(eS)+z,Ω) = dimL(fU −eS) = dimL(fU◦S).
Using item (5) of lemma 1.4.4 we put this more succinctly as:

(1.4.10 ) ord0 θ[ηS ](z,Ω) = |g + 1− |U ◦ S|
2

|.

The order of vanishing of θ[ηS ](z,Ω) must have the same parity as θ[ηS ](z,Ω) does

as a function of z; therefore by lemma 1.1.6 we have e∗(ηS) = (−1)|
g+1−|S◦U |

2 | =

(−1)
g+1−|S◦U |

2 which is item (2) . If we let S = ∅ we see that 1 = e∗(η∅) =

(−1)
g+1−|U |

2 implies that |U | ≡ g + 1 mod 4. Item (3) follows from item (2) using
lemma 1.4.8 and a purely combinatorial argument. Consider the equation,

e2(ηS1 , ηS2) =
e∗(ηS1◦S2)

e∗(ηS1) e∗(ηS2)
= (−1)

g+1−|U◦S1◦S2|
2 − g+1−|U◦S1|

2 − g+1−|U◦S2|
2 .

The combinatorial identity g+1−|U◦S1◦S2|
2 − g+1−|U◦S1|

2 − g+1−|U◦S2|
2 = |S1 ∩ S2| −

2|U ∩ S1 ∩ S2| + (|U | − (g + 1))/2 shows that e2(ηS1 , ηS2) = (−1)|S1∩S2| because
|U | ≡ g + 1 mod 4. �

1.4.11 Definition. Ξg is the set of maps η : B → 1
2Z

2g such that:

(1) ∀S ⊆ B, ηS =
∑

i∈S ηi, η∞ = �0
(2) η : {S ⊆ B : |S| ≡ 0 mod 2, ◦}/{∅, B} ∼= 1

2Z
2g/Z2g is a group isomor-

phism.
(3) ∀ |S1|, |S2| ≡ 0 mod 2, e2(ηS1 , ηS2) = (−1)|S1∩S2|.

(4) ∃1 U ⊆ B : |U | ≡ g + 1 mod 4: ∀ |S| ≡ 0 mod 2, e∗(ηS) = (−1)
g+1−|S◦U |

2 .

Two elements of Ξg which are equal as maps into 1
2Z

2g/Z2g will be said to have
the same class. Proposition 1.4.9 asserts that for a marked hyperelliptic curve with
â∞ as the base point there is some η ∈ Ξg such that w(âi) = (ΩI)ηi and w(fU ) = [r].
If we change our lifts âi then the map η will change but its class in Ξg will not. If we

keep the base point â∞ fixed but let σ =
(
a b
c d

)
∈ Spg(Z) change the canonical

homology basis as in §1.2 then the new Abel–Jacobi map is w̃(z) = (ta+Ωtb)−1w(z),
and the new period matrix is Ω̃ = (ta + Ωtb)−1(tc + Ωtd) = (c + dΩ)(a + bΩ)−1.

These imply that η̃ =
(

a −b
−c d

)
η as is easily verified. So σ ∈ Spg(Z) acts

linearly on Ξg in composition with the automorphism of Γ = Spg(Z) given by(
a b
c d

)
�→

(
a −b
−c d

)
. However, Γ2 does not alter the class of η in Ξg. The
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action of Γ/Γ2 is actually free and transitive on the classes of Ξg. This gives us
an explicit description of the classes in Ξg because an individual member is easy to
display.

1.4.12 Definition. An azygetic base for V = 1
2Z

2g/Z2g is an ordered set of 2g+1
elements α1, . . . α2g+1 such that

∑2g+1
i=1 αi = 0, V = span(αi), and e2(αi, αj) = −1

for i �= j.

1.4.13 Lemma. The classes in Ξg are in bijection with the azygetic bases of
V = 1

2Z
2g/Z2g and Γ = Spg(Z) acts equivariantly and transitively on both.

Proof. Given η ∈ Ξg we verify that η1, . . . η2g+1 is an azygetic base. We have V =
span(ηi) = Im(η) because η is an isomorphism,

∑2g+1
i=1 ηi = η(B\∞) ≡ η(B\∞)c =

η∞ = 0, and e2(ηi, ηj) = e2(η(i,∞), η(j,∞)) = (−1)|{i,∞}∩{j,∞}| = (−1)1 = −1 for
i �= j. The equivariance is clear.

Conversely, suppose that α1, . . . α2g+1 is an azygetic base for V . Since Γ/Γ2

is transitive [10, 212] on azygetic bases there is a σ =
(
a b
c d

)
∈ Γ such that

σαi = ηi, where the ηi are given for some hyperelliptic M . If we change the

canonical homology basis of M via σ̄−1, where σ̄ =
(

a −b
−c d

)
, then η changes to

η̃ = σ−1η and so η̃i = αi. Hence every azygetic base arises from an element of Ξg.
Finally, for completeness, we point out the uniqueness of U " U c once the ηi are

given. Since e∗(ηi) = (−1)
g+1−|{i,∞}◦U |

2 = −1 if i ∈ U,∞ ∈ U ; 1 if i �∈ U,∞ ∈ U ;
1 if i ∈ U,∞ �∈ U , and −1 if i �∈ U,∞ �∈ U , we calculate that U " U c = {i ∈ B\∞ :
e∗(ηi) = −1} ∪ {∞} " {i ∈ B\∞ : e∗(ηi) = +1}. �

We shall frequently deal with the set Ξg, and point out that it is explicitly
given. The finite group Γ/Γ2

∼= Spg(F2) is transitive on Ξg and an azygetic base is
easily given. Here are 2g elements of one that Mumford constructs from an explicit
marking.

1
2

(
1 0 . . . 0
1 0 . . . 0

)
, 1

2

(
0 1 . . . 0
1 1 . . . 0

)
, . . . , 1

2

(
0 0 . . . 1
1 1 . . . 1

)
1
2

(
1 0 . . . 0
0 0 . . . 0

)
, 1

2

(
0 1 . . . 0
1 0 . . . 0

)
, . . . , 1

2

(
0 0 . . . 1
1 1 . . . 0

)
There are a number of combinatorial identities we shall need later on and these are
given in the next lemma.

1.4.14 Definition. For S ⊆ B let εS(j) =
{

+1, for j ∈ S

−1, for j �∈ S.

1.4.15 Lemma. Let η ∈ Ξg.
(1) ∀ |S| ≡ 0 mod 2, j ∈ B, we have e2(ηS , ηj) = εS(j)εS(∞)
(2) ∀S, T , we have εS(j)εT (j)εS◦T (j) = −1
(3) ∀ |S| ≡ 0 mod 2, we have

∑
j∈B

εU (j)e2(ηS , ηj) = ±4( g+1−|S◦U |
2 )
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Proof. For item (1) we have e2(ηS , ηj) = e2(ηS , η(j,∞)) = (−1)|S∩{j,∞}| by the
definition 1.4.11 (3). The four cases of εS(j)εS(∞) = (−1)|S∩{j,∞}| are easily
checked. For item (2) note that j is in either none or two of S, T , S ◦ T , so that
we have εS(j)εT (j)εS◦T (j) = −1. For item (3) we calculate

∑
j∈B εU (j)e2(ηS , ηj) =∑

j∈B εU (j)εS(j)εS(∞) = −εS(∞)
∑

j∈B εU◦S(j) = −εS(∞)(|U ◦ S| − |(U ◦ S)c|)
= −εS(∞)(|U ◦ S| − (2g + 2− |U ◦ S|)) = ±2(g + 1− |S ◦ U |). �

In the proof of proposition 1.4.9 we observed in equation 1.4.10 which thetanull-
werte vanished for a hyperelliptic curve and indeed even the order of this vanishing.
The next two definitions are motivated by the result 1.4.10 that for |S| ≡ 0 mod 2
we have ord0 θ[ηS ](z,Ω) = | g+1−|U◦S|

2 |.

1.4.16 Definition. Let ζ ∈ 1
2Z

2g/Z2g and η ∈ Ξg. We say ζ has hyperelliptic
η–order ν, if ζ = ηS for some S ⊆ B with |S| even and ν = | g+1−|U◦S|

2 | .

1.4.17 Proposition (Vanishing and nonvanishing). [14, 3.103] Let Ω be the
period matrix of a marked hyperelliptic Riemann surface M with â∞ as the base
point. Let w(âi) = (ΩI)ηi with η ∈ Ξg. We have that θ[ζ](0,Ω) does not vanish if
and only if ζ has hyperelliptic η–order zero,

θ[ζ](0,Ω) �= 0 ⇐⇒ ∃S ⊆ B : |S| ≡ 0 mod 2 : ζ = ηS and |U ◦ S| = g + 1.

Proof. This follows from equation 1.4.10 .

1.4.18 Definition. Let η ∈ Ξg. The set of equations Vg,η, called the vanishing
equations, is defined by

(1.4.19 ) ∀S ⊆ B : |S| ≡ 0 mod 2, and |U ◦ S| �= g + 1, θ[ηS ](0,Ω) = 0.

Clearly the equations Vg,η are unaltered if Ω is replaced by σ ·Ω for σ ∈ Γ2; this is
because Γ2 does not permute the thetanullwerte. By proposition 1.4.17 we see that
if Ω is the period matrix of a marked hyperelliptic curve then there exists an η ∈ Ξg
such that Ω satisfies the equations Vg,η. We write Ω ∈ V ′

g,η for brevity. Notice that
if we have ζ ∈ 1

2Z
2g then in view of equation 1.4.10 the hyperelliptic η–order of ζ is

provided directly by lemma 1.4.15 (3) as ± 1
4

∑
j∈B εU (j)e2(ζ, ηj). We now consider

the further identities available to us because the point sections w(âi) = (ΩI)ηi are
known.

1.4.20 Definition. Let η ∈ Ξg, Ω ∈ Hg. Define ξijkl = 1
2 (Ω I)(ηi + ηj − ηk − ηl).

1.4.21 Definition. Let η ∈ Ξg. The set of equations Fg,η, called Fay’s trisecant
formula, is defined by all the 3× 3 minors which express the rank condition:

rank{�θ2(ξijkl,Ω), �θ2(ξiklj ,Ω), �θ2(ξiljk,Ω)} ≤ 2.
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1.4.22 Proposition (Fay’s trisecant formula). Let Ω be the period matrix of
a marked hyperelliptic Riemann surface M ; then there exists an η ∈ Ξg such that
Ω satisfies Fg,η. We write Ω ∈ F ′

g,η for brevity.

Proof. We consider Fay’s trisecant formula as given in equation 1.3.12 of proposition
1.3.8. That equation gives us a rank condition on the �θ2( 1

2w(âi + âj − âk − âl),Ω).
Since w(âi) = (ΩI)ηi for some η ∈ Ξg, this is the rank condition on the �θ2(ξijkl,Ω)
which we desire.

We may give formulae for Gunning’s crossratio function.

1.4.23 Proposition. Let M be a marked hyperelliptic Riemann surface with
w(âi) = (ΩI)ηi and η ∈ Ξg. Let p be Gunning’s crossratio function. For all V such
that |V | = g − 1, and for all distinct i, j, k, l �∈ V we have:

p(âi, âj , âk, âl) =

θ((Ω I)(ηU − ηV + ηi − ηk),Ω)
θ((Ω I)(ηU − ηV + ηi − ηl),Ω)

θ((Ω I)(ηU − ηV + ηj − ηl),Ω)
θ((Ω I)(ηU − ηV + ηj − ηk),Ω)

=

θ[ηU − ηV ]((Ω I)(ηi − ηk),Ω)
θ[ηU − ηV ]((Ω I)(ηi − ηl),Ω)

θ[ηU − ηV ]((Ω I)(ηj − ηl),Ω)
θ[ηU − ηV ]((Ω I)(ηj − ηk),Ω)

=

eee2πi(ηi−ηj)′Ω(ηk−ηl)′ eee2πi{(ηi−ηj)′·(ηk−ηl)′′+(ηk−ηl)′·(ηi−ηj)′′}

θ[ηU − ηV + ηi − ηk](0,Ω)
θ[ηU − ηV + ηi − ηl](0,Ω)

θ[ηU − ηV + ηj − ηl](0,Ω)
θ[ηU − ηV + ηj − ηk](0,Ω)

.

Proof. Since |V | = g − 1 the hyperelliptic η–order of ηU − ηV is 1, and so α =
(ΩI)(ηU−ηV ) is in the theta locus Θ. The hyperelliptic η–order of ηU−ηV +ηi−ηk
is 0 as long as i, k �∈ V so by corollary 1.3.13 we have the first equality of the
proposition.

p(âi, âj , âk, âl) =
θ(α + w(âi)− w(âk),Ω)
θ(α + w(âi)− w(âl),Ω)

θ(α + w(âj)− w(âl),Ω)
θ(α + w(âj)− w(âl),Ω)

The remaining equalities follow from lemma 1.1.20.

1.4.24 Proposition. Let M be a marked hyperelliptic Riemann surface with
w(âi) = (ΩI)ηi and η ∈ Ξg. Let p be Gunning’s higher crossratio function. For all
K,L ⊆ B such that |K| = |L| = g, and for all distinct i, j �∈ K ∪ L we have:

p(âi, âj ; {âm}m∈K ; {ân}n∈L) =

θ((Ω I)(ηU + ηi − ηK),Ω)
θ((Ω I)(ηU + ηi − ηL),Ω)

θ((Ω I)(ηU + ηj − ηL),Ω)
θ((Ω I)(ηU + ηj − ηK),Ω)

=

θ[ηU ]((Ω I)(ηi − ηK),Ω)
θ[ηU ]((Ω I)(ηi − ηL),Ω)

θ[ηU ]((Ω I)(ηj − ηL),Ω)
θ[ηU ]((Ω I)(ηj − ηK),Ω)

=

eee2πi(ηi−ηj)′Ω(ηK−ηL)′ eee2πi{(ηi−ηj)′·(ηK−ηL)′′+(ηK−ηL)′·(ηi−ηj)′′}

θ[ηU + ηi − ηK ](0,Ω)
θ[ηU + ηi − ηL](0,Ω)

θ[ηU + ηj − ηL](0,Ω)
θ[ηU + ηj − ηK ](0,Ω)

.
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Proof. This follows from corollary 1.3.14 and lemma 1.1.20 in the manner of the
proof of proposition 1.4.23.

1.4.25 Corollary. Let K = {km}g1, L = {lm}g1 and let there be given distinct
i, j, km, lm �∈ Vm such that |Vm| = g − 1. We have:

θ[ηU + ηi − ηK ](0,Ω)
θ[ηU + ηi − ηL](0,Ω)

θ[ηU + ηj − ηL](0,Ω)
θ[ηU + ηj − ηK ](0,Ω)

=

g∏
m=1

θ[ηU − ηVm + ηi − ηkm ](0,Ω)
θ[ηU − ηVm + ηi − ηlm ](0,Ω)

θ[ηU − ηVm + ηj − ηlm ](0,Ω)
θ[ηU − ηVm + ηj − ηkm ](0,Ω)

.

Proof. If we note that

p(âi, âj ; {âm}m∈K ; {ân}n∈L) =
g∏

m=1

p(âi, âj , âkm , âlm)

and choose appropriate Vm so that |Vm| = g− 1 and i, j, km, lm �∈ Vm, then we may
use the previous two corollaries. The exponential factors cancel and we are left with
the assertion that was to be shown.

A useful remark about 1.4.25 is that if Ω satifies the equation of 1.4.25 then so
does σ · Ω for σ ∈ Γ2. The discussion after 1.1.8 can be used to show that both
sides of the equation in corollary 1.4.25 transform in the same way with respect
to Γ2. Neither this remark nor corollary 1.4.25 is actually used in this paper but
they provide motivation for lemma 2.5.9 in chapter 2. As a final topic we show the
existence of certain göpel systems of hyperelliptic η–order zero which we will use
later.

1.4.26 Lemma. Let η ∈ Ξg. There is a göpel system Σ ⊆ 1
2Z

2g/Z2g all of whose
elements have hyperelliptic η–order zero. In fact there are two göpel systems Σ1 and
Σ2, each of whose elements have hyperelliptic η–order zero and which also satisfy:
Σ1 ∩ Σ2 = {δ}, and (δ + Σ1)⊕ (δ + Σ2) = 1

2Z
2g/Z2g.

Proof. Let (B, η, U) be given. Partition B arbitrarily in half so that we have the
disjoint union B = {m1,m2, . . .mg+1} " {n1, n2, . . . ng+1} = M "N . Define Pk =
(mknk) for 1 ≤ k ≤ g + 1, and Q1 = (mg+1n1), Qk = (mk−1nk) for 2 ≤ k ≤ g + 1.
Let E1 be the subgroup of {S ⊆ B : |S| even}/{∅, B} generated by the classes of
P1, . . . Pg+1, and E2 by those of Q1, . . . Qg+1. The Ei are clearly subgroups of order
2g. Let Σi = η{M◦U+Ei}; then Σi +Σi +Σi = η{3M◦U+Ei+Ei+Ei} = η{M◦U+Ei} =
Σi so that the Σi have the triple sum property of göpel systems.

Let ηS ∈ Σ1 so that S = M ◦ U ◦ {Pi}i∈T for T ⊆ {1, . . . , g + 1} and U ◦ S =
M ◦ {Pi}i∈T = {minj}i �∈T,j∈T . Therefore we have |U ◦ S| = |T ∪ T c| = g + 1
and ηS has hyperelliptic η–order zero. This shows that every element of Σ1 has
hyperelliptic η–order zero and the same clearly holds for Σ2. Since these elements
have hyperelliptic η–order zero they are even and this shows that the Σi are göpel
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systems. To complete the proof we need to show that E1 + E2 = {S ⊆ B :
|S| even}/{∅, B}. We have the following equalities.

(mg+1 n1) = Q1 (mg+1 m1) = Q1 + P1

(mg+1 n2) = Q1 + P1 + Q2 (mg+1 m2) = Q1 + P1 + Q2 + P2

...
...

(mg+1 nk) = Qk +
k−1∑
i=1

Qi + Pi (mg+1 mk) =
k∑
i=1

Qi + Pi

...
...

(mg+1 ng+1) = Qg+1 +
g∑
i=1

Qi + Pi (mg+1 mg+1) = ∅

The elements (mg+1 nk) and (mg+1 mk) generate {S ⊆ B : |S| even}/{∅, B} and
so by counting we have E1 ⊕ E2 = {S ⊆ B : |S| even}/{∅, B}. We then have
{U ◦M + E1} ∩ {U ◦M + E2} = {U ◦M} and so we let δ = ηU◦M . Hence we
conclude that Σ1 ∩ Σ2 = {δ} and (δ + Σ1)⊕ (δ + Σ2) = 1

2Z
2g/Z2g.

§1.5 Crossratio identities for hyperelliptic theta functions.
In this section the projective crossratios of the branch points of a hyperelliptic Rie-
mann surface M are expressed in terms of its thetanullwerte. All of the identities
among projective crossratios become identities among the hyperelliptic thetanull-
werte. The main point is that these identities among the thetanullwerte given in
proposition 1.5.4 are necessary and sufficient conditions for certain expressions in
the thetanullwerte to be the values of projective crossratios.

1.5.1 Proposition. Let M be a marked hyperelliptic Riemann surface given by

y2 =
∏
i∈B(x− ai). Let M̂ be the universal cover with π : M̂ →M . Let â∞ be the

base point and assume that w(âi) = (ΩI)ηi for η ∈ Ξg. As functions of z1, z2 on

M̂ × M̂ we have:

x(πz1)− ak
x(πz1)− al

x(πz2)− al
x(πz2)− ak

= eee−4πi(ηk−ηl)′·w(z1−z2)(p(z1, z2, âk, âl))2.

Proof. From proposition 1.2.4 recall that p(z1, z2, âk, âl) transforms, as a function
of z1, by the character ρt, where t = w(âk − âl) = (ΩI)(ηk − ηl). Therefore
(p(z1, z2, âk, âl))2 transforms by ρt

2 = ρ2t. Since 2t = (ΩI)(2ηk − 2ηl) is a member
of the lattice L = Zg + ΩZg, we know that ρ2t may be trivialized by f(z) =
eee2πi(2ηk−2ηl)

′·w(z); that is, we have f(Tz) = ρ2t(T )f(z). Hence we see that g(z1) =
eee−2πi(2ηk−2ηl)

′·w(z1−z2)(p(z1, z2, âk, âl))2 is meromorphic for z1 ∈ M̂ and induces a
function on M because g(z1) is invariant under the deck group G. As a function
of z1, g has the same divisor on M̂ as x(πz1)−ak

x(πz1)−al
; namely, zeros at 2âk mod G, and
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poles at 2âl mod G. Nontrivial meromorphic functions on M with the same zeros
and poles must differ by a nonzero multiplicative constant c and so we conclude
that

(1.5.2 )
x(πz1)− ak
x(πz1)− al

x(πz2)− al
x(πz2)− ak

=

c(z2, âk, âl) eee−4πi(ηk−ηl)′·w(z1−z2)(p(z1, z2, âk, âl))2.

Both sides of equation 1.5.2 have the crossratio symmetry pz1z2a1a2pz2z1a1a2 = 1,
so switching z1 with z2 we conclude that c(z2, âk, âl) = c(z1, âk, âl)−1. This means
that c(z2, âk, âl) = c(âk, âl) is really independent of z2, and setting z1 = z2 we
conclude from 1.5.2 that c(âk, âl) = 1.

1.5.3 Corollary (Schottky). [2, 328] Let M be a hyperelliptic Riemann surface
as given in proposition 1.5.1. Let V ⊆ B such that |V | = g − 1 and let distinct
i, j, k, l ∈ B be given such that i, j, k, l �∈ V . The crossratios of the branch points ai
are given by

〈ai, aj , ak, al〉 = eee−4πi(ηk−ηl)′(ΩI)(ηi−ηj)[p(âi, âj , âk, âl)]2

= eee4πi(ηi−ηj)′(ηk−ηl)′′(
θ[ηU − ηV + ηi − ηk]
θ[ηU − ηV + ηi − ηl]

θ[ηU − ηV + ηj − ηl]
θ[ηU − ηV + ηj − ηk]

)2.

Proof. The first equality is simply proposition 1.5.1 with z1 = âi and z2 = âj . If
we use the proposition 1.4.23 to express p(âi, âj , âk, âl) as

eee2πi(ηi−ηj)′Ω(ηk−ηl)′ eee2πi{(ηi−ηj)′·(ηk−ηl)′′+(ηk−ηl)′·(ηi−ηj)′′}

θ[ηU − ηV + ηi − ηk](0,Ω)
θ[ηU − ηV + ηi − ηl](0,Ω)

θ[ηU − ηV + ηj − ηl](0,Ω)
θ[ηU − ηV + ηj − ηk](0,Ω)

,

then we obtain the second equality.

1.5.4 Proposition. Let Ω ∈ Hg and η ∈ Ξg. Suppose the numbers

cijkl = eee4πi(ηi−ηj)′·(ηk−ηl)′′(
θ[ηU − ηV + ηi − ηk]
θ[ηU − ηV + ηi − ηl]

θ[ηU − ηV + ηj − ηl]
θ[ηU − ηV + ηj − ηk]

(0,Ω))2

are defined and nonzero for distinct i, j, k, l �∈ V , |V | = g − 1, and are independent
of V . Then there exist 2g + 2 distinct ai ∈ P1 such that cijkl = 〈ai, aj , ak, al〉, if
and only if the hyperelliptic crossratio identity (1.5.5) holds.

eee4πi(ηi−ηj)′·(ηk−ηl)′′θ[ηU − ηV + ηi − ηk](0,Ω)2θ[ηU − ηV + ηj − ηl](0,Ω)2

+ eee4πi(ηi−ηk)′·(ηj−ηl)′′θ[ηU − ηV + ηi − ηj ](0,Ω)2θ[ηU − ηV + ηk − ηl](0,Ω)2

=θ[ηU − ηV + ηi − ηl](0,Ω)2θ[ηU − ηV + ηj − ηk](0,Ω)2(1.5.5 )
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Proof. According to proposition 3.2.1 we must simply verify that the cijkl satisfy
the crossratio symmetries along with cijkl + cikjl = 1. The thetanullwerte cancel
out in the crossratio symmetries and we merely need to check the correctness of
the remaining signs due to the exponential factors eee4πi(ηi−ηj)′·(ηk−ηl)′′ . These signs
must be correct however, since they are correct for hyperelliptic Ω when the cijkl

really are projective crossratios. Proceeding by direct calculation would use the
facts: e2(ηi + ηj , ηk + ηl) = 1, and e2(ηk, ηj)e2(ηj , ηk)e2(ηl, ηk) = −1. The equation
cijkl + cikjl = 1 clearly becomes equation 1.5.5. �

The derivation of thetanullwerte identities from crossratios in the hyperelliptic
case was first done by H. Farkas in [3, 298]. Although the crossratio identity does
not appear explicitly in [3] the formulas there certainly imply it. The formulas of
Farkas are in fact more delicate, giving information about appropriate square roots.
The crossratio identity also follows from Fay’s trisecant formula. In equation 1.3.10
let y = (ΩI)(ηU − ηV + ηj + ηk) and let a2, z2, a1, z1 be âi, âj , âk, âl, and use
proposition 1.4.23. The new contribution made here is pointing out the meaning of
the crossratio identity 1.5.5; it means that certain nullwerte quotients are projective
crossratios.
§1.6 Frobenius Theta Formula.
In this section we show that the vanishing equations are equivalent to a formula

developed by Mumford in [14] and called the generalized Frobenius theta formula.
We will also show that either of these equations implies Fay’s trisecant formula in
the form Fg,η. That the vanishing equations imply the Frobenius theta formula is
due to Mumford.

1.6.1 Lemma. Let Ω ∈ Hg and η ∈ Ξg. The following four equations are equiva-
lent and (1.6.3) is usually called the Frobenius theta formula.

∀ ai, zi ∈ Cg; ∀ ν,M ∈ Z2g :
4∑
i=1

ai = ν, and
4∑
i=1

zi = (ΩI)M ∈ L,

∑
J∈B

εU (J) eee4πiη′
JΩη′

J eee4πiM ′(ΩI)ηJ

4∏
i=1

θ[ai](zi + (ΩI)ηJ ,Ω) = 0.

(1.6.2 )

∀ ai, zi ∈ Cg :
4∑
i=1

ai =
4∑
i=1

zi = 0,
∑
J∈B

εU (J)
4∏
i=1

θ[ai + ηJ ](zi,Ω) = 0.

(1.6.3 )

∀ zi ∈ Cg, p ∈ Zg :
4∑
i=1

zi = 0,
∑
J∈B

εU (J)
4∏
i=1

θ[
p
2
0 + ηJ ](zi,Ω) = 0.

(1.6.4 )

∀ zi ∈ Cg :
4∑
i=1

zi = 0,
∑
J∈B

εU (J)
4∏
i=1

θ[ηJ ](zi,Ω) = 0.

(1.6.5 )



24 CRIS POOR

Proof. We will show 1.6.2 ⇐⇒ 1.6.3, and then 1.6.3 =⇒ 1.6.4 =⇒ 1.6.5
=⇒ 1.6.3. The equation 1.6.3 is just 1.6.2 with ν = 0 and M = 0, if we use
θ[ai + ηJ ](zi,Ω) = eee2πiη′

J ·{zi+a′′
i +η′′

J+ 1
2Ωη′

J}θ[ai](zi + (ΩI)ηJ ,Ω) from lemma 1.1.19.
Conversely, assume that

∑4
i=1 ai = ν ∈ Z2g and that

∑4
i=1 zi = (ΩI)M ∈ L. The

Frobenius formula 1.6.3 then gives us

(1.6.6 )
∑
j∈B

εU (j){
3∏
i=1

θ[ai + ηj ](zi,Ω)}θ[a4 − ν + ηj ](z4 − (ΩI)M,Ω) = 0.

We use the following transformation to simplify 1.6.6.

θ[a4 − ν + ηj ](z4 − (ΩI)M,Ω) = θ[a4 + ηj ](z4,Ω) eee−2πia′
4ν

′′
eee−2πiη′

jν
′′

eee−2πi{(a4−ν)′M ′′−M ′(a4−ν)′′} eee−2πi(η′
jM

′′−M ′η′′
j ) eee−2πi( 1

2M
′ΩM ′−M ′z4).

We retain only that factor of the unit which depends upon j,

(1.6.7 )
∑
j∈B

εU (j) eee−2πiη′
jν

′′
eee−2πi(η′

jM
′′−M ′η′′

j )
4∏
i=1

θ[ai + ηj ](zi,Ω) = 0.

We now use lemma 1.1.19 to put the ηj term in the argument:

∑
j∈B
{εU (j) eee−2πiη′

jν
′′
eee−2πi(η′

jM
′′−M ′η′′

j )
4∏
i=1

eee2πiη′
j ·{zi+a′′

i +η′′
j + 1

2Ωη′
j}

·
4∏
i=1

θ[ai](zi + (ΩI)ηj ,Ω)} = 0, multiplying we obtain∑
j∈B
{εU (j) eee−2πiη′

jν
′′
eee−2πi(η′

jM
′′−M ′η′′

j ) eee2πiη′
j ·{(ΩI)M+ν′′+4η′′

j +2Ωη′
j}

·
4∏
i=1

θ[ai](zi + (ΩI)ηj ,Ω)} = 0, and finally we obtain

∑
j∈B

εU (j) eee2πi{M ′η′′
j +η′

jΩM
′+2η′

jΩη
′
j}

4∏
i=1

θ[ai](zi + (ΩI)ηj ,Ω) = 0.

This shows that 1.6.3 implies 1.6.2. We now show that 1.6.3 implies 1.6.4. In 1.6.3 let

a1 = a2 = p
2 and a3 = a4 = −p

2 , then note that θ[−
p
2

0 +ηj ](zi,Ω) = θ[
p
2
0 +ηJ ](zi,Ω)

because p ∈ Zg. This demonstrates 1.6.4. The equation 1.6.5 is simply 1.6.4 with
p = 0. To demonstrate that 1.6.5 implies 1.6.3 it is simplest to reduce 1.6.3 to 1.6.5.

Use the equality θ[ηj +ai](zi,Ω) = eee2πia′
i·{zi+η′′

j +a′′
i + 1

2Ωa′
i}θ[ηj ](zi+(ΩI)ai,Ω) to

rewrite
∏4
i=1 θ[ai + ηj ](zi,Ω) as

4∏
i=1

eee2πia′
i·{zi+a′′

i + 1
2Ωa′

i} eee2πi(Σ4
1a

′
i)·η′′

j

4∏
i=1

θ[ηj ](zi + (ΩI)ai,Ω).
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Now the first non–zero factor does not depend upon j, and the second factor is 1
since

∑4
1 a

′
i = 0. So we have

∑
j∈B

εU (j)
4∏
i=1

θ[ai + ηj ](zi,Ω) =

{
4∏
i=1

eee2πia′
i·{zi+a′′

i + 1
2Ωa′

i}}{
∑
j∈B

εU (j)
4∏
i=1

θ[ηj ](zi + (ΩI)ai,Ω)}.

When the zi + (ΩI)ai are replaced by z′i we see that 1.6.3 holds if and only if 1.6.5
holds. �

1.6.8 Lemma. Let Ω ∈ Hg and η ∈ Ξg. The Frobenius theta formula:

∀ zi ∈ Cg, p ∈ Zg :
4∑
i=1

zi = 0,
∑
j∈B

εU (j)
4∏
i=1

θ[
p
2
0 + ηj ](zi,Ω) = 0

is equivalent to

∀k ∈ Zg, ∀p ∈ Zg,
∑

l∈Zg/2Zg

∑
j∈B

εU (j) eee2πi(k·η′′
j −(η′

j− p
2 )·l)θ[2ηj ](

l

2
+ Ω

k

2
,Ω) = 0.

Proof. The Frobenius theta formula is equivalent to the vanishing of the Fourier
coefficients in z1, z2, and z3 of the following function.∑

j∈B
{εU (j)θ[ηj −

p
2
0 ](z1,Ω)θ[ηj −

p
2
0 ](z2,Ω)

·θ[ηj −
p
2
0 ](z3,Ω)θ[ηj −

p
2
0 ](−z1 − z2 − z3,Ω)}

=
∑
j∈B

εU (j)
∑

n1,n2,n3,n4∈Zg

{ eee2πi{ 1
2 (n1+η

′
j− p

2 )Ω(n1+η
′
j− p

2 )+(n1+η
′
j− p

2 )(z1+η
′′
j )}

· eee2πi{ 1
2 (n2+η

′
j− p

2 )Ω(n2+η
′
j− p

2 )+(n2+η
′
j− p

2 )(z2+η
′′
j )}

· eee2πi{ 1
2 (n3+η

′
j− p

2 )Ω(n3+η
′
j− p

2 )+(n3+η
′
j− p

2 )(z3+η
′′
j )}

· eee2πi{ 1
2 (n4+η

′
j− p

2 )Ω(n4+η
′
j− p

2 )+(n4+η
′
j− p

2 )(−z1−z2−z3+η′′
j )}}

=
∑
j∈B

εU (j)
∑

n1,n2,n3,n4∈Zg

{(
4∏
i=1

eee2πi{ 1
2 (ni+η

′
j− p

2 )Ω(ni+η
′
j− p

2 )})

· eee2πi(n1+n2+n3+n4+4η′
j−2p)·η′′

j eee2πi(n1−n4)·z1 eee2πi(n2−n4)·z2 eee2πi(n3−n4)·z3}

=
∑
j∈B

εU (j)
∑

k1,k2,k3∈Zg

∑
n∈Zg

{(
3∏
i=1

eee2πi{ 1
2 (ki+n+η′

j− p
2 )Ω(ki+n+η′

j− p
2 )})
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· eee2πi{ 1
2 (n+η′

j− p
2 )Ω(n+η′

j− p
2 )} eee2πi{k1+k2+k3+4n+4η′

j−2p}·η′′
j eee2πi{k1·z1+k2·z2+k3·z3}}

The last equality was obtained by a unimodular change of summation indices: k1 =
n1 − n4, k2 = n2 − n4, k3 = n3 − n4, and n = n4. The above function in z1, z2,
and z3 vanishes identically precisely when its Fourier coefficients are zero. This is
equivalent to the following equations:

∀ p, k1, k2, k3 ∈ Zg

0 =
∑
j∈B

εU (j)
∑
n∈Zg

{ eee2πi{ 1
2 (n+η′

j− p
2 )Ω(n+η′

j− p
2 )+k1Ω(n+η′

j− p
2 )+ 1

2k1Ωk1}

· eee2πi{ 1
2 (n+η′

j− p
2 )Ω(n+η′

j− p
2 )+k2Ω(n+η′

j− p
2 )+ 1

2k2Ωk2}

· eee2πi{ 1
2 (n+η′

j− p
2 )Ω(n+η′

j− p
2 )+k3Ω(n+η′

j− p
2 )+ 1

2k3Ωk3}

· eee2πi{ 1
2 (n+η′

j− p
2 )Ω(n+η′

j− p
2 )} eee2πi{k1+k2+k3}·η′′

j eee2πi{n+η′
j− p

2 }·4η
′′
j }.

If we take out the factor eeeπi{k1Ωk1+k2Ωk2+k3Ωk3} which is independent of the sum-
mation indices we obtain:

∀ p, k1, k2, k3 ∈ Zg, 0 =
∑
j∈B

εU (j)
∑
n∈Zg

{ eee2πi{k1+k2+k3}·η′′
j

· eee2πi{ 1
2 (n+η′

j− p
2 )4Ω(n+η′

j− p
2 )+(n+η′

j− p
2 )·(Ω(k1+k2+k3)+4η′′

j )}}.

Since the ki only occur in the sum k = k1 + k2 + k3, this is equivalent to:

∀ p, k ∈ Zg, 0 =
∑
j∈B

εU (j)
∑
n∈Zg

{ eee2πik·η′′
j

· eee2πi{ 1
2 (2n+2η′

j−p)Ω(2n+2η′
j−p)+(2n+2η′

j−p)·(Ω k
2 +2η′′

j )}}.(1.6.9 )

Instead of summing 2n − p over n ∈ Zg in 1.6.9, we sum n over n ∈ Zg and just
multiply the summand by χ{2Zg−p}(n). Here χS(n) is the characteristic function for
S, and we have the convenient expression χ{2Zg−p}(n) = 2−g

∑
l∈Zg/2Zg eee2πi 12 l·(n+p).

We have, for all p, k ∈ Zg,

0 =
∑
j∈B

εU (j)
∑
n∈Zg

2−g
∑

l∈Zg/2Zg

{ eee2πi 12 l·(n+p) eee2πik·η′′
j

· eee2πi{ 1
2 (n+2η′

j)Ω(n+2η′
j)+(n+2η′

j)·(Ω k
2 +2η′′

j )}},
and 0 =

∑
j∈B

εU (j)
∑
n∈Zg

2−g
∑

l∈Zg/2Zg

{ eee2πi(k·η′′
j + 1

2p·l−η
′
j ·l)

· eee2πi{ 1
2 (n+2η′

j)Ω(n+2η′
j)+(n+2η′

j)·( l
2+Ω k

2 +2η′′
j )}},

and 0 =
∑
j∈B

εU (j)
∑

l∈Zg/2Zg

eee2πi(k·η′′
j −η′

j ·l) eeeiπp·lθ[2ηj ](
l

2
+ Ω

k

2
,Ω).
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In the last step the definition of the theta function was used. This last equation is
equivalent to the vanishing of the Fourier coefficients of the Frobenius theta formula
and that is the assertion of 1.6.8. �

We are now ready to prove the equivalence of the vanishing equations to the
Frobenius theta formula.

1.6.10 Proposition. Let Ω ∈ Hg, and η ∈ Ξg. Then the vanishing equations,
Ω ∈ V ′

g,η, hold,

|S| even, |S ◦ U | �= g + 1 =⇒ θ[ηS ](0,Ω) = 0,

if and only if the Frobenius theta formula holds,

∀ ai, zi ∈ Cg :
4∑
i=1

ai =
4∑
i=1

zi = 0,
∑
j∈B

εU (j)
4∏
i=1

θ[ai + ηj ](zi,Ω) = 0.

Proof. We see from lemma 1.6.1 that the four versions of the Frobenius theta for-
mula are equivalent. Lemma 1.6.8 then shows that the version 1.6.4 is equivalent
to

∀p, k ∈ Zg,
∑
j∈B

εU (j)
∑

l∈Zg/2Zg

eee2πi(k·η′′
j −η′

j ·l) eeeiπp·lθ[2ηj ](
l

2
+ Ω

k

2
,Ω) = 0.

This equation may be rewritten by noting that eee2πi(k·η′′
j −η′

j ·l) = e2(
(
k/2
l/2

)
, ηj),

where e2 is the alternating form of definition 1.4.7, and that θ[2ηj ]( l2 + Ωk
2 ,Ω) =

θ( l2 + Ωk
2 ,Ω) by equation 1.1.5. Then we have for all p, k ∈ Zg:

∑
j∈B

εU (j)
∑

l∈Zg/2Zg

eeeiπp·le2(
(
k/2
l/2

)
, ηj)θ(

l

2
+ Ω

k

2
,Ω) = 0, or

∀ p, k ∈ Zg,
∑

l∈Zg/2Zg

eeeiπp·lθ(
l

2
+ Ω

k

2
,Ω){

∑
j∈B

εU (j)e2(
(
k/2
l/2

)
, ηj)} = 0.

(1.6.11 )

The terms of equation 1.6.11 factor nicely into a product, and recalling item (3)
of lemma 1.4.15, the second factor is a multiple of the hyperelliptic η-order of(
k/2
l/2

)
. Hence the vanishing equations for Ω imply 1.6.11 because the thetanullw-

erte θ( l2 + Ωk
2 ,Ω) vanishes for

(
k/2
l/2

)
with hyperelliptic η-order greater than zero,

and the second factor vanishes for
(
k/2
l/2

)
with hyperelliptic η-order equal to zero.
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Conversely, the equation 1.6.11 also implies the vanishing equations; multiply 1.6.11
by eee−iπp·l0 and sum over p ∈ Z2g/2Zg to obtain:

∀ k, l0 ∈ Zg, 0 = 2gθ(
l0
2

+ Ω
k

2
,Ω)

∑
j∈B

εU (j)e2(
(

k/2
l0/2

)
, ηj).

This yields the vanishing equations, for again the theta constant must vanish when-
ever the hyperelliptic η-order is nonzero. This completes the proof of proposition
1.6.10.

1.6.12 Lemma. Let Ω ∈ Hg, η ∈ Ξg, and assume that Ω satisfies the the Frobe-
nius theta formula, Frobg,η. Then for all V ⊆ B such that |V | = g − 1 and for all
distinct i, j, k, l �∈ V with ᾱ = ηU − ηV we have:

0 =θ[ᾱ]((ΩI)(ηi − ηj),Ω)θ[ᾱ]((ΩI)(ηk − ηl),Ω)�θ2(ξijkl,Ω)

+θ[ᾱ]((ΩI)(ηi − ηk),Ω)θ[ᾱ]((ΩI)(ηl − ηj),Ω)�θ2(ξiklj ,Ω)

+θ[ᾱ]((ΩI)(ηi − ηl),Ω)θ[ᾱ]((ΩI)(ηj − ηk),Ω)�θ2(ξiljk,Ω).

Proof. For |V | = g−1 and distinct i, j, k, l �∈ V , let a1 = a2 = ηU−ηV , a3 = a4 = 0,
z1 = −(ΩI)ηi, z2 = −(ΩI)(ηj + ηk + ηl), z3 = −z + 1

2 (ΩI)(ηi − ηj − ηk − ηl), and
z4 = z + 1

2 (ΩI)(ηi − ηj − ηk − ηl). Then we note that
∑

ai = 2(ηU − ηV ) ∈ Z2g,∑
zi = −2(ΩI)(ηj + ηk + ηl) ∈ L, and we apply the Frobenius theta formula 1.6.2.

0 =
∑
J∈B

{εU (J) eee2πi(−2ηj−2ηk−2ηl)
′(ΩI)ηJ eee4πiη′

JΩη′
J

·θ[ηU − ηV ]((ΩI)(ηJ − ηi),Ω)θ[ηU − ηV ]((ΩI)(ηJ − ηj − ηk − ηl),Ω)

·θ(−z +
1
2
(ΩI)(ηi − ηj − ηk − ηl) + (ΩI)ηJ ,Ω)

·θ(z +
1
2
(ΩI)(ηi − ηj − ηk − ηl) + (ΩI)ηJ ,Ω)}

We apply the addition theorem to the last two theta factors.

0 =
∑
J∈B

{εU (J) eee2πi(−2ηj−2ηk−2ηl)
′(ΩI)ηJ eee4πiη′

JΩη′
J

·θ[ηU − ηV ]((ΩI)(ηJ − ηi),Ω)θ[ηU − ηV ]((ΩI)(ηJ − ηj − ηk − ηl),Ω)

·�θ2( 1
2 (ΩI)(2ηJ + ηi − ηj − ηk − ηl),Ω)}

(1.6.13 )

Now let B = V " {i, j, k, l} " V ′ be a disjoint partition of B. We see that θ[ηU −
ηV ]((ΩI)(ηJ−ηi),Ω) differs by a unit factor from θ[ηU−ηi−ηV +ηJ ](0,Ω), and so by
the vanishing equations is going to be zero whenever J ∈ V " {i}. We may use the
vanishing equations since proposition 1.6.10 implies that these are equivalent to the
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Frobenius theta formula. On the other hand, θ[ηU − ηV ]((ΩI)(ηJ − ηj − ηk− ηl),Ω)
differs by a unit factor from θ[ηU − ηV + ηJ − ηj − ηk − ηl](0,Ω) and hence from
θ[ηU−ηi−ηV ′ +ηJ ](0,Ω). This vanishes for J ∈ V ′"{i}, leaving only three terms in
the summation, namely J = j, k, l. Hence we may write equation 1.6.13 as follows.

0 = {εU (j) eee2πi(−2ηj−2ηk−2ηl)
′(ΩI)ηj eee4πiη′

jΩη
′
j

·θ[ηU − ηV ]((ΩI)(ηj − ηi),Ω)θ[ηU − ηV ]((ΩI)(−ηk − ηl),Ω)

·�θ2( 1
2 (ΩI)(ηi + ηj − ηk − ηl),Ω)}

+{εU (k) eee2πi(−2ηj−2ηk−2ηl)
′(ΩI)ηk eee4πiη′

kΩη′
k

·θ[ηU − ηV ]((ΩI)(ηk − ηi),Ω)θ[ηU − ηV ]((ΩI)(−ηj − ηl),Ω)

·�θ2( 1
2 (ΩI)(ηi + ηk − ηj − ηl),Ω)}

+{εU (l) eee2πi(−2ηj−2ηk−2ηl)
′(ΩI)ηl eee4πiη′

lΩη
′
l

·θ[ηU − ηV ]((ΩI)(ηl − ηi),Ω)θ[ηU − ηV ]((ΩI)(−ηj − ηk),Ω)

·�θ2( 1
2 (ΩI)(ηi + ηl − ηj − ηk),Ω)}

(1.6.14 )

Notice that 1.6.14 is a cyclic sum, each term becoming the next under a (jkl)-
cycle; so it suffices to simplify the first term. We use θ[ηU − ηV ]((ΩI)(ηj − ηi),Ω)
= −θ[ηU−ηV ]((ΩI)(ηi−ηj),Ω), this is true because ηU−ηV is an odd characteristic.
We also may rewrite θ[ηU − ηV ]((ΩI)(−ηk − ηl),Ω) as follows,

θ[ηU − ηV ]((ΩI)(−ηk − ηl),Ω) = θ[ηU − ηV ]((ΩI)(ηk − ηl)− 2(ΩI)ηk,Ω)

=θ[ηU − ηV ]((ΩI)(ηk − ηl),Ω){ eee2πi{(ηU−ηV )′(−2η′′
k )−(−2η′

k)(ηU−ηV )′′}

· eee−2πi{ 1
2 (−2ηk)′Ω(−2ηk)′+(−2η′

k)(ΩI)(ηk−ηl)}}.

We thus rewrite the first term of 1.6.14 as follows,

{θ[ηU − ηV ]((ΩI)(ηi − ηj),Ω)θ[ηU − ηV ]((ΩI)(ηk − ηl),Ω)
�θ2( 1

2 (ΩI)(ηi + ηj − ηk − ηl),Ω)}
( times ){(−1)εU (j) eee2πi{−2(ηj+ηk+ηl)

′(ΩI)ηj} eee4πi{η′
jΩη

′
j}

eee2πi{(ηU−ηV )′(−2η′′
k )−(−2η′

k)(ηU−ηV )′′}

eee−2πi{ 1
2 (−2η′

k)Ω(−2η′
k)+(−2η′

k)(ΩI)(ηk−ηl)}}.

After a little work the unit following the “( times )” is seen to be:

eee2πi{−2η′
kΩη′

j−2η′
lΩη

′
j−2η′

kΩη′
l} eee2πi{−2η′′

k ·η′
j−2η′

l·η′′
j −2η′

k·η′′
l }(εU◦V (∞))

=εU◦V (∞) eee−4πi{η′
k(ΩI)ηl+η

′
l(ΩI)ηj+η

′
j(ΩI)ηk},
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which is cyclic in (jkl) and hence identical for each term in 1.6.14. Cancelling this
cyclic unit from the summation in 1.6.14 we obtain our conclusion,

0 =θ[ηU − ηV ]((ΩI)(ηi − ηj),Ω)θ[ηU − ηV ]((ΩI)(ηk − ηl),Ω)�θ2(ξijkl,Ω)

+θ[ηU − ηV ]((ΩI)(ηi − ηk),Ω)θ[ηU − ηV ]((ΩI)(ηl − ηj),Ω)�θ2(ξiklj ,Ω)

+θ[ηU − ηV ]((ΩI)(ηi − ηl),Ω)θ[ηU − ηV ]((ΩI)(ηj − ηk),Ω)�θ2(ξiljk,Ω).

1.6.15 Lemma. Let Ω ∈ Hg, η ∈ Ξg. For all ν2, ν3 ∈ Zg, we have∣∣∣∣ θ2[ν2](ξikjl,Ω) θ2[ν2](ξiljk,Ω)
θ2[ν3](ξikjl,Ω) θ2[ν3](ξiljk,Ω)

∣∣∣∣ = 2−g
∑

p∈Zg/2Zg

{( eee−iπp·ν2 − eee−iπp·ν3)

·θ[ν2+ν32 |p2 ]((ΩI)(ηi − ηj),Ω)θ[ν2+ν32 |p2 ]((ΩI)(ηk − ηl),Ω)}.

Proof. Here is the well–known formula of proposition 1.1.16,

θ2[ν1|0](x,Ω) θ2[ν2|0](y,Ω) =

2−g
∑

p∈Zg/2Zg

eee−2πip·ν1θ[ν1+ν22 |p2 ](x + y,Ω)θ[ν1−ν22 |p2 ](x− y,Ω).

Now for ν1, ν2 ∈ Zg, we have that θ[ν1−ν22 |p2 ](x − y,Ω) = θ[ν1+ν22 |p2 ](x − y,Ω), so
that the only factor in the summation not symmetric in ν1, ν2, is eee−2πip·ν1 . Hence:∣∣∣∣ θ2[ν2](z1,Ω) θ2[ν2](z2,Ω)
θ2[ν3](z1,Ω) θ2[ν3](z2,Ω)

∣∣∣∣ =θ2[ν2](z1,Ω)θ2[ν3](z2,Ω)− θ2[ν3](z1,Ω)θ2[ν2](z2,Ω)

= 2−g
∑

p∈Zg/2Zg

( eee−iπp·ν2 − eee−iπp·ν3)θ[ν2+ν32 |p2 ](z1 + z2,Ω)θ[ν2+ν32 |p2 ](z1 − z2,Ω).

If we now let z1 = ξikjl and z2 = ξiljk, so that z1 + z2 = (ΩI)(ηi − ηj) and
z1 − z2 = (ΩI)(ηk − ηl), then we have the assertion of lemma 1.6.15.

1.6.16 Theorem. Let Ω ∈ Hg and η ∈ Ξg. We have Ω ∈ V ′
g,η =⇒ Ω ∈ F ′

g,η.

Proof. We have seen in proposition 1.6.10 that equations Vg,η imply the Frobenius
theta formula, and we will use both sets of equations to derive the equations Fg,η.
The equations, Fg,η, defined by

rank{�θ2(ξijkl,Ω), �θ2(ξiklj ,Ω), �θ2(ξiljk,Ω)} ≤ 2,

are given by the vanishing of 3× 3 minors for all i, j, k, l ∈ B and ν1, ν2, ν3 ∈ Zg,

0 =

∣∣∣∣∣∣
θ2[ν1](ξijkl,Ω) θ2[ν1](ξiklj ,Ω) θ2[ν1](ξiljk,Ω)
θ2[ν2](ξijkl,Ω) θ2[ν2](ξiklj ,Ω) θ2[ν2](ξiljk,Ω)
θ2[ν3](ξijkl,Ω) θ2[ν3](ξiklj ,Ω) θ2[ν3](ξiljk,Ω)

∣∣∣∣∣∣ .
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We can expand this determinant out by the first row,

0 =θ2[ν1](ξijkl,Ω)
∣∣∣∣ θ2[ν2](ξiklj ,Ω) θ2[ν2](ξiljk,Ω)
θ2[ν3](ξiklj ,Ω) θ2[ν3](ξiljk,Ω)

∣∣∣∣
+θ2[ν1](ξiklj ,Ω)

∣∣∣∣ θ2[ν2](ξiljk,Ω) θ2[ν2](ξijkl,Ω)
θ2[ν3](ξiljk,Ω) θ2[ν3](ξijkl,Ω)

∣∣∣∣
+θ2[ν1](ξiljk,Ω)

∣∣∣∣ θ2[ν2](ξijkl,Ω) θ2[ν2](ξiklj ,Ω)
θ2[ν3](ξijkl,Ω) θ2[ν3](ξiklj ,Ω)

∣∣∣∣ .
The equations Fg,η can then be expressed as: ∀ i, j, k, l ∈ B, ∀ ν2, ν3 ∈ Zg,

0 =
∣∣∣∣ θ2[ν2](ξiklj ,Ω) θ2[ν2](ξiljk,Ω)
θ2[ν3](ξiklj ,Ω) θ2[ν3](ξiljk,Ω)

∣∣∣∣ �θ2(ξijkl,Ω)

+
∣∣∣∣ θ2[ν2](ξiljk,Ω) θ2[ν2](ξijkl,Ω)
θ2[ν3](ξiljk,Ω) θ2[ν3](ξijkl,Ω)

∣∣∣∣ �θ2(ξiklj ,Ω)

+
∣∣∣∣ θ2[ν2](ξijkl,Ω) θ2[ν2](ξiklj ,Ω)
θ2[ν3](ξijkl,Ω) θ2[ν3](ξiklj ,Ω)

∣∣∣∣ �θ2(ξiljk,Ω).

We use lemma 1.6.15 to substitute in for the determinant in the first term. Since
the sum is cyclic in (jkl) we may easily do this for the last two terms as well,

0 = 2−g
∑

p∈Zg/2Zg

{( eee−iπp·ν2 − eee−iπp·ν3)

·{θ[ 1
2
(ν2 + ν3)|

p

2
]((ΩI)(ηi − ηj),Ω)θ[

1
2
(ν2 + ν3)|

p

2
]((ΩI)(ηl − ηk),Ω)�θ2(ξijkl,Ω)

+θ[
1
2
(ν2 + ν3)|

p

2
]((ΩI)(ηi − ηk),Ω)θ[

1
2
(ν2 + ν3)|

p

2
]((ΩI)(ηj − ηl),Ω)�θ2(ξiklj ,Ω)

+θ[
1
2
(ν2 + ν3)|

p

2
]((ΩI)(ηi − ηl),Ω)θ[

1
2
(ν2 + ν3)|

p

2
]((ΩI)(ηk − ηj),Ω)�θ2(ξiljk,Ω)}}.

(1.6.17 )

To show that the equations Vg,η imply the equations Fg,η we will need to show that
Vg,η implies that the sum in 1.6.17 vanishes. The common factor eee−iπp·ν2− eee−iπp·ν3

vanishes if and only if the characteristic [12 (ν2 + ν3)|p2 ] is even. For p such that
the characteristic [ 12 (ν2 + ν3)|p2 ] is odd we will show that the adjacent factor in the
braces {-} of 1.6.17 is zero. We may assume that the odd characteristic [ 12 (ν2+ν3)|p2 ]
≡ ηU − ηV mod Z2g, where |V | = g − 1, g − 5, g − 9, . . . . If however, |V | ≤ g − 5
then by the vanishing equations every theta constant in the braces vanishes since,
for example, 1

2 ||V ◦{i, j}|−(g+1)| ≥ 2. Thence we may assume that [ 12 (ν2+ν3)|p2 ] =
ηU − ηV , where |V | = g − 1.

Now we use lemma 1.6.12 to see that since Ω ∈ V ′
g,η then Ω ∈ Frob′

g,η and so the
three term sum in the braces of 1.6.17 vanishes whenever i, j, k, l �∈ V . To conclude
the proof we need to show that the three term sum also vanishes when one of the
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i, j, k, l ∈ V . This is actually a degenerate case, for if j ∈ V then by the vanishing
equations any theta constant with a (ΩI)ηj in its argument vanishes.

2. Chapter Two
§2.1 Construction of the pijkl.

In this section we begin with an irreducible Ω ∈ Hg satisfying the equations
Fg,η of 1.4.21; these equations are consequences of Fay’s trisecant formula in the
hyperelliptic case. The existence and uniqueness of certain nonzero constants pijkl

follow from these assumptions. If Ω were the period matrix of an appropriately
marked hyperelliptic curve then these constants pijkl would be the values of Gun-
ning’s crossratio function at certain liftings of the branch points of the hyperelliptic
curve. The values of Gunning’s crossratio function here correspond to square roots
of projective crossratios, and the “recovery” of these “crossratios” pijkl is given in
theorem 2.1.1 which is the main result of this section.

Recall that Ξg as defined by 1.4.11 is a special set of maps from B to 1
2Z

2g, where
B = {1, 2, . . . 2g+1,∞}. We write ξijkl for 1

2 (ΩI)(ηi+ηj−ηk−ηl). The invariance
of ξijkl up to ± signs under the obvious 4-group of permutations on {i, j, k, l} will
be used without further mention.

2.1.1 Theorem. Let Ω ∈ Hg be irreducible and let η ∈ Ξg. If Ω ∈ F ′
g,η then there

exist unique pijkl ∈ C∗ such that for all distinct i, j, k, l,m ∈ B we have (1)-(5).
(1) pijkl = pjilk = pklij = plkji

(2) pijkl pjikl = 1
(3) pijkl piljk piklj = −1
(4) pijkl pijlm = pijkm

(5) pijkl�θ2(ξikjl,Ω) + pikjl�θ2(ξijkl,Ω) = �θ2(ξiljk,Ω)

2.1.2 Corollary. As a meromorphic function of α on Θ we have

pijkl =
θ(α + (ΩI)(ηi − ηk),Ω)
θ(α + (ΩI)(ηi − ηl),Ω)

θ(α + (ΩI)(ηj − ηl),Ω)
θ(α + (ΩI)(ηj − ηk),Ω)

.

2.1.3 Lemma (Gunning). [6] Let Ω ∈ Hg be irreducible. For x, y ∈ Cg we have

rank{�θ2(x,Ω), �θ2(y,Ω)} < 2 ⇐⇒ x = ± y in A = Cg/(Zg + ΩZg).

Proof of lemma 2.1.3. This lemma is really a generalization of lemma 1.1.14 in
§1.1. One direction is clear since �θ2(x,Ω) is an even function of x and we have that
�θ2(x,Ω)− �θ2(−x,Ω) = 0. Suppose on the other hand that

(2.1.4 ) ∃ c1, c2 ∈ C2 : (c1, c2) �= (0, 0) and c1�θ2(x,Ω) + c2�θ2(y,Ω) = 0.

Note that the ci are actually each nonzero by lemma 1.1.14. An application of the
addition formula 1.1.15 to the equation 2.1.4 produces

c1�θ2(x,Ω) · �θ2(w,Ω) = −c2�θ2(y,Ω) · �θ2(w,Ω)

c1θ(w + x,Ω)θ(w − x,Ω) = −c2θ(w + y,Ω)θ(w − y,Ω).
(2.1.5 )
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Take divisors as functions of w in A in the second equality of 2.1.5. In the notation
Θa = {z : z = ζ + a for ζ ∈ Θ} we conclude: Θx ∪ Θ−x = Θy ∪ Θ−y. Recall from
the discussion after lemma 1.1.4 that the symplectic irreducibility of Ω implies the
analytic irreducibility of Θ. The uniqueness up to order of the decomposition of
analytic subvarieties into irreducible components affords the following consequence:
Θx = Θy or Θx = Θ−y. From lemma 1.1.4 this implies x = y in A or x = −y in A,
which is the conclusion of lemma 2.1.3. �

2.1.6 Proposition. Let Ω ∈ Hg be irreducible and let η ∈ Ξg.

For all i, j, k, l ∈ B such that i �= l, j �= k, rank{�θ2(ξijkl,Ω), �θ2(ξiklj ,Ω)} > 1.

Hence, for all distinct i, j, k, l ∈ B, rank{�θ2(ξijkl,Ω), �θ2(ξiklj ,Ω), �θ2(ξiljk,Ω)} > 1.

Proof of proposition 2.1.6. It suffices to prove the first statement. Suppose that
the rank{�θ2(ξijkl,Ω), �θ2(ξiklj ,Ω)} ≤ 1; then noting the irreducibility of Ω and using
lemma 2.1.3 we have ξijkl = ±ξiklj mod Zg + ΩZg. Recalling the definition of the
ξijkl this implies that ηj − ηk ∈ Z2g or ηi − ηl ∈ Z2g. For distinct i, l, however, the
ηi, ηl, are distinct as half–integers in 1

2Z
2g/Z2g and this contradiction shows that

the relevant rank must be greater than one.

Proof of theorem 2.1.1 and corollary 2.1.2. Since Ω ∈ F ′
g,η, we have

rank{�θ2(ξiklj ,Ω), �θ2(ξijkl,Ω), �θ2(ξiljk,Ω)} ≤ 2.

By proposition 2.1.6, the irreducibility of Ω implies that for distinct i, j, k, l, this
rank is exactly 2. Since the rank is 2 there exist pijkl, bijkl, and cijkl, unique up to
a common constant multiple such that:

(2.1.7 ) pijkl�θ2(ξiklj ,Ω) + bijkl�θ2(ξijkl,Ω) = cijkl�θ2(ξiljk,Ω).

Now we make an observation which although simple is full of consequences. By
proposition 2.1.6, the rank of any distinct pair of the �θ2(ξ•,Ω) is two so that each
coefficient pijkl, bijkl, and cijkl, must be nonzero. The coefficients are hence uniquely
determined if we take cijkl = 1. If we switch j and k and use this uniqueness we
see that bijkl = pikjl; therefore we have deduced (5) of theorem 2.1.1,

∃1 pijkl �= 0 for all distinct i, j, k, l ∈ B :

pijkl�θ2(ξiklj ,Ω) + pikjl�θ2(ξijkl,Ω) = �θ2(ξiljk,Ω).(2.1.8 )

The symmetries (1)–(3) of p• are consequences of 2.1.8. The four–group symmetries
of (1) leave the vectors of second order theta constants unchanged because �θ2(w,Ω)
is an even function of w. By the uniqueness of the p• we then have (1). Switching
i and j in 2.1.8 gives:

pjikl�θ2(ξjkli,Ω) + pjkil�θ2(ξjikl,Ω) = �θ2(ξjlik,Ω),

or − �θ2(ξiklj ,Ω) + pjkil�θ2(ξijkl,Ω) = −pjikl�θ2(ξiljk,Ω).
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By the uniqueness of the p• we have: pijkl = (−1)/(−pjikl), which is (2), and
pikjl = pjkil/(−pjikl). This last equation is (3) after applying the symmetries of (1)
and (2).

The final symmetry (4) has a more involved derivation which uses the irreducibil-
ity hypothesis again, and which when given will complete the proof of theorem 2.1.1.
Dotting of each side of equation 2.1.8 with �θ2(w,Ω) we obtain:

pijklθ(w + ξiklj ,Ω)θ(w − ξiklj ,Ω) + pikjlθ(w + ξijkl,Ω)θ(w − ξijkl,Ω)

=θ(w + ξiljk,Ω)θ(w − ξiljk,Ω).

Let w = α + ξijkl and restrict α to Θ so that the second term vanishes. We then
have

pijklθ(α + ξijkl + ξiklj ,Ω)θ(α + ξijkl − ξiklj ,Ω)

=θ(α + ξijkl + ξiljk,Ω)θ(α + ξijkl − ξiljk,Ω), or

pijklθ(α + (ΩI)(ηi − ηl),Ω)θ(α + (ΩI)(ηj − ηk),Ω)

=θ(α + (ΩI)(ηi − ηk),Ω)θ(α + (ΩI)(ηj − ηl),Ω).
(2.1.9 )

We now show that the product θ(w+(ΩI)(ηi−ηl),Ω) θ(w+(ΩI)(ηj−ηk),Ω) does not
vanish identically for w ∈ Θ. The irreducibility of Θ would imply that one of these
factors vanished identically on Θ, and hence that ηj −ηk ∈ Z2g, or ηi−ηl ∈ Z2g, by
lemma 1.1.4. For distinct i, j, k, l this is impossible so that θ(α + (ΩI)(ηi − ηl),Ω)
θ(α + (ΩI)(ηj − ηk),Ω) cannot vanish identically for α ∈ Θ. We conclude that

pijkl =
θ(α + (ΩI)(ηi − ηk),Ω)
θ(α + (ΩI)(ηi − ηl),Ω)

θ(α + (ΩI)(ηj − ηl),Ω)
θ(α + (ΩI)(ηj − ηk),Ω)

as a meromorphic function on Θ. This is in fact corollary 2.1.2. We also have

pijklpijlm =
θ(α + (ΩI)(ηi − ηk),Ω)
θ(α + (ΩI)(ηi − ηl),Ω)

θ(α + (ΩI)(ηj − ηl),Ω)
θ(α + (ΩI)(ηj − ηk),Ω)

θ(α + (ΩI)(ηi − ηl),Ω)
θ(α + (ΩI)(ηi − ηm),Ω)

θ(α + (ΩI)(ηj − ηm),Ω)
θ(α + (ΩI)(ηj − ηl),Ω)

=
θ(α + (ΩI)(ηi − ηk),Ω)
θ(α + (ΩI)(ηi − ηm),Ω)

θ(α + (ΩI)(ηj − ηm),Ω)
θ(α + (ΩI)(ηj − ηk),Ω)

= pijkm.

(2.1.10 )

Now equation 2.1.10 is an identity among constant meromorphic functions on Θ
and hence an identity among constants. This completes the proof of theorem 2.1.1
and corollary 2.1.2. �

Remark. We could enlarge the domain of pijkl to certain coincident values, namely
piikl = 1 and pikil = 0.
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§2.2 Multisecants and the pAB ab.
In this section we prove theorem 2.2.1 which is our version of the multisecant

formula. The multisecant formula follows from the trisecant formula of section §2.1
and the irreducibility of Ω. Also, numbers that would be values of Gunning’s cross-
ratio functions if Ω were hyperelliptic , the pAB ab, are related to the thetanullwerte
of Ω in corollary 2.2.5. The proofs in this section are parallel to Fay’s delevopment
of the multisecant formula in [4].

2.2.1 Theorem. Let Ω ∈ Hg be irreducible and let η ∈ Ξg. Assume that
pijkl ∈ C∗ exist for all distinct i, j, k, l ∈ B, and that these p• satisfy the cross-
ratio symmetries of lemma 1.2.6 as well as

(2.2.2 ) �θ2(ξiljk,Ω) = pikjl �θ2(ξijkl,Ω) + pijkl �θ2(ξiklj ,Ω).

Then for N : 2 ≤ N ≤ g + 1, and for all distinct k1, . . . , kN , l1, . . . , lN ∈ B, we have

(2.2.3 ) �θ2(t + (ΩI)ηkN ,Ω) =
N∑
j=1

pL\lj K\kN kN lj�θ2(t + (ΩI)ηlj ,Ω),

where t = 1
2 (ΩI)(ηk1 + · · ·+ ηkN−1 − ηl1 − · · · − ηlN − ηkN ), and where

(2.2.4 ) pA B̄ ab =
n∏
i=1

paibiab, for A = {ai}n1 , B̄ = {bi}n1 .

2.2.5 Corollary. Let the assumptions be as in theorem 2.2.1. For any disjoint
union B = {a} "A" {b} " B̄, where A = {ai}g1 and B̄ = {bi}g1, we have

pA B̄ abθ((Ω I)(ηU + ηa − ηB̄),Ω)θ((Ω I)(ηU + ηb − ηA),Ω)

=θ((Ω I)(ηU + ηa − ηA),Ω)θ((Ω I)(ηU + ηb − ηB̄),Ω).

2.2.6 Lemma. Let Ω ∈ Hg and η ∈ Ξg. Let pijkl ∈ C∗
be given for all distinct

i, j, k, l ∈ B. The following two statements are equivalent.

(1) The p• satisfy the crossratio symmetries of lemma 1.2.6 and

�θ2(ξiljk,Ω) = pikjl �θ2(ξijkl,Ω) + pijkl �θ2(ξiklj ,Ω).

(2) ∀ distinct i, j ∈ B, ∃ qij ∈ C∗ : qij = −qji, pijkl = qikqjl

qilqjk
, and ∀ y ∈ Cg ,

qilqkj

qijqlkqikqlj
θ(y,Ω)θ(y + (ΩI)(ηi + ηl − ηj − ηk),Ω)

=

∣∣∣∣∣∣∣
θ(y + (ΩI)(ηi − ηj),Ω)

qij
θ(y + (ΩI)(ηl − ηj),Ω)

qlj

θ(y + (ΩI)(ηi − ηk),Ω)
qik

θ(y + (ΩI)(ηl − ηk),Ω)
qlk

∣∣∣∣∣∣∣ .
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Proof of lemma 2.2.6. We use proposition 3.4.1, with (C∗;−1) being the abelian
group with distinguished idempotent, to conclude the existence of skew qij ∈ C∗

such that pijkl = qikqjl

qilqjk
if and only if the pijkl ∈ C∗ satisfy the crossratio symmetries.

The remaining identity 2.2.2 becomes:

�θ2(ξiljk,Ω) =
qijqkl

qilqkj
�θ2(ξijkl,Ω) +

qikqjl

qilqjk
�θ2(ξiklj ,Ω), or

qilqkj�θ2(ξiljk,Ω) + qijqlk�θ2(ξijkl,Ω) + qikqjl�θ2(ξiklj ,Ω) = 0.

We dot both sides of this last equation with �θ2(y + ξiljk,Ω), and use the addition
formula of proposition 1.1.15 to obtain:

qikqjlθ(y + (ΩI)(ηi − ηj),Ω)θ(y + (ΩI)(ηl − ηk),Ω)

+qijqlkθ(y + (ΩI)(ηi − ηk),Ω)θ(y + (ΩI)(ηl − ηj),Ω)

+qilqkjθ(y + (ΩI)(ηi − ηj − ηk + ηl),Ω)θ(y,Ω) = 0.(2.2.7 )

Dividing both sides of equation 2.2.7 by qikqjlqijqlk, we obtain the determinant
formula of lemma 2.2.6. This shows that the two formulas are equivalent once we
have pijkl = qikqjl

qilqjk
. The reverse implication relies on the fact that �θ2(z,Ω) is a vector

of all members of a basis for the vector space of second order theta functions. �

2.2.8 Lemma. Let Ω ∈ Hg, and η ∈ Ξg, and 1 ≤ N ≤ g + 1. Let pijkl ∈ C∗ be
given for all distinct i, j, k, l ∈ B such that the p• satisfy the crossratio symmetries
and

�θ2(ξiljk,Ω) = pikjl �θ2(ξijkl,Ω) + pijkl �θ2(ξiklj ,Ω).

Then for all distinct k1, . . . , kN , l1, . . . , lN ∈ B, there exist unique CKL ∈ C, such
that if we write K = {km}N1 , L = {lm}N1 we have:

det
1≤m,n≤N

{θ(y + (ΩI)(ηkm − ηln),Ω)
qkmln

} = CKLθ(y,Ω)N−1θ(y + (ΩI)(ηK − ηL),Ω).

Proof of lemma 2.2.8. The case N = 1 is easily seen to be valid with C{i}{j} = 1/qij .
For N ≥ 2 consider the matrix { θ(y+(ΩI)(ηkm−ηln ),Ω)

qkmln
}1≤m,n≤N . For y ∈ Θ, any two

by two minor of this matrix vanishes by lemma 2.2.6, and so the rank of the matrix
is one on the theta locus. The determinant thus has a zero of order N − 1 on Θ
because the coefficients of the matrix are analytic in y. The theta function vanishes
simply on Θ; so

h(y) = det
1≤m,n≤N

{θ(y + (ΩI)(ηkm − ηln),Ω)
qkmln

} 1
θ(y,Ω)N−1

is a holomorphic function on Cg which transforms by the factor of automorphy
ξ ρ(ΩI)(ηK−ηL). So h is a first order theta function with character ρ(ΩI)(ηK−ηL) and
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thus is equal to CKLθ(y + (ΩI)(ηK − ηL),Ω) for some unique constants CKL. This
is the assertion of lemma 2.2.8. �

The notation CKL appears to imply that CKL is independent of the ordering of
K and L, which is not true. A permutation of K or of L multiplies CKL by the sign
of the permutation, but we will still use the symbol CKL for notational brevity. We
now prove theorem 2.2.1.

Proof of theorem 2.2.1. Lemma 2.2.8 and the hypotheses in theorem 2.2.1 imply,
for all distinct k1, . . . , kN , l1, . . . , lN ∈ B, that if we write K = {km}, L = {lm}
then there exist unique CKL ∈ C such that
(2.2.9 )

det
1≤m,n≤N

{θ(y + (ΩI)(ηkm − ηln),Ω)
qkmln

} = CKLθ(y,Ω)N−1θ(y + (ΩI)(ηK − ηL),Ω).

We expand the determinant in 2.2.9 out by minors of the last row (the row with
kN ), and use 2.2.9 again to evaluate these minors. We have

CKLθ(y,Ω)N−1θ(y + (ΩI)(ηK − ηL),Ω)

=
N∑
j=1

{(−1)N+j θ(y + (ΩI)(ηkN − ηlj ),Ω)
qkN lj

·

det
1≤m≤N−1,1≤n≤N,n �=j

{θ(y + (ΩI)(ηkm − ηln),Ω)
qkmln

} }

=
N∑
j=1

{(−1)N+j θ(y + (ΩI)(ηkN − ηlj ),Ω)
qkN lj

CK\kNL\lj

·θ(y,Ω)N−2θ(y + (ΩI)(ηK\kN − ηL\lj ),Ω)}.

We cancel the factor θ(y,Ω)N−2 in the above equation to obtain:

CKLθ(y,Ω)θ(y + (ΩI)(ηK − ηL),Ω) =

N∑
j=1

(−1)N+jC
K\kNL\lj

qkN lj
θ(y + (ΩI)(ηkN

−ηlj ),Ω)θ(y + (ΩI)(ηK−ηL+ηlj−ηkN
),Ω).

(2.2.10 )

We can now use the addition formula to convert 2.2.10 back into a second order
theta function identity; we let t = 1

2 (ΩI)(ηK − ηL − 2ηkN ) and obtain:

CKL�θ2(y + 1
2 (ΩI)(ηK − ηL),Ω) · �θ2(t + (ΩI)ηkN ,Ω)

=
N∑
j=1

(−1)N+jC
K\kNL\lj

qkN lj
�θ2(y + 1

2 (ΩI)(ηK − ηL),Ω) · �θ2(t + (ΩI)ηlj ,Ω).
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A basis for the second order theta functions is given by the entries of �θ2(y,Ω), and
so the above equation may be written as the vector equation,

(2.2.11 ) CKL�θ2(t + (ΩI)ηkN ,Ω) =
N∑
j=1

(−1)N+jC
K\kNL\lj

qkN lj
�θ2(t + (ΩI)ηlj ,Ω).

Equation 2.2.11 is true for some CKL which have been uniquely defined. The
conclusion of theorem 2.2.1 will follow from 2.2.11 if we show that:

(2.2.12 ) CKL �= 0 and CKLpL\lj K\kN kN lj = (−1)N+jC
K\kNL\lj

qkN lj
.

Along with C{i}{j} = 1/qij and pijkl = qikqjl

qilqjk
, the equation 2.2.12 is in fact equiva-

lent to another equation; since this equivalence is “well–known” and combinatorial
we omit the verification here and place it in lemma 3.4.9. The equivalent equation
is:

(2.2.13 ) CKL =

∏
1≤m<n≤N qkmknqlnlm∏

1≤m≤N

1≤n≤N
qkmln

.

The reader may also check, or refer to lemma 3.4.9, that either 2.2.12 or 2.2.13
implies the following relation:

(2.2.14 ) pL\l1 K\kN kN l1
CK\kNL\lj

qkN lj
=

CK\kN (L+kN )\(l1,lj)

ql1lj
.

We will prove 2.2.12 and its equivalent 2.2.13 by induction on N . Equation 2.2.11 is
true for all N such that 2 ≤ N ≤ g + 1. Equation 2.2.13 for N − 1 implies equation
2.2.14 for N . We will use the irreducibility hypothesis to show that equation 2.2.14
for N implies equation 2.2.12 for N ; this then implies equation 2.2.13 for N . To
begin the induction we see that the case N = 2 of equation 2.2.13 is given by lemma
2.2.6 as

C(i,l)(j,k) =
qilqkj

qijqikqljqlk
�= 0.

Consider the equation obtained from 2.2.11 by switching l1 and kN ; then t =
1
2 (ΩI)(ηK − ηL − 2ηkN ) remains unchanged, and we may profitably compare the
two equations, which are:

CKL�θ2(t + (ΩI)ηkN ,Ω) = (−1)N+1C
K\kNL\l1

qkN l1
�θ2(t + (ΩI)ηl1 ,Ω)

+
N∑
j=2

(−1)N+jC
K\kNL\lj

qkN lj
�θ2(t + (ΩI)ηlj ,Ω), and

C(K+l1)\kN (L+kN )\l1�θ2(t + (ΩI)ηl1 ,Ω) = (−1)N+1C
K\kNL\l1

ql1kN
�θ2(t + (ΩI)ηkN ,Ω)

+
N∑
j=2

(−1)N+jC
K\kN (L+kN )\(l1,lj)

ql1lj
�θ2(t + (ΩI)ηlj ,Ω).
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We multiply the first equation by pL\l1 K\kN kN l1 , and subtract the second equation
to obtain:

(pL\l1 K\kN kN l1CKL − (−1)N+1C
K\kNL\l1

qkN l1
)�θ2(t + (ΩI)ηkN ,Ω)

=((−1)N+1C
K\kNL\l1

qkN l1
pL\l1 K\kN kN l1 +

C(K+l1)\kN (L+kN )\l1

1
)�θ2(t + (ΩI)ηl1 ,Ω)

+
N∑
j=2

(−1)N+j(pL\l1 K\kN kN l1
CK\kNL\lj

qkN lj
− CK\kN (L+kN )\(l1,lj)

ql1lj
)�θ2(t + (ΩI)ηlj ,Ω).

(2.2.15 )

As a consequence of the induction hypothesis we may use the equation 2.2.14 for
N ,

pL\l1 K\kN kN l1
CK\kNL\lj

qkN lj
=

CK\kN (L+kN )\(l1,lj)

ql1lj
,

which we apply for 2 ≤ j ≤ N to equation 2.2.15. Only two terms remain in the
summation, and so we obtain:

(pL\l1 K\kN kN l1CKL − (−1)N+1C
K\kNL\l1

qkN l1
)�θ2(t + (ΩI)ηkN ,Ω)

=((−1)N+1C
K\kNL\l1

qkN l1
pL\l1 K\kN kN l1 +

C(K+l1)\kN (L+kN )\l1

1
)�θ2(t + (ΩI)ηl1 ,Ω).

(2.2.16 )

We now use the irreducibility assumption on Ω to apply lemma 2.1.3 from section
§2.1, and to conclude that the coefficients in 2.2.16 vanish unless t+(ΩI)ηkN = ±(t+
(ΩI)ηl1) mod L. That is: ηkN ≡ ηl1 mod Z2g, or ηk1 + · · ·+ηkN−1 ≡ ηl2 + · · ·+ηlN
mod Z2g. By choosing the {km} and {lm} to be disjoint we avoid ηkN ≡ ηl1 , and
ηK\kN ≡ ηL\l1 is impossible so long as 2(N − 1) ≤ 2g, or N ≤ g + 1. We conclude
that the coefficients of 2.2.16 are zero and so we have

(2.2.17 ) pL\l1 K\kN kN l1CKL = (−1)N+1C
K\kNL\l1

qkN l1
.

This shows that CKL �= 0 and is equation 2.2.12 with l1 in place of lj ; since the
integer l1 was arbitrary this shows the general validity of 2.2.12. This completes
the evaluation of the CKL by induction for 2 ≤ N ≤ g + 1; and, again, equations
2.2.11 and 2.2.12 together imply the conclusion of theorem 2.2.1.

Proof of corollary 2.2.5. Consider equation 2.2.10 for N = g + 1 in the proof of
theorem 2.2.1. Now that the CKL are known we may write equation 2.2.10 as:

θ(y,Ω)θ(y + (ΩI)(ηK − ηL),Ω) =

g+1∑
j=1

pL\lj K\kg+1 kg+1ljθ(y + (ΩI)(ηkg+1−ηlj ),Ω)θ(y + (ΩI)(ηK−ηL+ηlj−ηkg+1),Ω).

(2.2.18 )
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Let y = (ΩI)(ηU − ηK + ηkg+1 + ηlj0 ) in 2.2.18, then we have

θ((ΩI)(ηU − ηK + ηkg+1 + ηlj0 ),Ω)θ((ΩI)(ηU − ηL + ηkg+1 + ηlj0 ),Ω)

=
g+1∑
j=1

{pL\lj K\kg+1 kg+1ljθ((ΩI)(ηU − ηK + 2ηkg+1 + ηlj0 − ηlj ),Ω)

·θ((ΩI)(ηU − ηL + ηlj + ηlj0 ),Ω)}.

Consider the factor θ((ΩI)(ηU−ηL+ηlj +ηlj0 ),Ω) for 1 ≤ j ≤ g+1. Since |L| = g+1
we know that except in the case j = j0, the theta characteristic ηU − ηL + ηlj + ηlj0
≡ ηU − ηL◦{lj ,l0} is odd and hence θ((ΩI)(ηU − ηL◦{lj ,l0}),Ω) = 0. Using this fact
we obtain

θ((ΩI)(ηU − ηK + ηkg+1 + ηlj0 ),Ω)θ((ΩI)(ηU − ηL + ηkg+1 + ηlj0 ),Ω) =

pL\lj0 K\kg+1 kg+1lj0 θ((ΩI)(ηU − ηK + 2ηkg+1),Ω)θ((ΩI)(ηU − ηL + 2ηlj0 ),Ω), or

pL\lj0 K\kg+1 kg+1lj0 θ((ΩI)(ηU + ηlj0 − ηL\lj0 ),Ω)θ((ΩI)(ηU + ηkg+1 − ηK\kg+1),Ω)

= θ((ΩI)(ηU + ηlj0 − ηK\kg+1),Ω)θ((ΩI)(ηU + ηkg+1 − ηL\lj0 ),Ω).
(2.2.19 )

If we set j0 = g + 1, lg+1 = b, kg+1 = a, and A = {li}gi=1, B̄ = {ki}gi=1, then
equation 2.2.19 becomes the conclusion of corollary 2.2.5,

pA B̄ abθ((ΩI)(ηU + ηb − ηA),Ω)θ((ΩI)(ηU + ηa − ηB̄),Ω)

=θ((ΩI)(ηU + ηb − ηB̄),Ω)θ((ΩI)(ηU + ηa − ηA),Ω).

§2.3 Nonvanishing.
The purpose of this section is to prove theorem 2.3.1. For irreducible Ω satisfying

Fg,η this theorem gives the nonvanishing of those first order thetanullwerte with
hyperelliptic η-order zero. The fact that the pijkl of section §2.1 are nonzero follows
from the nondegeneracy of the second order theta constants, in turn a consequence
of the irreducibility of Ω. The corollary 2.2.5 of section §2.2 sufficiently intertwines
the pijkl and the first order thetanullwerte so that the nondegeneracy of the p•

implies that of the thetanullwerte. This is how we derive nonvanishing conditions
from irreducibility conditions.

2.3.1 Theorem. Let Ω ∈ Hg be irreducible and η ∈ Ξg. If Ω ∈ F ′
g,η then for all

S ⊆ B such that |S| is even and |U ◦ S| = g + 1, we have θ[ηS ](0,Ω) �= 0. In other
words, each thetanullwerte of hyperelliptic η-order zero does not vanish.

2.3.2 Corollary. Let Ω ∈ Hg be irreducible and η ∈ Ξg. If Ω ∈ F ′
g,η then for all

distinct i, j, k, l ∈ B, and V ⊆ B such that i, j, k, l �∈ V and |V | = g − 1, we have

pijkl =
θ((ΩI)(ηU − ηV + ηi − ηk),Ω)
θ((ΩI)(ηU − ηV + ηi − ηl),Ω)

θ((ΩI)(ηU − ηV + ηj − ηl),Ω)
θ((ΩI)(ηU − ηV + ηj − ηk),Ω)

.
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Recall the discussion of hyperelliptic η-order in section §1.4, and the definition
1.4.16. The hyperelliptic η-order of ζ ∈ 1

2Z
2g is characterized as the vanishing order

of θ[ζ](0,Ω) for a marked hyperelliptic Ω whose Abel–Jacobi map corresponds to
η. Given an arbitrary Ω ∈ Hg it is not too surprising that at least one of the
thetanullwerte of hyperelliptic η-order zero does not vanish, and this is the assertion
of the next lemma.

2.3.3 Lemma. Let Ω ∈ Hg and η ∈ Ξg. Then there is a ζ ∈ 1
2Z

2g with hyperel-
liptic η-order zero such that θ[ζ](0,Ω) �= 0.

Proof. From lemma 1.4.26 in section §1.4 we see that there is a göpel system all of
whose elements have hyperelliptic η-order zero. Then lemma 1.1.18 in section §1.1
assures us that every göpel system has a nonvanishing thetanull.

2.3.4 Lemma. Let Ω ∈ Hg be irreducible, and η ∈ Ξg, and Ω ∈ F ′
g,η. Let S =

{i, k1, . . . , kg} ⊆ B and Sc = {j, l1, . . . , lg} ⊆ B give the disjoint union B = S "Sc.
The following is then true,

θ((ΩI)(ηU + ηS),Ω)2 = (unit) θ((ΩI)(ηU + ηS◦{i,j}),Ω)2
g∏

n=1

pij kn ln .

Proof. Since Ω is irreducible and Ω ∈ F ′
g,η we may use the conclusion of theorem

2.1.1, which implies theorem 2.2.1 and its corollary 2.2.5. Apply corollary 2.2.5
from section §2.2 with a = i, b = j, A = {k1, . . . , kg}, and B̄ = {l1, . . . , lg}.

pA B̄ abθ((Ω I)(ηU + ηa − ηB̄),Ω)θ((Ω I)(ηU + ηb − ηA),Ω)

=θ((Ω I)(ηU + ηa − ηA),Ω)θ((Ω I)(ηU + ηb − ηB̄),Ω) or

pS\i S
c\j ijθ((Ω I)(ηU + ηi −

∑
ηln),Ω)θ((Ω I)(ηU + ηj −

∑
ηkn),Ω)

=θ((Ω I)(ηU + ηi −
∑

ηkn),Ω)θ((Ω I)(ηU + ηj −
∑

ηln),Ω)

From B = S " Sc we obtain ηS + ηSc = ηB ∈ Z2g, as well as ηS◦{i,j} + ηSc◦{i,j} =
ηB ∈ Z2g. These give us the following congruences modulo Z2g:

ηU + ηi −
∑

ηln = ηU − ηSc◦{i,j} + 2ηi ≡ ηU + ηS◦{i,j},

ηU + ηj −
∑

ηkn = ηU − ηS◦{i,j} ≡ ηU + ηS◦{i,j},

ηU + ηi −
∑

ηkn = ηU − ηS + 2ηi ≡ ηU + ηS ,

ηU + ηj −
∑

ηln = ηU − ηSc + 2ηj ≡ ηU + ηS .

Recall that by proposition 1.1.3, θ(w + (ΩI)λ,Ω) = (unit) θ(w,Ω) for λ ∈ Z2g. At
the expense of introducing units we then have the following:

pS\i S
c\j ijθ((Ω I)(ηU + ηS◦{i,j}),Ω)θ((Ω I)(ηU + ηS◦{i,j}),Ω)

= (unit) θ((Ω I)(ηU + ηS),Ω)θ((Ω I)(ηU + ηS),Ω).
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Simply realizing that pS\i S
c\j ij =

∏
n pkn ln ij gives us the conclusion of lemma

2.3.4. The actual value of the unit is (−1)|U∩{i,j}|+1 eee−4πi(ηi−ηj)′Ω(ηi−ηj+4ηS)′ , but
we certainly do not need this.

Proof of theorem 2.3.1. Let S0 = {i, k1, . . . , kg}, and Sc
0 = {j, l1, . . . , lg}, and note

that we have now labelled every element in B. Apply lemma 2.3.4 to these two sets,

(2.3.5 ) θ((ΩI)(ηU + ηS0),Ω)2 = (unit) θ((ΩI)(ηU + ηS0◦{i,j}),Ω)2
g∏

n=1

pij kn ln .

Since the i, j, kn, ln are all distinct we have that the pijknln are nonzero by theorem
2.1.1. Notice also that θ[ηU◦S ](0,Ω) and θ((ΩI)(ηU + ηS),Ω) differ only by an
exponential factor. Hence from 2.3.5 we can conclude:
(2.3.6 )
∀ S0 : |S0| = g+1, i ∈ S0, j �∈ S0, θ[ηU◦S0 ](0,Ω) = 0 ⇐⇒ θ[ηU◦S0◦{i,j}](0,Ω) = 0.

Now by lemma 2.3.3 there is some S0 such that |S0| = g+1 and θ[ηU◦S0 ](0,Ω) �= 0.
Property 2.3.6 allows us to replace any i ∈ S0 with any j �∈ S0 and conclude that
θ[ηU◦S0◦{i,j}](0,Ω) is also nonzero. In this way we can replace the elements of S0,
one by one, until any S ⊆ B with |S| = g + 1 is reached. Hence for all ηU◦S of
η-order zero we have θ[ηU◦S ](0,Ω) �= 0.

Proof of corollary 2.3.2. Now that we have the nonvanishing of the thetanullwerte of
hyperelliptic η-order zero, this corollary is a direct consequence of corollary 2.1.2 in
section §2.1. The characteristic ηU −ηV has hyperelliptic η-order 1

2 (g+1−|V |) = 1
and so is odd. Therefore α = (ΩI)(ηU − ηV ) ∈ Θ and we may evaluate at this α in
corollary 2.1.2 since the denominator here does not vanish.

2.3.7 Remark. There are three equivalent forms of corollary 2.3.2, all of which we
will unfortunately use. We give these here and the reader should compare lemma
1.1.20. Notice that this corollary shows that these thetanullwerte quotients are
independent of the choice of V .

pijkl =
θ((Ω I)(ηU − ηV + ηi − ηk),Ω)
θ((Ω I)(ηU − ηV + ηi − ηl),Ω)

θ((Ω I)(ηU − ηV + ηj − ηl),Ω)
θ((Ω I)(ηU − ηV + ηj − ηk),Ω)

=
θ[ηU − ηV ]((Ω I)(ηi − ηk),Ω)
θ[ηU − ηV ]((Ω I)(ηi − ηl),Ω)

θ[ηU − ηV ]((Ω I)(ηj − ηl),Ω)
θ[ηU − ηV ]((Ω I)(ηj − ηk),Ω)

= eee2πi(ηi−ηj)′Ω(ηk−ηl)′ eee2πi{(ηi−ηj)′·(ηk−ηl)′′+(ηk−ηl)′·(ηi−ηj)′′}

θ[ηU − ηV + ηi − ηk](0,Ω)
θ[ηU − ηV + ηi − ηl](0,Ω)

θ[ηU − ηV + ηj − ηl](0,Ω)
θ[ηU − ηV + ηj − ηk](0,Ω)

2.3.8 Remark. Corollary 2.3.2 shows that the θ[ηU − ηV ]((Ω I)(ηi − ηj),Ω) are a
concrete realization of the qij whose existence was ensured by lemma 2.2.6 in section
§2.2. They are skew in i and j because [ηU − ηV ] is an odd characteristic.
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§2.4 Recovery of the branch points.
In the preceding three sections we have established the nonvanishing of the

thetanullwerte of hyperelliptic order zero and a version of the multisecant formula.
In the multisecant formula the pKLij are beginning to look very much like the values
of Gunning’s higher crossratio function at the branch points of a hyperelliptic curve.
In theorem 2.4.1 we begin to recover the hyperelliptic curve itself by constructing
what will be the projective crossratios of its branch points. Proposition 3.2.1 of
section 3.2 plays an important role here.

2.4.1 Theorem. Let Ω ∈ Hg and η ∈ Ξg. Assume that pijkl ∈ C∗ exist as in the
conclusion of theorem 2.1.1 in section §2.1. Assume that θ[ζ](0,Ω) �= 0 for all ζ of
hyperelliptic η-order zero as in theorem 2.3.1 in section §2.3. Assume the conclusion
of corollary 2.3.2 in §2.3. Then there exist 2g + 2 distinct ai ∈ P1, for i ∈ B, such
that for all distinct i, j, k, l ∈ B, we have

ai − ak
ai − al

· aj − al
aj − ak

= eee−4πi(ηi−ηj)′(ΩI)(ηk−ηl)(pijkl)2

= eee4πi(ηi−ηj)′·(ηk−ηl)′′(
θ[ηU − ηV + ηi − ηk](0,Ω)
θ[ηU − ηV + ηi − ηl](0,Ω)

θ[ηU − ηV + ηj − ηl](0,Ω)
θ[ηU − ηV + ηj − ηk](0,Ω)

)2.

2.4.2 Definition. Let Ω ∈ Hg and η ∈ Ξg. Assume that pijkl ∈ C∗ exist as in
the conclusion of theorem 2.1.1 in section §2.1. For all distinct i, j, k, l ∈ B, define
cijkl ∈ C∗ as follows:

cijkl = e−4πi(ηi−ηj)′(ΩI)(ηk−ηl)(pijkl)2.

2.4.3 Lemma. Let Ω ∈ Hg and η ∈ Ξg. Assume that pijkl ∈ C∗ exist as in
the conclusion of theorem 2.1.1. Assume the conclusions of theorem 2.3.1 and its
corollary 2.3.2. Then for all distinct i, j, k, l ∈ B, and V ⊆ B such that |V | = g − 1
and i, j, k, l �∈ V we have:

cijkl = eee4πi(ηi−ηj)′·(ηk−ηl)′′(
θ[ηU−ηV +ηi−ηk](0,Ω)
θ[ηU−ηV +ηi−ηl](0,Ω)

θ[ηU−ηV +ηj−ηl](0,Ω)
θ[ηU−ηV +ηj−ηk](0,Ω)

)2.

Proof. We use corollary 2.3.2 to substitute for the pijkl in the definition cijkl =
e−4πi(ηi−ηj)′(ΩI)(ηk−ηl) (pijkl)2. To do so we use the last equivalent form in remark
2.3.7, so that we have:

cijkl = e−4πi(ηi−ηj)′(ΩI)(ηk−ηl)

eee4πi(ηi−ηj)′Ω(ηk−ηl)′ eee4πi{(ηi−ηj)′·(ηk−ηl)′′+(ηk−ηl)′·(ηi−ηj)′′}

(
θ[ηU − ηV + ηi − ηk](0,Ω)
θ[ηU − ηV + ηi − ηl](0,Ω)

θ[ηU − ηV + ηj − ηl](0,Ω)
θ[ηU − ηV + ηj − ηk](0,Ω)

)2

=e+4πi(ηk−ηl)′·(ηi−ηj)′′(
θ[ηU − ηV + ηi − ηk](0,Ω)
θ[ηU − ηV + ηi − ηl](0,Ω)

θ[ηU − ηV + ηj − ηl](0,Ω)
θ[ηU − ηV + ηj − ηk](0,Ω)

)2.

The proof of this lemma will be complete when we show e4πi(ηk−ηl)′·(ηi−ηj)′′ =
e4πi(ηi−ηj)′·(ηk−ηl)′′ . This says exactly that e2(η{i,j}, η{k,l}) = (−1)0 = 1, which
follows from definition 1.4.11 item (3).
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2.4.4 Lemma. The cijkl satisfy the crossratio identities. Namely, for all distinct
i, j, k, l,m ∈ B, we have (1)-(4).

(1) cijkl = cjilk = cklij = clkji

(2) cijklcjikl = 1
(3) cijklcikljciljk = −1
(4) cijklcijlm = cijkm

Proof. This has already been verified in the proof of proposition 1.5.4 in §1.5.

2.4.5 Lemma. For all distinct i, j, k, l ∈ B , we have cijkl + cikjl = 1.

Proof. Consider equation (5) from theorem 2.1.1,

(2.4.6 ) pijkl�θ2(ξikjl,Ω) + pikjl�θ2(ξijkl,Ω) = �θ2(ξiljk,Ω).

We are going to use the addition theorem by dotting both sides of equation 2.4.6
with �θ2(w,Ω). We take w = (ΩI)(ηU−ηV ) + 1

2 (ΩI)(ηi+ηj+ηk+ηl), and let V ⊆ B
be any set disjoint from i, j, k, l with |V | = g − 1. We have the following result:

pijklθ((ΩI)(ηU − ηV + ηi + ηk),Ω)θ((ΩI)(ηU − ηV + ηj + ηl),Ω)

+pikjlθ((ΩI)(ηU − ηV + ηi + ηj),Ω)θ((ΩI)(ηU − ηV + ηk + ηl),Ω)

=θ((ΩI)(ηU − ηV + ηi + ηl),Ω)θ((ΩI)(ηU − ηV + ηj + ηk),Ω).
(2.4.7 )

We now use the assumption that all of the thetanullwerte of hyperelliptic η-order
zero do not vanish. This implies that all of the theta constants appearing in 2.4.7
are nonzero. For example, θ((ΩI)(ηU − ηV + ηi + ηk),Ω) differs by an exponential
factor from θ[ηU◦V ◦{i,k}](0,Ω), and ηU◦V ◦{i,k} is of hyperelliptic η-order zero. The
nonvanishing provided by the assumption of the conclusion of theorem 2.3.1 allows
us to write 2.4.7 as:

pijkl
θ((ΩI)(ηU − ηV + ηi + ηk),Ω)
θ((ΩI)(ηU − ηV + ηi + ηl),Ω)

θ((ΩI)(ηU − ηV + ηj + ηl),Ω)
θ((ΩI)(ηU − ηV + ηj + ηk),Ω)

+pikjl
θ((ΩI)(ηU − ηV + ηi + ηj),Ω)
θ((ΩI)(ηU − ηV + ηi + ηl),Ω)

θ((ΩI)(ηU − ηV + ηk + ηl),Ω)
θ((ΩI)(ηU − ηV + ηk + ηj),Ω)

= 1.

(2.4.8 )

A 25 line calculation using the quasi–periodicity of the theta function reveals:

θ((ΩI)(ηU − ηV + ηi + ηk),Ω)
θ((ΩI)(ηU − ηV + ηi + ηl),Ω)

θ((ΩI)(ηU − ηV + ηj + ηl),Ω)
θ((ΩI)(ηU − ηV + ηj + ηk),Ω)

= {e−4πi(ηk−ηl)′(ΩI)(ηi−ηj)

·θ((ΩI)(ηU − ηV + ηi − ηk),Ω)
θ((ΩI)(ηU − ηV + ηi − ηl),Ω)

θ((ΩI)(ηU − ηV + ηj − ηl),Ω)
θ((ΩI)(ηU − ηV + ηj − ηk),Ω)

}.
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By the corollary 2.3.2 to theorem 2.3.1 the second term above is precisely
e−4πi(ηk−ηl)′(ΩI)(ηi−ηj) pijkl, so that equation 2.4.8 becomes:

(2.4.9 ) e−4πi(ηk−ηl)′(ΩI)(ηi−ηj)(pijkl)2 + e−4πi(ηj−ηl)′(ΩI)(ηi−ηk)(pikjl)2 = 1.

Recalling that cijkl = e−4πi(ηi−ηj)′(ΩI)(ηk−ηl)(pijkl)2, all that remains to conclude
the proof that cijkl + cikjl = 1 is that e4πi(ηk−ηl)′·(ηi−ηj)′′ = e4πi(ηi−ηj)′·(ηk−ηl)′′ .
This follows from e4πi(ηk−ηl)′·(ηi−ηj)′′ = e4πi(ηi−ηj)′·(ηk−ηl)′′ , which we have already
mentioned in the proof of lemma 2.4.3. �

Proof of theorem 2.4.1. With lemmas 2.4.4 and 2.4.5 at our disposal theorem 2.4.1
follows from proposition 1.5.4, or even from a separate appeal to proposition 3.2.1.
The cijkl are nonzero because the pijkl are. Lemmas 2.4.4 and 2.4.5 state that the
nonzero cijkl satisfy the characterizing identities for a projective crossratio. The
number of indices here is |B| = 2g+2 ≥ 4, so by proposition 3.2.1 there exist 2g+2
distinct ai ∈ P such that cijkl = 〈ai, aj , ak, al〉. This is the assertion of theorem
2.4.1.

§2.5 Recovery of the hyperelliptic curve.
In theorem 2.5.1 we construct a hyperelliptic curve M with period matrix Ω1 and

projective crossratios of branch points equal to those crossratios in theorem 2.4.1.
As an immediate consequence we display for the first time the equality of some
thetanullwerte quotients for an Ω satisfying some identities and a hyperelliptic Ω1.
These relations between the nullwerte of hyperelliptic order zero for Ω and Ω1 are
given in proposition 2.5.2. The use of propositions 3.3.3 and 3.3.7 in this section
should be noted as our third invariant theory calculation.

2.5.1 Theorem. Let η ∈ Ξg and assume Ω ∈ Hg is irreducible and Ω ∈ F ′
g,η. Let

the pijkl be as in theorem 2.1.1 of section §2.1, and the ai be as in theorem 2.4.1 of
section §2.4. Then we have the following conclusions (1)-(5).

(1) There exists a hyperelliptic curve M of genus g which is modeled by y2 =∏
i∈B(x− ai).

(2) There is a marking, m1, of M with basepoint ȧ∞ over a∞, and π : M̂ →M .

(3) There are lifts ȧi ∈ M̂ : πȧi = ai.
(4) There is a period matrix Ω1 ∈ Hg computed from (M,m1) such that the

Abel–Jacobi map w : M̂ → J1 = Cg/(Zg +Ω1Z
g) satisfies w(ȧi) = (Ω1I)ηi,

for all i ∈ B.
(5) Gunning’s cross–ratio function p : M̂4 → P1 satisfies: ∀ distinct i, j, k, l ∈

B,

e−4πi(ηi−ηj)′(ΩI)(ηk−ηl)(pijkl)2 = e−4πi(ηi−ηj)′(Ω1I)(ηk−ηl)(p(ȧi, ȧj , ȧk, ȧl))2.
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2.5.2 Proposition. In theorem 2.5.1 we may select a σ ∈ Γ2 such that for all V
such that |V | = g − 1, and for all distinct i, j, k, l �∈ V , we have:

θ[ηU − ηV + ηi − ηk](0, σ · Ω1)
θ[ηU − ηV + ηi − ηl](0, σ · Ω1)

θ[ηU − ηV + ηj − ηl](0, σ · Ω1)
θ[ηU − ηV + ηj − ηk](0, σ · Ω1)

=
θ[ηU − ηV + ηi − ηk](0,Ω)
θ[ηU − ηV + ηi − ηl](0,Ω)

θ[ηU − ηV + ηj − ηl](0,Ω)
θ[ηU − ηV + ηj − ηk](0,Ω)

;

furthermore, for all K,L ⊆ B, and i, j ∈ B such that

i, j �∈ K ∪ L and |K| = |L| = g, we have:

θ[ηU + ηi − ηK ](0, σ · Ω1)
θ[ηU + ηi − ηL](0, σ · Ω1)

θ[ηU + ηj − ηL](0, σ · Ω1)
θ[ηU + ηj − ηK ](0, σ · Ω1)

=
θ[ηU + ηi − ηK ](0,Ω)
θ[ηU + ηi − ηL](0,Ω)

θ[ηU + ηj − ηL](0,Ω)
θ[ηU + ηj − ηK ](0,Ω)

.

Remark. Notice from equation 1.1.5 that the equalities in the conclusion of propo-
sition 2.5.2 will still hold if any of the signs of ±ηi, ±ηj , ±ηK , ±ηL are changed.

Proof of theorem 2.5.1. In the proof of this theorem we will actually only use the
conclusions of theorems 2.1.1 and 2.4.1 and not the irreducibility hypothesis on
Ω. Use theorem 2.4.1 to produce distinct ai ∈ P1 for i ∈ B, so that we have
〈ai, aj , ak, al〉 = e−4πi(ηi−ηj)′(ΩI)(ηk−ηl) (pijkl)2. Use an auxiliary linear fractional
transformation to ensure that the ai are all finite. Let M be the hyperelliptic
Riemann surface associated to the plane curve y2 =

∏
i∈B(x− ai).

We may mark M in some way and lift the ai (really (ai, 0)) from M to a′i ∈ M̂

so that the Abel–Jacobi map w : M̂ → J ′, with basepoint a′∞, satisfies w(a′i) =
(Ω′I)η′i, for some η′ ∈ Ξg as in proposition 1.4.9 in section §1.4. By lemma 1.4.13 in
section §1.4 we see that Spg(Z) is transitive on the classes in Ξg. Take an element
σ ∈ Spg(Z) which sends the class of η′ to the class of η, σ[η′] = [η]. Use this σ
to change the marking of M to a marking we will call m1. For the Abel–Jacobi
map under m1 we now have w(a′i) ≡ (Ω1I)ηi mod Zg + Ω1Z

g. Simply alter the
choice of lifts for the ai until we have equality in Cg instead of congruence modulo
the lattice; call these lifts ȧi so that we have w(ȧi) = (Ω1I)ηi in Cg. We now have
a hyperelliptic curve M given by y2 =

∏
i∈B(x − ai) with marking m1, basepoint

ȧ∞ ∈ M̂ , and lifts ȧi ∈ M̂ such that πȧi = ai, w(ȧi) = (Ω1I)ηi in Cg, and η ∈ Ξg.
Hence all of the results concerning hyperelliptic curves in sections §1.4 and §1.5
apply to Ω1. Among them are proposition 1.4.17 and corollary 1.5.3:

θ[ηS ](0,Ω1) �= 0 ⇐⇒ |S| is even and |U ◦ S| = g + 1,(2.5.5 )

∀ distinct i, j, k, l ∈ B,
ai − ak
ai − al

· aj − al
aj − ak

=(2.5.6 )

eee4πi(ηi−ηj)′·(ηk−ηl)′′(
θ[ηU−ηV +ηi−ηk](0,Ω1)
θ[ηU−ηV +ηi−ηl](0,Ω1)

θ[ηU−ηV +ηj−ηl](0,Ω1)
θ[ηU−ηV +ηj−ηk](0,Ω1)

)2

=e−4πi(ηi−ηj)′(Ω1I)(ηk−ηl)(p(ȧi, ȧj , ȧk, ȧl))2.
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The equation 2.5.6 implies item (5) of theorem 2.5.1 since both sides of the equation
in item (5) are equal to 〈ai, aj , ak, al〉. �

2.5.7 Lemma. Let η ∈ Ξg and Ω ∈ Hg. For all V ⊆ B such that |V | = g − 1,
and for all distinct i, j, k, l �∈ V , assume that the following γ• are well–defined and
independent of the choice of V :

γijkl(Ω) =
θ[ηU − ηV + ηi − ηk](0,Ω)
θ[ηU − ηV + ηi − ηl](0,Ω)

θ[ηU − ηV + ηj − ηl](0,Ω)
θ[ηU − ηV + ηj − ηk](0,Ω)

.

The action of Γ2 on the γijkl, via Ω �→ σ · Ω, is then generated by Pab for distinct
a, b ∈ B, where

Pab(γijkl) =


+γijkl, {a, b} �⊆ {i, j, k, l}
+γijkl, {a, b} = {i, j} or {k, l}
−γijkl, {a, b} = {i, k}, {i, l}, {j, k} or {j, l}.

Proof. The reader may want to review lemma 1.1.8 in section §1.1 and the discussion
afterwards. The action of Γ2 on γijkl(Ω) is determined by the mapping φijkl of
M sym

2g (Z)→ 1
4Z/Z given by:

φijkl =(ηU−ηV +ηi−ηk)⊗(ηU−ηV +ηi−ηk)+(ηU−ηV +ηj−ηl)⊗(ηU−ηV +ηj−ηl)

−(ηU−ηV +ηi−ηl)⊗(ηU−ηV +ηi−ηl)−(ηU−ηV +ηj−ηk)⊗(ηU−ηV +ηj−ηk)

=(ηi−ηk)⊗(ηi−ηk)+(ηj−ηl)⊗(ηj−ηl)−(ηi−ηl)⊗(ηi−ηl)−(ηj−ηk)⊗(ηj−ηk)

as follows: if P ∈ M sym
2g (Z) then P (γijkl) = eee2πiφijkl(P )γijkl. Let lg denote the

unique homomorphism from ({±1}, ·) to (Z/2Z,+). Then for ξ, ζ ∈ 1
2Z we have

e2(ξ, ζ) = e4πitξJζ , and tξJζ = 1
4 lg e2(ξ, ζ) in 1

4Z/
1
2Z. Since η : B → 1

2Z
2g/Z2g is

surjective we know that the [2ηi] span Z2g/2Z2g. The [2Jηi] also span Z2g/2Z2g,
and so we have SpanZ(2Jηi) + 2Z2g = Z2g. Therefore, SpanZ(2Jηi) + 4Z2g = Z2g.
Let

Pa = (2Jηa)⊗ (2Jηa) and

Pab = (2Jηa)⊗ (2Jηb) + (2Jηb)⊗ (2Jηa)

be viewed as elements of M sym
2g (Z). We see that SpanZ(Pa, Pab) + 4M sym

2g (Z) =
M sym

2g (Z), and hence that the map φijkl : M sym
2g (Z)→ 1

4Z/Z has its image generated
by its values on the Pa and Pab. The value of φijkl(Pa) in 1

4Z/Z is then

φijkl(Pa) = {[2t(ηi − ηk)Jηa]2 + [2t(ηj − ηl)Jηa]2

−[2t(ηi − ηl)Jηa]2 − [2t(ηj − ηk)Jηa]2}
=− 8[t(ηi − ηj)Jηa][t(ηk − ηl)Jηa].
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The above factor of 8 allows us to replace t(ηi − ηj)Jηa and t(ηk − ηl)Jηa by their
values in 1

4Z/
1
2Z. From tξJζ = 1

4 lg e2(ξ, ζ) in 1
4Z/

1
2Z we obtain:

φijkl(Pa) =− 8[
1
4

lg e2(ηi − ηj , ηa)][
1
4

lg e2(ηk − ηl, ηa)]

=− 1
2
[lg e2(η(i,j), ηa)][lg e2(η(k,l), ηa)].

Since lg e2(ηa, ηi) is equal to 1 for a �= i, and to 0 for a = i, we see that φijkl(Pa) is
0 for a �∈ {i, j, k, l}. If a = i we see that φijkl(Pa) = − 1

2 · 1 · 0 = 0. By the inherent
symmetry the cases a = j, k, l are the same, and so φijkl(Pa) is identically zero. We
now consider the values of φijkl(Pab) in 1

4Z/Z. We have,

φijkl(Pab)

= {2[2t(ηi − ηk)Jηa][2t(ηi − ηk)Jηb] + 2[2t(ηj − ηl)Jηa][2t(ηj − ηl)Jηb]

−2[2t(ηi − ηl)Jηa][2t(ηi − ηl)Jηb]− 2[2t(ηj − ηk)Jηa][2t(ηj − ηk)Jηb]}
= −8[t(ηi − ηj)Jηa][t(ηk − ηl)Jηb]− 8[t(ηi − ηj)Jηb][t(ηk − ηl)Jηa]

= −1
2

lg e2(ηi − ηj , ηa) lg e2(ηk − ηl, ηb)−
1
2

lg e2(ηi − ηj , ηb) lg e2(ηk − ηl, ηa).

Unless both a, b ∈ {i, j, k, l} the value of φijkl(Pab) is 0. If (a, b) = (i, j) the value is
− 1

2 · 1 · 0− 1
2 · 1 · 0 = 0. If (a, b) = (i, k) then φijkl(Pab) = − 1

2 · 1 · 1− 1
2 · 0 · 0 = − 1

2 .
The rest are similar by symmetry. Since the induced action of the Pab on the γijkl

is given by Pab(γijkl) = eee2πiφijkl(Pab)γijkl this completes the proof.

2.5.8 Remark. This is the same action one would obtain if

γijkl = (const) ·
√

ai − ak
ai − al

· aj − al
aj − ak

,

and if the Pmn acted by analytically continuing am around an. The need to consider
the Pmn arises from the need to adjust some signs in our thetanullwerte quotients
γijkl(Ω). In an earlier version of this paper, these signs were adjusted by moving
the liftings of the branch points around on the universal cover of moduli space for
hyperelliptic curves. However, as Mumford points out in [14, 3.131], this is equiva-
lent to letting Γ2 act directly on Ω; so we have introduced the Pab as generators of
the Γ2 action on the γijkl(Ω), thereby avoiding considerable detail concerning the
universal cover of hyperelliptic moduli space.

2.5.9 Lemma. Let η ∈ Ξg and Ω ∈ Hg. Assume that Ω satisfies the nonvanishing
conditions:

S ⊆ B : |S| = g + 1 =⇒ θ[ηU◦S ](0,Ω) �= 0.

Let K,L ⊆ B such that |K| = |L| = g. Let i, j ∈ B such that i, j �∈ K ∪ L.
Define r = |K ∩ L| so that K ∩ L = {u1, . . . , ur}, K = {u1, . . . , ur, k1, . . . , ks}, and
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L = {u1, . . . , ur, l1, . . . , ls}, for s + r = g. Then for all n such that 1 ≤ n ≤ r, there
exist Vn ⊆ B such that |Vn| = g − 1, and i, j, kn, ln �∈ Vn such that we have

θ[ηU + ηi − ηK ](0,Ω)
θ[ηU + ηi − ηL](0,Ω)

θ[ηU + ηj − ηL](0,Ω)
θ[ηU + ηj − ηK ](0,Ω)

=
r∏

n=1

{θ[ηU − ηVn
+ ηi − ηkn ](0,Ω)

θ[ηU − ηVn
+ ηi − ηln ](0,Ω)

θ[ηU − ηVn
+ ηj − ηln ](0,Ω)

θ[ηU − ηVn
+ ηj − ηkn ](0,Ω)

}.

Proof. We inductively define Vn for 1 ≤ n ≤ r by Vn+1 = Vn ◦ {ln, kn+1} and
V1 = K ◦ {k1}, and we note it follows that Vr = L ◦ {lr}. For 1 ≤ n ≤ r− 1 we have
that ηU − ηVn

+ ηi− ηln = ηU − ηVn+1◦{ln,kn+1} + ηi− ηln = ηU − ηVn+1 + ηi− ηkn+1 ;
this shows that θ[ηU − ηVn + ηi − ηln ](0,Ω) = θ[ηU − ηVn+1 + ηi − ηkn+1 ](0,Ω), and
we note that the same is true when j replaces i. The product in lemma 2.5.9 is a
telescoping product and we are left with only two k1 factors and two lr factors:

{θ[ηU−ηV1+ηi−ηk1 ]
1

1
θ[ηU−ηV1+ηj−ηk1 ]

} · { 1
θ[ηU−ηVr+ηi−ηlr ]

θ[ηU−ηVr+ηj−ηlr ]
1

}.

We observe that ηU−ηV1+ηi−ηk1 = ηU+ηi−ηK and ηU−ηVr +ηi−ηlr = ηU+ηi−ηL
to complete the proof of this lemma.

Proof of proposition 2.5.2. We consider the action of Γ2 on the γijkl(Ω1), and in
view of 2.5.7 call P the group generated the Pab. By lemma 2.5.7 then there exists
a σ ∈ Γ2 such that γijkl(σ ·Ω1) = γijkl(Ω) if and only if there is an S ∈ P such that
S(γijkl(Ω1)) = γijkl(Ω). By proposition 3.3.7 in section 3.3 such an S ∈ P exists,
however, only when γijkl(Ω) and γijkl(Ω1) yield the same values upon substitution
into the invariant generators of proposition 3.3.3. We are again making strong
use of a simple invariant theory calculation and we now list the relevant invariant
generators once more.

(1) (γijkl)2

(2) γijkl(γjilk)−1, γijkl(γklij)−1, γijkl(γlkji)−1

(3) γijklγjikl

(4) γikjlγlijk(γijkl)−1

(5) γijklγijlm(γijkm)−1

We now demonstrate that (γijkl(Ω))2 = (γijkl(Ω1))2 by using item (5) of theorem
2.5.1. This shows that the equality of the (γijkl)2 in item (1) above is true. We
have

eee4πi(ηi−ηj)′·(ηk−ηl)′′(γijkl(Ω))2

= eee4πi(ηi−ηj)′·(ηk−ηl)′′(
θ[ηU − ηV + ηi − ηk](0,Ω)
θ[ηU − ηV + ηi − ηl](0,Ω)

θ[ηU − ηV + ηj − ηl](0,Ω)
θ[ηU − ηV + ηj − ηk](0,Ω)

)2

=e−4πi(ηi−ηj)′(ΩI)(ηk−ηl)(pijkl)2

=e−4πi(ηi−ηj)′(Ω1I)(ηk−ηl)(p(ȧi, ȧj , ȧk, ȧl))2
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= eee4πi(ηi−ηj)′·(ηk−ηl)′′(
θ[ηU − ηV + ηi − ηk](0,Ω1)
θ[ηU − ηV + ηi − ηl](0,Ω1)

θ[ηU − ηV + ηj − ηl](0,Ω1)
θ[ηU − ηV + ηj − ηk](0,Ω1)

)2

= eee4πi(ηi−ηj)′·(ηk−ηl)′′(γijkl(Ω1))2.

The first and fifth equalities follow from the definition of γ• in lemma 2.5.7. The
second equality follows from lemma 2.4.3 and from definition 2.4.2. The third
equality is item (5) of theorem 2.5.1. The fourth equality follows from equation
2.5.6, which is the same as corollary 1.5.3. Since γijkl(Ω) satisfies the crossratio
symmetries up to ± signs independent of Ω, it follows that items (2), (3), (4),
and (5) yield the same universal signs for both γijkl(Ω) and γijkl(Ω1). We do not
need to know these signs but the reader may verify using 1.1.5 that the γijkl(Ω) in
fact satisfy the crossratio symmetries. This shows that the invariant generators of
γijkl(Ω) agree with those of γijkl(Ω1), and hence that S ∈ P and σ ∈ Γ2 exist so
that γ•(Ω) = γ•(σ · Ω1).

The second conclusion in proposition 2.5.2 follows from the first part and lemma
2.5.9. We may assume that i �= j, for if i = j then both sides are equal to 1 and
the conclusion holds. If i �= j we pick Vn such that i, j, kn, ln �∈ Vn. By lemma 2.5.9
the equality of the

θ[ηU − ηVn + ηi − ηkn ](0, ·)
θ[ηU − ηVn + ηi − ηln ](0, ·)

θ[ηU − ηVn + ηj − ηln ](0, ·)
θ[ηU − ηVn + ηj − ηkn ](0, ·)

implies the equality of the

θ[ηU + ηi − ηK ](0, ·)
θ[ηU + ηi − ηL](0, ·)

θ[ηU + ηj − ηL](0, ·)
θ[ηU + ηj − ηK ](0, ·) . �

§2.6 Irreduciblity and vanishing imply hyperelliptic.
In this section we assume for the first time that the irreducible Ω satisfies the

vanishing conditions Vg,η. The main theorem 2.6.1 shows that under these assump-
tions Ω is Γ2-equivalent to the hyperelliptic Ω1 and hence that Ω is hyperelliptic.
Starting with the special equalities of quotients of thetanullwerte for Ω and Ω1

given in proposition 2.5.2, we begin the long march to proposition 2.6.2 where all
the Γ2-invariant quotients of thetanullwerte for Ω and Ω1 are shown to coincide.
The author’s inability to find a simple induction proof of proposition 2.6.3 accounts
for the length of this section.

2.6.1 Main Theorem. Let η ∈ Ξg and Ω ∈ Hg. The following two statements
are equivalent.

(1) Ω is irreducible and Ω ∈ V ′
g,η.

(2) There is a marked hyperelliptic Riemann surface M of genus g which has
Ω as its period matrix and Jac(M) = Cg/(Zg + ΩZg). Furthermore, there
is a model of M , y2 =

∏
i∈B(x − ai), with a∞ as the basepoint of the

Abel–Jacobi map w : M → Jac(M) such that w(ai) = [(ΩI)ηi] in Jac(M).
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Proof of the main theorem. Assume statement (2). A Jacobian of a marked hyper-
elliptic curve has an analytically irreducible theta locus, Θ, by corollary 1.2.13, and
hence a symplectically irreducible period matrix Ω. From section §1.4 in general,
and proposition 1.4.17 in particular, we see that Ω satisfies the vanishing equations
for η. This verifies that (2) implies (1), and so we only need to demonstrate the
converse, (1) implies (2). Assume Ω is irreducible and satisfies the vanishing equa-
tions Vg,η. We assume proposition 2.6.2 which will be proven later in this section.
The equations Vg,η imply the Frobenius theta formula, Frobg,η, and the equations
Fg,η. These implications are proposition 1.6.10 and theorem 1.6.16 of section §1.6.
Since Ω is irreducible and Ω ∈ F ′

g,η, we may use theorem 2.5.1 to produce a hy-
perelliptic Riemann surface M with marking m1, Abel–Jacobi map corresponding
to η, and period matrix Ω1, such that the conclusion of proposition 2.5.2 holds for
some σ ∈ Γ2. This proposition asserts that for appropriate indices i, j, K, L, the
θ[ηU+ηi−ηK ](0,·)
θ[ηU+ηi−ηL](0,·)

θ[ηU+ηj−ηL](0,·)
θ[ηU+ηj−ηK ](0,·) give the same values for Ω and σ · Ω1.

If we let Γ2 act on the ring C[θ[ζ](0,Ω)]ζ , where ζ ∈ 1
2Z

2g/Z2g, then the Γ2-
invariant quotient field will give moduli for Γ2; the precise lemma we use here is
lemma 1.1.9 applied to Ω and σ·Ω1. Condition (1) of lemma 1.1.9 is satisfied because
Ω and σ ·Ω1 have the same vanishing and nonvanishing. Theorem 2.3.1 shows that
the thetanullwerte for Ω of hyperelliptic η–order zero do not vanish; the hypothesis
Ω ∈ V ′

g,η is that the other thetanullwerte of nonzero hyperelliptic η–order do vanish.
Proposition 1.4.17 of section §1.4 shows that the hyperelliptic Ω1 has the same
vanishing and nonvanishing as Ω. Since σ ∈ Γ2 does not permute the thetanullwerte,
we conclude that: θ[ζ](0,Ω) = 0 ⇐⇒ θ[ζ](0, σ ·Ω1) = 0. This verifies condition (1)
of lemma 1.1.9 and we now consider condition (2) of lemma 1.1.9. By the proposition
2.5.2 just mentioned and by proposition 2.6.2 below, the Γ2-invariant quotients of
monomials in the thetanullwerte of hyperelliptic η-order zero coincide for Ω and
σ · Ω1. Actually, the terms ± ηK , ± ηL, in proposition 2.5.2 and proposition 2.6.2
differ, but the sign change which this induces in the thetanullwerte quotients is
independent of Ω. Furthermore, both Ω and σ ·Ω1 satisfy the vanishing conditions,
Vg,η, so that if ζ is not of hyperelliptic η-order zero then both θ[ζ](0,Ω) = θ[ζ](0, σ ·
Ω1) = 0. Any Γ2-invariant quotient of monomials whose nullwerte are not all of
hyperelliptic η–order zero therefore vanishes at both Ω and σ·Ω1 when well–defined.
The agreement of all the Γ2-invariant quotients of monomials of thetanullwerte at
Ω and σ ·Ω1 which are well–defined there, then follows from the agreement at Ω and
σ · Ω1 of the Γ2-invariant quotients of monomials of thetanullwerte of hyperelliptic
η–order zero. The Γ2-invariant quotients of polynomials in the thetanullwerte,
θ[ζ], will be generated by Γ2-invariant quotients of monomials because Γ2 does not
permute the thetanullwerte. This is an invariant theory calculation we suppress.
This verifies condition (2) of lemma 1.1.9, and proves that Ω is Γ2-equivalent to
σ · Ω1 and hence to Ω1. The result that Ω is hyperelliptic is the most important;
we continue on to relate η to the Abel–Jacobi map.

Let σ2 ∈ Γ2 be such that Ω = σ2 · Ω1. If we use σ2 to change the marking
m1 on M , then Ω will be the period matrix of M in this new marking m. The
old Abel–Jacobi map w1 : M̂ → Cg/(Zg + Ω1Z

g) changes with the marking to
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w : M̂ → Cg/(Zg + ΩZg), but since σ2 ∈ Γ2, we have σ2ηi ≡ ηi mod Z2g. This
shows that w(ai) ≡ (ΩI)ηi mod Zg + ΩZg. �

2.6.2 Proposition. Let η ∈ Ξg and Ω ∈ Hg. Assume θ[ζ](0,Ω) �= 0 for all ζ of
hyperelliptic η-order zero. Then the Γ2-invariant quotients of monomials,

N∏
i=1

θ[ζi](0,Ω)
θ[ξi](0,Ω)

, where the ζi, ξi ∈
1
2
Z2g have hyperelliptic η-order zero,

are uniquely determined by the values,

θ[ηU + ηi + ηK ](0,Ω)
θ[ηU + ηi + ηL](0,Ω)

θ[ηU + ηj + ηL](0,Ω)
θ[ηU + ηj + ηK ](0,Ω)

,

where i, j ∈ B and K,L ⊆ B and i �= j and i, j �∈ K ∪ L and |K| = |L| = g.

2.6.3 Proposition. Let η ∈ Ξg and Ω ∈ Hg. Assume θ[ζ](0,Ω) �= 0 for all ζ of
hyperelliptic η-order zero. Let ζ1, ζ2, ζ3, ζ4 ∈ 1

2Z
2g have hyperelliptic η-order zero

and assume ζ1 + ζ2 + ζ3 + ζ4 ∈ Z2g. Define:

Q =
θ[ζ1](0,Ω)
θ[ζ3](0,Ω)

θ[ζ2](0,Ω)
θ[ζ4](0,Ω)

.

Then Q is (up to a sign independent of Ω) equal to a product of elements of the
form:

θ[ηU + ηi + ηK ](0,Ω)
θ[ηU + ηi + ηL](0,Ω)

θ[ηU + ηj + ηL](0,Ω)
θ[ηU + ηj + ηK ](0,Ω)

,

where i, j ∈ B and K,L ⊆ B and i �= j and i, j �∈ K ∪ L and |K| = |L| = g.

Proof. Since the ζi are of hyperelliptic η-order zero there exist S, S̄, T ⊆ B such
that |S| = |S̄| = |T | = g + 1, and ζ1 ≡ ηU + ηS , ζ2 ≡ ηU + ηT , ζ3 ≡ ηU + ηS̄
mod Z2g. Furthermore if we define T̄ = S ◦ S̄ ◦ T , then ηU + ηT̄ c ≡ ηU + ηT̄ =
ηU + ηS◦S̄◦T ≡ ζ1 + ζ2 + ζ3 ≡ ζ4, so that |T̄ | = g + 1 since ζ4 has hyperelliptic
η-order zero. If we knew that ζ1 ≡ ηU + ηS mod 2Z2g then we could conclude that
θ[ζ1](0,Ω) = θ[ηU + ηS ](0,Ω); however we only have ζ1 ≡ ηU +ηS mod Z2g so that
θ[ζ1](0,Ω) = ±θ[ηU + ηS ](0,Ω). This sign is independent of Ω though, and so to
construct θ[ζ1](0,Ω)

θ[ζ3](0,Ω)
θ[ζ2](0,Ω)
θ[ζ4](0,Ω) up to a sign independent of Ω it suffices to construct:

Q′ =
θ[ηU + ηS ](0,Ω)
θ[ηU + ηS̄ ](0,Ω)

θ[ηU + ηT ](0,Ω)
θ[ηU + ηT̄ c ](0,Ω)

.

Consider S, S̄, T, T̄ ⊆ B such that |S| = |S̄| = |T | = |T̄ | = g+1 and S◦S̄◦T ◦T̄ =
∅, or equivalently T̄ = S ◦ S̄ ◦ T . We label the eight atoms as follows:

S ∩ S̄ ∩ T = A2, S ∩ S̄c ∩ T = B2, Sc ∩ S̄ ∩ T = C1, Sc ∩ S̄c ∩ T = D1

S ∩ S̄ ∩ T c = A1, S ∩ S̄c ∩ T c = B1, Sc ∩ S̄ ∩ T c = C2, Sc ∩ S̄c ∩ T c = D2 .
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Then we have the following disjoint unions:

S = A1 "A2 "B1 "B2, T = D1 "A2 " C1 "B2, S̄c = D1 "D2 "B1 "B2

S̄ = A1 "A2 " C1 " C2, T̄ = D1 "A2 "B1 " C2, T̄ c = A1 "D2 " C1 "B2 .

The unions for T̄ and T̄ c follow directly from the definition T̄ = S ◦ S̄ ◦T . From the
pair of equations |S| = |S̄| and |T | = |T̄ |, we obtain the pair |B1|+ |B2| = |C1|+ |C2|
and |C1| + |B2| = |B1| + |C2|, which together imply |B1| = |C1| and |B2| = |C2|.
In the same way the pair of equations |S| = |S̄c| and |T | = |T̄ c| yield the pair
|A1| + |A2| = |D1| + |D2| and |D1| + |A2| = |A1| + |D2|, which together imply
|A1| = |D1| and |A2| = |D2|. Denote by r, s and t the non–negative integers given
by

r = |S ∩ S̄| = |A1|+ |A2| = |D1|+ |A2| = |T ∩ T̄ |,
s = |B1| = |C1|, and t = |B2| = |C2| .

Label the disjoint, possibly empty, sets B1, C1, B2, C2 as: B1 = {bi}si=1, B2 =
{bi}s+ti=s+1, C1 = {ci}si=1 and C2 = {ci}s+ti=s+1.

We now inductively define two sequences of sets, Ti, Si ⊆ B, such that |Ti| =
|Si| = g + 1. For i such that 0 ≤ i ≤ s + t − 1 define Si+1 = Si ◦ {bi+1, ci+1},
and begin the sequence with S0 = S = A1 " A2 " B1 " B2. Since S contains
all of the s + t elements bi and none of the s + t elements ci, we see that Si+1

always gains ci+1 and loses bi+1 so that |Si+1| = g + 1. Note for later use that
Ss+t = S0 ◦ (B1 " B2 " C1 " C2) = A1 " A2 " C1 " C2 = S̄. We now define the
sequence of sets Ti. Let T0 = T = D1 "A2 " C1 "B2, and Ti+1 = Ti ◦ {bi+1, ci+1}
for i such that 0 ≤ i ≤ s− 1. Note that Ts = T ◦ (B1 " C1) = D1 "A2 "B1 "B2.
Let Ts+1 = Ts

c ◦{bs+1, cs+1}, and let Ti+1 = Ti ◦{bi+1, ci+1} for i such that s+1 ≤
i ≤ s+ t− 1. By the same reasoning as above |Ti| = g + 1 for i satisfying 0 ≤ i ≤ s
because T contains C1 but is disjoint from B1; for i satisfying s + 1 ≤ i ≤ s + t we
also have |Ti| = g + 1 because Ts

c = A1 "D2 "C1 "C2 contains C2 and is disjoint
from B2. Note for later use that Ts+t = Ts

c ◦ (B2"C2) = A1"D2"C1"B2 = T̄ c.
We use these two sequences to write Q′ as a telescoping product:

Q′ =
θ[ηU + ηS ](0,Ω)
θ[ηU + ηS̄ ](0,Ω)

θ[ηU + ηT ](0,Ω)
θ[ηU + ηT̄ c ](0,Ω)

=
θ[ηU + ηS0 ](0,Ω)
θ[ηU + ηSs+t ](0,Ω)

θ[ηU + ηT0 ](0,Ω)
θ[ηU + ηTs+t ](0,Ω)

=
s+t−1∏
i=0

θ[ηU + ηSi ](0,Ω)
θ[ηU + ηSi+1 ](0,Ω)

θ[ηU + ηTi ](0,Ω)
θ[ηU + ηTi+1 ](0,Ω)

.

We now conclude the proof by showing that (up to sign) each of the factors in the
above product is an element of the form,

θ[ηU + ηa + ηK ](0,Ω)
θ[ηU + ηb + ηK ](0,Ω)

θ[ηU + ηb + ηL](0,Ω)
θ[ηU + ηa + ηL](0,Ω)

,
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where a �= b and K,L ⊆ B and a, b �∈ K ∪ L and |K| = |L| = g. For i satisfying
0 ≤ i ≤ s− 1, we have

θ[ηU + ηSi
](0,Ω)

θ[ηU + ηSi+1 ](0,Ω)
θ[ηU + ηTi

](0,Ω)
θ[ηU + ηTi+1 ](0,Ω)

=
θ[ηU + ηSi

](0,Ω)
θ[ηU + ηSi◦{bi+1,ci+1}](0,Ω)

θ[ηU + ηTi
](0,Ω)

θ[ηU + ηTi◦{bi+1,ci+1}](0,Ω)

=
θ[ηU + ηbi+1 + ηSirbi+1 ](0,Ω)
θ[ηU + ηci+1 + ηSirbi+1 ](0,Ω)

θ[ηU + ηci+1 + ηTirci+1 ](0,Ω)
θ[ηU + ηbi+1 + ηTirci+1 ](0,Ω)

.

(2.6.4 )

Since B1 ∩C1 = ∅ we have bi+1 �= ci+1. From Si ∩C1 = {c1, . . . , ci} and Ti ∩B1 =
{b1, . . . , bi} we deduce bi+1, ci+1 �∈ (Si r bi+1)"(Ti r ci+1). Since |Ti| = |Si| = g+1
we have |Ti r ci+1| = |Si r bi+1| = g.

For i satisfying s + 1 ≤ i ≤ s + t − 1, we also have equation 2.6.4 but the
explanation that the factor is of the required form differs. Since B2 ∩ C2 = ∅ we
have bi+1 �= ci+1. From Si ∩ C2 = {cs+1, . . . , ci} and Ti ∩ B2 = {bs+1, . . . , bi} we
deduce bi+1, ci+1 �∈ (Si r bi+1) " (Ti r ci+1). As was previously observed, we have
|Ti r ci+1| = |Si r bi+1| = g. The only remaining case is i = s, and then we are
considering the factor

θ[ηU + ηSs ](0,Ω)
θ[ηU + ηSs◦{bs+1,cs+1}](0,Ω)

θ[ηU + ηTs ](0,Ω)
θ[ηU + ηT c

s ◦{bs+1,cs+1}](0,Ω)
.

We have θ[ηU + ηTs ](0,Ω) = ±θ[ηU + ηTs
c ](0,Ω), where the sign is independent of

Ω. The factor
θ[ηU + ηSs ](0,Ω)

θ[ηU + ηSs◦{bs+1,cs+1}](0,Ω)
θ[ηU + ηTs

c ](0,Ω)
θ[ηU + ηT c

s ◦{bs+1,cs+1}](0,Ω)

is of the required form by the same analysis as in the case s + 1 ≤ i ≤ s + t − 1.
This concludes the proof except when s = t = 0 and the product constructed in this
proof is empty. In this case r = g + 1 = |S ∩ S̄| = |T ∩ T̄ |, so that S = S̄, T = T̄ ,
and Q′ = ±1. �

The proof of propositon 2.6.3 required extensive labelling. The gist however may
be seen in any example. For g = 4, consider

θ[ηU + η{1,2,3,4,9}](0,Ω)
θ[ηU + η{1,5,7,8,∞}](0,Ω)

θ[ηU + η{2,5,6,8,9}](0,Ω)
θ[ηU + η{3,4,6,7,∞}](0,Ω)

.

Write θ[ηU + η{1,2,3,4,9}](0,Ω) = (12349) in an obvious notation so that the quo-
tient of thetanullwerte we are considering becomes 1;34;29

1;58;7∞
6;58;29
6;34;7∞ . The telescoping

product constructed in the proof of Proposition 2.6.3 is then:

(
1; 34; 29
1; 54; 29

· 6; 58; 29
6; 38; 29

)(
1; 54; 29
1; 58; 29

· 6; 38; 29
6; 34; 29

)(
1; 58; 29
1; 58; 79

· 1; 58; 7∞
1; 58; 2∞ )(

1; 58; 79
1; 58; 7∞ · 1; 58; 2∞

1; 58; 29
)

This product equals ( 1;34;29
1;58;7∞ ·

6;58;29
1;58;29 ) 1;58;7∞

6;34;29 . Now 1; 58; 29 is equivalent to 6; 34; 7∞
by taking complements, and similarly 1; 58; 7∞ is equivalent to 6; 34; 29. So up to
sign the telescoping product is the desired result, namely: 1;34;29

1;58;7∞
6;58;29
6;34;7∞ .
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2.6.5 Lemma. Let Ω ∈ Hg and Σ ⊆ 1
2Z

2g/Z2g be a göpel system such that
θ[ζ](0,Ω) �= 0 for all ζ ∈ Σ. For all {ui}n1 , {vi}n1 ⊆ Σ such that

∑n
i=1 ui =

∑n
i=1 vi

write I =
∏n
i=1

θ[ui](0,Ω)
θ[vi](0,Ω) . Then I is a product of elements of the form,

Aab
cd =

θ[a](0,Ω)θ[b](0,Ω)
θ[c](0,Ω)θ[d](0,Ω)

,

where a, b, c, d ∈ Σ, and a + b = c + d.

Proof. In the case n = 1 the hypothesis is u1 = v1 so that I =
∏n
i=1

θ[ui](0,Ω)
θ[vi](0,Ω)

= 1 = Aab
ab. The case n = 2 is precisely the case we are allowing, Au1u2

v1v2 . Assume
that n ≥ 3; we will show by induction on n that I is a product of factors of the
form Aab

cd, where a + b = c + d. We have

I =
n∏
i=1

θ[ui](0,Ω)
θ[vi](0,Ω)

=(
θ[u1](0,Ω)
θ[v1](0,Ω)

θ[u2](0,Ω)
θ[u1 + u2 − v1](0,Ω)

)(
θ[u1 + u2 − v1](0,Ω)

θ[v2](0,Ω)

n∏
i=3

θ[ui](0,Ω)
θ[vi](0,Ω)

).

The first factor is clearly of the required form since Σ + Σ + Σ = Σ. The second
factor also satisfies the hypothesis of the lemma but has only n− 1 factors, and so
by the induction hypothesis is a product

∏
Aγiδi
αiβi

, where αi+βi = γi+δi. Therefore
I = Au1u2

v1 (u1+u2−v1)
∏

Aγiδi
αiβi

and the induction is complete.

2.6.6 Lemma. Let Ω ∈ Hg and η ∈ Ξg. Assume that θ[ζ](0,Ω) �= 0 for all ζ of
hyperelliptic η-order zero. For all {ui}n1 , {vi}n1 ⊆ 1

2Z
2g/Z2g of hyperelliptic η-order

zero such that
∑n

i=1 ui =
∑n

i=1 vi, write I =
∏n
i=1

θ[ui](0,Ω)
θ[vi](0,Ω) . Then I is a product

of elements of the form

Aab
cd =

θ[a](0,Ω)θ[b](0,Ω)
θ[c](0,Ω)θ[d](0,Ω)

,

where a, b, c, d ∈ 1
2Z

2g/Z2g are of hyperelliptic η-order zero and a + b = c + d.

Proof. There exist göpel sytems, Σi, of hyperelliptic η-order zero, such that Σ1 +
Σ2 = 1

2Z
2g/Z2g and Σ1 ∩ Σ2 = {∆}. This is lemma 1.4.26 in section §1.4. Then

(∆+Σ1)⊕(∆+Σ2) = 1
2Z

2g/Z2g, and there exist unique u′
i, v

′
i ∈ Σ1 and u′′

i , v
′′
i ∈ Σ2

such that

∆ + ui = (∆ + u′
i) + (∆ + u′′

i ) = u′
i + u′′

i ,

∆ + vi = (∆ + v′i) + (∆ + v′′i ) = v′i + v′′i .

Furthermore, the directness of the sum implies that
∑

u′
i =

∑
v′i and

∑
u′′
i =

∑
v′′i .

We may decompose I in the following way:

I =
n∏
i=1

θ[ui](0,Ω)
θ[vi](0,Ω)

=
n∏
i=1

θ[ui](0,Ω)
θ[u′

i](0,Ω)
θ[∆](0,Ω)
θ[u′′

i ](0,Ω)

n∏
i=1

θ[v′i](0,Ω)
θ[vi](0,Ω)

θ[v′′i ](0,Ω)
θ[∆](0,Ω)

n∏
i=1

θ[u′
i](0,Ω)

θ[v′i](0,Ω)

n∏
i=1

θ[u′′
i ](0,Ω)

θ[v′′i ](0,Ω)
.
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The first 2n factors are of the required form, and the last 2n may be put in the
required form by lemma 2.6.5.

2.6.7 Lemma. Let ξi, ζi ∈ 1
2Z

2g, for i = 1, . . . , n. If
∏n
i=1

θ[ζi](0,Ω)
θ[ξi](0,Ω) is Γ2-invariant

then
∑n

i=1 ζi ≡
∑n

i=1 ξi mod Z2g.

Proof. From the known action of Γ2, as given in lemma 1.1.8 in section §1.1, we
see that φ =

∑
i ζi ⊗ ζi − ξi ⊗ ξi must send all symmetric S ∈ M2g(Z) into Z. Use

the notation ζi = [ζ ′ij |ζ ′′ij ] and ξi = [ξ′ij |ξ′′ij ] for j = 1, . . . , g. If we apply all diagonal
matrices in M2g(Z) to φ we obtain the following equations for each j:

(2.6.8 )
∑
i

(ζ ′ij)
2 − (ξ′ij)

2 ∈ Z, and
∑
i

(ζ ′′ij)
2 − (ξ′′ij)

2 ∈ Z.

From 2.6.8 we have
∑

i(2ζ
′
ij)

2−(2ξ′ij)
2 ∈ 4Z which implies

∑
i(2ζ

′
ij)

2−(2ξ′ij)
2 ∈ 2Z.

Since x2 ≡ x mod 2Z, we conclude that
∑

i(2ζ
′
ij) − (2ξ′ij) ∈ 2Z, or

∑
i ζ

′
ij − ξ′ij ∈

Z. This is true for j = 1, . . . , g so that
∑

i ζ
′
i − ξ′i ∈ Zg. The demonstration of∑

i ζ
′′
i − ξ′′i ∈ Zg is the same.

Proof of proposition 2.6.2. By proposition 2.6.3 the values,

θ[ηU + ηi + ηK ](0,Ω)
θ[ηU + ηi + ηL](0,Ω)

θ[ηU + ηj + ηL](0,Ω)
θ[ηU + ηj + ηK ](0,Ω)

,

suffice to determine all expressions,

θ[ζ1](0,Ω)
θ[ζ3](0,Ω)

θ[ζ2](0,Ω)
θ[ζ4](0,Ω)

,

when ζ1 + ζ2 + ζ3 + ζ4 ∈ Z2g, and the ζ• have hyperelliptic η–order zero. By
lemma 2.6.6 these elements in turn multiplicatively generate all

∏n
i=1

θ[ui](0,Ω)
θ[vi](0,Ω) when∑

ui =
∑

vi mod Z2g, and the ui, vi, have hyperelliptic η–order zero. By lemma
2.6.7 all the Γ2-invariant quotients of monomials of hyperelliptic η–order zero are
of this form. �

§2.7 Mumford’s Theorem.
Mumford’s characterization of the hyperelliptic locus in terms of vanishing and

nonvanishing is apparently not a direct corollary of the characterization in terms
of vanishing and irreducibility given in theorem 2.6.1. Neither can theorem 2.6.1
apparently be deduced directly from Mumford’s theorem; this requires showing that
irreducibility and vanishing imply nonvanishing, which was accomplished at length
in sections §2.1, §2.2 and §2.3. However, Mumford’s theorem can be given another
proof by imitating the proof of theorem 2.6.1 given here. The two methods of proof
appear to be quite different since Mumford proceeds via Neumann’s dynamical
system. If we assume the nonvanishing conditions as well as the vanishing conditions
then the proof that Ω is hyperelliptic given here becomes much more direct. We
only sketch the relevant steps.
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2.7.1 Theorem (Mumford). [14, 3.137] Let Ω ∈ Hg. There is a hyperelliptic
curve of genus g which has Ω as a period matrix if and only if there exists an η ∈ Ξg
such that

θ[ζ](0,Ω) �= 0 ⇐⇒ ζ is of hyperelliptic η-order zero.

Sketch of proof. To establish the analogue of theorem 2.1.1 we may use the nonva-
nishing conditions to directly define the pijkl by

(2.7.2 ) pijkl =
θ((Ω I)(ηU − ηV + ηi − ηk),Ω)
θ((Ω I)(ηU − ηV + ηi − ηl),Ω)

θ((Ω I)(ηU − ηV + ηj − ηl),Ω)
θ((Ω I)(ηU − ηV + ηj − ηk),Ω)

.

It is not clear that this definition is independent of the choice of V though, so we
are forced to make some definite choice of V for each 4-tuple (i, j, k, l). From the
vanishing Vg,η we derive the Frobg,η which implies lemma 1.6.12 of section §1.6.
Given equation 2.7.2, lemma 1.6.12 is essentially (5) of theorem 2.1.1. The proof
of corollary 2.1.2 to theorem 2.1.1, especially equation 2.1.9, then shows that the
definition of the pijkl in 2.7.2 is independent of the choice of V . Once this is known
the crossratio symmetries of the pijkl follow directly from the definition 2.7.2. Thus
we recover the conclusions of theorem 2.1.1, corollary 2.1.2, and corollary 2.3.2
completely, except for the uniqueness of the pijkl. Theorem 2.2.1 was used only to
imply the nonvanishing in theorem 2.3.1 so we do not need to prove an analogue of
this if we assume the nonvanishing property. After the nonvanishing was proven in
theorem 2.3.1 neither the irreducibility of Ω nor the uniqueness of the p• was used
again.

3. Chapter Three
§3.1 Crossratio Symmetries.
In these last four sections we perform the invariant theory calculations that were
needed at various junctures in sections §2.1–§2.6. Despite their elementary nature
the ability to perform these calculations is a crucial ingredient in the proof of the
main theorem 2.6.1. It will be convenient to use the following notation: given a
field F with units F ∗ and a multiplicative subset S ⊆ F ∗, we write a ≡ b mod S
when there is an element s ∈ S such that a = bs. This relation is always transitive,
it is reflexive if 1 ∈ S and it is symmetric if S−1 = S.

3.1.1 Lemma. Let n ≥ 4 and let any cijkl ∈ F ∗ be given for distinct i, j, k, l ∈
{1, 2, . . . , n}. If the following two types of elements (1) and (2) are members of a
multiplicative set S ⊆ F ∗ then each cijkl is equal to a quotient of monomials in
{c1rst : r, s, t ∈ {2, 3, . . . , n}} times an element in S. This element in S depends
only upon i, j, k, l and the values of the elements in (1) and (2).

(1) cijkl(cjilk)−1, cijkl(cklij)−1, cijkl(clkji)−1

(2) cijklcijlm(cijkm)−1

Proof. By condition (2), cijklcijl1(cijk1)−1 ∈ S so cijkl ≡ cijk1

cijl1
mod S. By condition

(1) cijk1/cijl1 ≡ c1kji/c1lji mod S is a quotient of the stated type of monomials
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when i, j, k, l �= 1. When i = 1 there is nothing to be proven. When j, k or l = 1
we use condition (1) to respectively obtain:

ci1kl ≡ c1ilk mod S, cij1l ≡ c1lij mod S, cijk1 ≡ c1kji mod S.

Clearly the elements of S have been drawn only from (1) and (2). This completes
the proof of lemma 3.1.1.

3.1.2 Lemma. Let n ≥ 4 and let any cijkl ∈ F ∗ be given for distinct i, j, k, l ∈
{1, 2, . . . , n}. If the following four types of elements (1)–(4) are members of a
multiplicative set S ⊆ F ∗ then each cijkl is equal to a quotient of monomials in
{c1rs2 : r, s ∈ {3, . . . , n}} times an element in S. This element in S depends only
upon i, j, k, l and the values of the elements in (1)–(4).

(1) cijkl(cjilk)−1, cijkl(cklij)−1, cijkl(clkji)−1

(2) cijklcjikl

(3) cijklciljkciklj

(4) cijklcijlm(cijkm)−1

Proof. By condition (4), c1jklc1jl2(c1jk2)−1 ∈ S so c1jkl ≡ c1jk2/c1jl2 mod S is
a quotient of the required type when j, k, l �= 2. When l = 2 there is nothing
to be proven. When j = 2 we use condition (3), cijklciljkciklj ∈ S to obtain:
c12kl ≡ 1/(c1l2kc1kl2) mod S. By an application of conditions (1) and (2) we obtain
c12kl ≡ c1lk2/c1kl2 mod S as desired. When k = 2 we have c1j2l ≡ 1/c1jl2 mod S
by applications of (1) and (2) also as desired. Reference to lemma 3.1.1 concludes
the proof of lemma 3.1.2.

§3.2 Cycles on P1.
Proposition 3.2.1 in this section characterizes sets of complex numbers which are

the crossratios of n distinct points from P1.

3.2.1 Proposition. Let n ≥ 4 and let cijkl ∈ C∗ be given for all distinct i, j, k, l ∈
{1, . . . , n}. There exist n distinct ai ∈ P1 such that cijkl = 〈ai, aj , ak, al〉 if and
only if for all distinct i, j, k, l,m ∈ {1, . . . , n}, we have (1)–(5).

(1) cijkl = cjilk = cklij = clkji

(2) cijklcjikl = 1
(3) cijklciljkciklj = −1
(4) cijklcijlm = cijkm

(5) cijkl + cikjl = 1

3.2.2 Lemma. Let F be a field, and let n ≥ 4, and let any cijkl ∈ F ∗\{1} be given
for distinct i, j, k, l ∈ {1, . . . , n}, which satisfy the five equations in proposition 3.2.1.
Then each cijkl is equal to a quotient of monomials in {c21ij − 1 : i, j ∈ {3, . . . , n}}
times a sign depending only upon the i, j, k, l and not upon the values c•.

Proof of lemma. We can apply lemma 3.1.2 to the equations in proposition 3.2.1
with the multiplicative set S = {±1} being the same for any cijkl ∈ F ∗\{1}. We
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conclude from this that each cijkl is equal to a quotient of monomials in the c1rs2

up to sign. The proof will therefore be concluded if we show that:

(3.2.3 ) c1rs2 =
1

1− c21sr
.

From (3) we have c1rs2c12rsc1s2r = −1, or using (1) and (2), c1sr2 = −c1rs2c21sr.
This allows us to rewrite (5), c1rs2 + c1sr2 = 1, as c1rs2 − c1rs2c21sr = 1, which is
equivalent to 3.2.3.

3.2.4 Definition. For n ≥ 2, let Coinn ⊆
∏n
i=1 P

1 be defined as

Coinn = {(ai) ∈
n∏
i=1

P1 : ∃ i �= j : ai = aj}.

Consider the map φ from (
∏n
i=1 P

1) \Coinn to
∏N
i=1(P

1 \ {0, 1,∞}), where N =
n(n − 1)(n − 2)(n − 3), given by φ({ai}) = 〈ai, aj , ak, al〉 for distinct i, j, k, l ∈
(1, . . . , n). Since a crossratio of distinct points cannot be 0, 1, or ∞, we know that
φ really maps into

∏N
i=1(P

1 \ {0, 1,∞}).

3.2.5 Definition. For n ≥ 4, let Vn ⊆
∏N
i=1(P

1 \ {0, 1,∞}) be defined as

Vn = {cijkl ∈
N∏
i=1

(P1 \ {0, 1,∞}) : c•satisfy equations (1)–(5)

in proposition 3.2.1, and ∀i, j, k, l,m we have cijkl �= cijkm}.

3.2.6 Lemma. We have Imφ ⊆ Vn.

Proof. The reader may enjoy the verification that crossratios satisfy the equations
of proposition 3.2.1. We verify (2) to ensure that the notation has been understood.

((2)) cijklcjikl =
ai − ak
ai − al

aj − al
aj − ak

aj − ak
aj − al

ai − al
ai − ak

= 1

The image of φ satisfies cijkl �= 1, 0,∞, and condition (5), cijklcijlm = cijkm, so
that if cijkl = cijkm, then cijlm = 1 which is impossible. This verifies lemma 3.2.6.

3.2.7 Definition. For n ≥ 4, let π({cijkl}) = {c123r}nr=4 define a map π by

π :(
N∏
i=1

(P1 \ {0, 1,∞})) \ {c• : ∃m �= l : cijkl = cijkm}

→(
n−3∏
i=1

(P1 \ {0, 1,∞})) \ Coinn−3 .
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3.2.8 Definition. For n ≥ 4, let i({xr}nr=4) = (∞, 0, 1;xr) define a map i by

i : (
n−3∏
i=1

(P1 \ {0, 1,∞})) \ Coinn−3 → (
n∏
i=1

P1) \ Coinn .

Consider the following diagram which is well–defined by lemma 3.2.6.

(
∏n
i=1 P

1) \ Coinn
φ

−−−−→ (
∏N
i=1(P

1 \ {0, 1,∞})) \ {c• : ∃m �= l : cijkl = cijkm}

id

� �π
(
∏n
i=1 P

1) \ Coinn
i

←−−−− (
∏n−3
i=1 (P1 \ {0, 1,∞})) \ Coinn−3

3.2.9 Lemma. We have π ◦ φ ◦ i = id on (
∏n−3
i=1 (P1 \ {0, 1,∞})) \ Coinn−3 .

Proof. Take {xr}nr=4 ∈ (
∏n−3
i=1 (P1 \ {0, 1,∞})) \Coinn−3 so that the xr are distinct

and not equal to 0, 1 or ∞. By the definition of i we have i({xr}) = (∞, 0, 1;xr)
∈ (

∏n
i=1 P

1)\Coinn. If we define x1 =∞, x2 = 0 and x3 = 1, then by the definition
of φ we have

φ ◦ i({xr}) = φ(∞, 0, 1;xr) = 〈xi, xj , xk, xl〉.
Applying π to φ ◦ i({xr}) we obtain

π ◦ φ ◦ i({xr}) = π(〈xi, xj , xk, xl〉) = {〈x1, x2, x3, xr〉} = {〈∞, 0, 1, xr〉} = {xr}. �

3.2.10 Lemma. The map π is injective on Vn.

Proof. Let π({cijkl}) = {c123r}nr=4 where the cijkl ∈ Vn, and so satisfy the five
equations of proposition 3.2.1 as well as being not equal to 0, 1 or ∞. For i, j ∈
(4, . . . , n) we have equation (5), c21ijc21j3 = c21i3 so that the c21ij = c123i/c123j are
completely determined by the image of π. If i = 3 we have c213j = c12j3 = 1/c123j

by items (1) and (2). If j = 3 we have c21i3 = c123i by item (1). By lemma 3.2.2,
each cijkl is a quotient of monomials in the c21ij −1 times a sign depending only on
i, j, k, l, so that the cijkl are completely determined by the c21ij and hence by the
image of π. �

3.2.11 Lemma. The map φ is onto Vn.

Proof. By lemma 3.2.9 we have π ◦ φ ◦ i = id on (
∏n−3
i=1 (P1 \ {0, 1,∞})) \Coinn−3.

Since by lemmas 3.2.6 and 3.2.10, Imφ ⊆ Vn and π is injective on Vn, we have
φ ◦ i ◦ π = id on Vn; therefore φ is onto Vn. �

Proof of proposition 3.2.1. We have already mentioned in lemma 3.2.6 that cross-
ratios satisfy the equations of proposition 3.2.1. On the other hand, given any
cijkl ∈ C∗ satisfying these equations we cannot have cijkl = 1 because this would
imply cikjl = 0 via equation (4), cijkl + cikjl = 1. Furthermore we cannot have
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cijkl = cijkm for l �= m, else cijlm = 1 via equation (5), cijklcijlm = cijkm. Hence
{cijkl} ∈ Vn, and the assertion of proposition 3.2.1 is then that φ is onto Vn, which
is lemma 3.2.11. �

§3.3 Invariant calculations.
Consider the field E = Q(γ•) generated by the N = n(n − 1)(n − 2)(n − 3)

algebraically independent variables γijkl for distinct i, j, k, l ∈ {1, 2, . . . , n}. Define
automorphisms Pab of Q(γ•) as follows.

3.3.1 Definition. For distinct a, b ∈ {1, . . . , n}, let Pab ∈ Aut(Q(γ•)) be the
automorphism given by:

Pabγ
ijkl =


+γijkl, if {a, b} �⊆ {i, j, k, l}
+γijkl, if {a, b} = {i, j} or {k, l}
−γijkl, if {a, b} = {i, k}, {i, l}, {j, k} or {j, l}.

3.3.2 Definition. Let P ⊆ Aut(Q(γ•)) be the group generated by the Pab for
distinct pairs a, b ∈ {1, . . . , n}, n ≥ 4.

P is an abelian group because ±1 are fixed by each Pab. Since each Pab has order
two we see that the abelian P is a subgroup of (Z/2Z)M , where M =

(
n
2

)
.

3.3.3 Proposition. The fixed subfield of Q(γ•) corresponding to the group P ⊆
Aut(Q(γ•)) is generated over Q by the following elements (1)–(5).

(1) (γijkl)2

(2) γijkl(γjilk)−1, γijkl(γklij)−1, γijkl(γlkji)−1

(3) γijklγjikl

(4) γikjlγlijk(γijkl)−1

(5) γijklγijlm(γijkm)−1

One can certainly check that the elements of Q(γ•) listed in (1) through (5)
are left invariant by each Pab and hence by the group P. We leave this to the
reader. We check the item (4), γikjlγlijk(γijkl)−1, to ensure that the notation has
been understood. Only if {a, b} ⊆ {i, j, k, l} will any of these γ• alter. Pik negates
the second and third factors. Pij negates the first and second factors. Pil negates
the first and third factors. The rest are symmetrical. On the other hand we will
now show in a series of lemmas that the elements listed in proposition 3.3.3 in fact
generate the fixed field of the group P. Denote by K the subfield of E = Q(γ•)
generated over Q by the elements listed in propositon 3.3.3. Item (2) tells us that

γijkl ∈ K(γjilk), γijkl ∈ K(γklij), and γijkl ∈ K(γlkji),

so that we may apply the fourgroup to the indices of γijkl when generating a field
over K. Similarly item (3) says that we may apply the permutation (12) via γijkl ∈
K(γjikl). In other words, if γabcd ∈ K then all the other γ• obtained by fourgroup
or (12) permutations of abcd are also in K. These two facts streamline the proof of
proposition 3.3.3 and we will use them without further comment.
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3.3.4 Lemma. We have Q(γ•) = K(γ1ij2 : i, j ∈ {3, 4 . . . , n}).
Proof. This follows from lemma 3.1.2 with K∗ as the multiplicative subset. Actually
(4) of proposition 3.3.3 is not identical to item (3) of lemma 3.1.2, but rather
equivalent using items (2) and (3) of proposition 3.3.3 and more convenient for us
here.

3.3.5 Lemma. For all L : 3 ≤ L ≤ n, the fixed field of {Pab : a, b ∈ (L, . . . , n)} is
K(γ1ij2, γ21kl : {i, j} �⊆ {L, . . . , n}, {k, l} ⊆ {L, . . . , n}). In particular for L = 3,

Fix{Pab : a, b ∈ (3, . . . , n)} = K(γ21kl : {k, l} ⊆ {3 . . . , n}).

Proof. We will prove this by downward induction on L noting that the conclusion
of lemma 3.3.4 is the case L = n. We assume the truth of lemma 3.3.5 for some
L + 1 such that 4 ≤ L + 1 ≤ n, and demonstrate it for L. We have easily:

{Pab : a, b ∈ (L, . . . , n)} = {Pab : a, b ∈ (L+1, . . . , n)}∪{PLm : m ∈ (L+1, . . . , n)}.

To obtain the fixed field of {Pab : a, b ∈ (L, . . . , n)} we consider the action of
each PLm on the fixed field of {Pab : a, b ∈ (L + 1, . . . , n)}, which by the induc-
tion hypothesis is K(γ1ij2, γ21kl : {i, j} �⊆ {L + 1 . . . , n}, {k, l} ⊆ {L + 1 . . . , n}).
Among the generators of this field the automorphism PLm alters the sign of only
γ1Lm2 and γ1mL2. The elements invariant under PLm will hence be generated by
the remaining unaltered generators and by products with an even number of fac-
tors of γ1Lm2 and γ1mL2. This is the elementary fact which we use repeatedly in
this proof. All combinations of γ1Lm2 and γ1mL2 which occur in a PLm-invariant
expression are then combinations of (γ1Lm2)2, γ1Lm2γ1mL2 and (γ1mL2)2. K al-
ready contains these squares and by item (4), γ1Lm2γ21mL(γ1mL2)−1 ∈ K so that
we have γ1Lm2γ1mL2 ∈ K(γ21mL). The exponents of ±1 on the γ• are only to
produce convenient indices and are really irrelevant since the squares of the γ• are
in K∗. Using this result for each m ∈ {L + 1, . . . , n} we see that the fixed field of
{Pab : a, b ∈ (L + 1, . . . , n)} ∪ {PLm : m ∈ (L + 1, . . . , n)} is generated by

K(γ1ij2, γ21kl : {i, j} �⊆ {L, . . . , n}, {k, l} ⊆ {L + 1, . . . , n})
∪K(γ21mL : m ∈ {L + 1, . . . , n}).

Written more succinctly this is the first assertion of lemma 3.3.5 for L. This con-
cludes the proof by induction of the first assertion of lemma 3.3.5 and the second
assertion is simply the case L = 3.

3.3.6 Lemma. For all M : 2 ≤ M < n, the fixed field of {Pab : a, b ∈ (3, . . . , n),
or a, b ∈ (2, . . . ,M)} is K(γ21kl : k < l, {k, l} ⊆ {M + 1 . . . , n}).
Proof. Lemma 3.3.6 will be proven by forward induction on M . The case M = 2 is
the final assertion of lemma 3.3.5 except for the proviso that k < l which is permissi-
ble since γ21kl ∈ K(γ21lk). We assume lemma 3.3.6 for M−1 such that 1 ≤M−1 <
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n, and demonstrate lemma 3.3.6 for M . The set {Pab : a, b ∈ (3, . . . , n), or a, b ∈
(2, . . . ,M)} is equal to {Pab : a, b ∈ (3, . . . , n), or a, b ∈ (2, . . . ,M − 1)} ∪ {P2M}.

Consider the action of P2M on the fixed field of {Pab : a, b ∈ (3, . . . , n), or
a, b ∈ (2, . . . ,M − 1)} which is by induction hypothesis equal to K(γ21kl : k <
l, {k, l} ⊆ {M . . . , n}). The only generators of this fixed field altered by P2M are
γ21Ml for l ∈ {M + 1, . . . , n}. Since P2M alters the sign of each of these generators
they occur in the P2M -invariant expressions in products of two as γ21Mlγ21Mk for
l, k ∈ {M + 1, . . . , n}. Some of these products are squares and are thus already in
K. For k �= l we use item (5), γ21klγ21lM (γ21kM )−1 ∈ K so that γ21Mlγ21Mk ∈
K(γ21kl). This shows that the fixed field of {Pab : a, b ∈ (3, . . . , n), or a, b ∈
(2, . . . ,M − 1)} ∪ {P2M} is generated by K(γ21kl : k < l, {k, l} ⊆ {M + 1 . . . , n})
∪ K(γ21kl : {k, l} ⊆ {M + 1 . . . , n}). This is equivalent to the assertion of lemma
3.3.6 for M and that completes the induction proof of lemma 3.3.6.

Proof of proposition 3.3.3. The hard direction of proposition 3.3.3 follows from
lemma 3.3.6. When M = n − 1 in lemma 3.3.6 we see that K = K(γ21kl : k <
l, {k, l} ⊆ {n}) is the fixed field of {Pab : a, b ∈ (3, . . . , n), or a, b ∈ (2, . . . , n− 1)}.
Since K ⊆ Fix(P), this shows that K is the fixed field of P and completes the
proof of proposition 3.3.3. This also incidentally shows that the above type of Pab
generate P. �

3.3.7 Proposition (Specialization of proposition 3.3.3). For n ≥ 4, let aijkl,
bijkl ∈ C∗ be given for all distinct i, j, k, l ∈ {1, . . . , n}. There exists an S ∈ P such
that Sγijkl|γijkl .=aijkl = bijkl if and only if the respective substitutions of the aijkl,

bijkl into the γijkl of the invariant generators of proposition 3.3.3 are equal.

Proof. If such an S exists and f(γ•) is any invariant of P then f(Sγ•) = f(γ•), and
we immediately have our result:

f(b•) = f(Sγ•)|γ• .=a• = f(γ•)|γ• .=a• = f(a•).

To pursue the other direction of the equivalence let H be the abelian group of
automorphisms of Q(γ•) given by arbitrarily sending any subset of the M = n(n−
1)(n− 2)(n− 3) generators γijkl to their negatives. Clearly we have H ∼= (Z/2Z)M .
We recall the elementary fact that the fixed field of H is Q((γ•)2) = Q((γ•)2 :
i, j, k, l ∈ {1, . . . , n}). To see this note that H ⊆ Aut(Q(γ•)) is a group of order 2M

and so by [1, 42], [Q(γ•) : Fix(H)] = 2M . By inspection we see that Q((γ•)2) ⊆
Fix(H), and if we can show [Q(γ•) : Q((γ•)2)] ≤ 2M we will have Q((γ•)2) =
Fix(H) as desired. We obtain Q(γ•) from Q((γ•)2) by adjoining any solutions
of the M quadratic equations over Q((γ•)2), x2 − (γijkl)2 = 0; this shows that
Q(γ•) is splitting over Q((γ•)2) and that [Q(γ•) : Q((γ•)2)] ≤ 2M . Hence we have
Q((γ•)2) = Fix(H) as promised, and H is the galois group of the normal extension
Q(γ•)/Q((γ•)2).

Suppose we are given aijkl, bijkl ∈ C∗ whose substitutions into the generators of
proposition 3.3.3 are equal. By item (1) in proposition 3.3.3, (aijkl)2 = (bijkl)2, and
since the aijkl, bijkl are nonzero we may uniquely define eijkl = ±1 via eijkla

ijkl =
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bijkl. This collection of signs, e•, allows us to define a σ ∈ H by σ(γijkl) = eijklγ
ijkl.

P is a subgroup of H and the assertion of this direction of proposition 3.3.7 is that
σ ∈ P. By the fundamental galois correspondence [1, 46] it suffices to show that
σ fixes the invariant field of P. The invariant field of P has, by proposition 3.3.3,
generators over Q as listed in items (1)–(5) of proposition 3.3.3, so it suffices to
show σ fixes these generators. This is obvious. For example consider the generator
of item (3), γijklγjikl; the hypothesis on aijkl and bijkl is that aijklajikl = bijklbjikl,
or that eijklejikl = 1. What this means for σ is that

eijklγ
ijklejiklγ

jikl = γijklγjikl, or that σ(γijklγjikl) = γijklγjikl,

so that σ fixes the generator in item (3). The other generators are similar. �

§3.4 Crossratio symmetries and skew factorizations.

3.4.1 Proposition. Let (G, c) be an abelian group with a distinguished element,
c, of order two. Let n ≥ 4 be an integer. For distinct i, j, k, l ∈ {1, 2, . . . , n} let
pijkl ∈ G. Then we have:

∀ distinct i, j ∈ {1, . . . , n}, ∃ qij ∈ G : qij = cqji, and
qik

qil
qjl

qjk
= pijkl,

if and only if

(1) pijkl = pjilk = pklij = plkji

(2) pijklpjikl = 1
(3) pijklpiljkpiklj = c
(4) pijklpijlm = pijkm.

Proof. It may amuse the reader to verify that the existence of such qij does imply
the familiar crossratio symmetries (1)–(4) among the pijkl. We verify item (3) to
ensure that the notation has been understood.

pijklpiljkpiklj =
qik

qil
qjl

qjk
qij

qik
qlk

qlj
qil

qij
qkj

qkl
=

qik

qik
qjl

qlj
qij

qij
qlk

qkl
qil

qil
qkj

qjk
= 1·c·1·c·1·c = c3 = c

This completes the proof of the “only if” implication and we will use it in proving
the converse: that such qij can be constructed from the pijkl. Suppose p• ∈ G are
given which satisfy the crossratio symmetries (1)–(4) . Pick any n elements αi ∈ G.
We first define all and only those qij with 1 or 2 as an index, and then those with
i, j ≥ 3. For these p• ∈ G and α1, . . . , αn ∈ G define:

q23 = α1, q32 = cα1, q1i = αi, qi1 = cαi, for i ≥ 2

q2i = αiα1(α3)−1p123i, qi2 = cαiα1(α3)−1p123i, for i ≥ 4

qij = q1jqi2(q12p1ij2)−1, for i, j ≥ 3.
(3.4.2 )
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We first show our result for indices of the type (123i) and (12i3),

(3.4.3 ) for i ≥ 4 we have p123i =
q13

q1i

q2i

q23
, p12i3 =

q1i

q13

q23

q2i
.

We have q13

q1i
q2i

q23 = α3
αi

αiα1(α3)
−1p123i

α1
= p123i by definition of the q•. Since p12i3 =

(p123i)−1 by (1) and (2) the second equation in 3.4.3 follows from the first. We now
show our result for indices of the type (12ij),

(3.4.4 ) for i, j ≥ 3 we have p12ij =
q1i

q1j

q2j

q2i
.

For i or j = 3 this is 3.4.3. For i, j ≥ 4, definition 3.4.2 gives us the following:

q1i

q1j

q2j

q2i
=

αi
αj

αjα1(α3)−1p123j

αiα1(α3)−1p123i
=

p123j

p123i
= p12i3p123j = p12ij .

The third equality above follows from (1) and (2); the fourth equality follows from
(4). Proceeding to indices of the type (1ij2) we see that our result in this case,

(3.4.5 ) p1ij2 =
q1j

q12

qi2

qij
, ∀i, j ≥ 3 ,

is immediate from the definition of qij . What is not immediate from this definition,
however, is that the q• are skew: qij = cqji, for all i, j. This skewness is clear from
the definition 3.4.2 unless i, j ≥ 3 where it amounts to the following calculation.

qij

qji
=

q1jqi2(q12p1ij2)−1

q1iqj2(q12p1ji2)−1
=

q1j

q1i

q2i

q2j

p1ji2

p1ij2
= p12jip1ji2p1i2j = c

The third equality above uses 3.4.4 and (1) and (2); the fourth equality is (3). We
will now show that for all indices (ijkl) we have our result.

(3.4.6 ) For all i, j, k, l we have pijkl =
qik

qil
qjl

qjk
.

Define P ijkl = qik

qil
qjl

qjk
, and note that P • satisfies the crossratio symmetries by the

“only if” part of proposition 3.4.1. Both p• and P • satisfy the crossratio symmetries
(1)–(4) and so, by lemma 3.1.2 of §3.1 with multiplicative set S = {1, c}, the pijkl

and P ijkl are the same power of c times the same quotients of products of the p1ij2

and P 1ij2 respectively. However by 3.4.5, p1ij2 = P 1ij2 and so pijkl = P ijkl. Since
the q• are skew, 3.4.6 proves the “if” part of proposition 3.4.1. �

Consider again an abelian group, G, with c ∈ G an element of order two. Assume
that for all distinct i, j ∈ {1, . . . , N} we are given q(i, j) ∈ G which are skew in
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the sense that q(j, i) = c q(i, j). We need some combinatorial consequences of this
situation. First define

(3.4.7 ) p(i, j, k, l) =
q(i, k)
q(i, l)

q(j, l)
q(j, k)

and note that p satisfies the crossratio symmetries (1)–(4) of the previous proposi-
tion 3.4.1. Furthermore define

(3.4.8 ) P (K;L; k, l) =
n∏
s=1

p(ks, ls, k, l)

for n-tuples K = (k1, . . . , kn), L = (l1, . . . , ln), where for each s, the ks, ls, k, l are
distinct. With the obvious difference in notation this P satisfies only the symmetries
(2) and (4) completely; P satisfies the first equality in (1), and we could insist that
P satisfy the second two equalities in (1) by the fiat of extending the definition. P
does not satisfy the symmetry (3). P is actually a function of unordered n-tuples
as may be seen by expressing it in terms of q,

P (K;L, k, l) = (
∏
i∈K

q(i, k)
q(i, l)

)(
∏
j∈L

q(j, l)
q(j, k)

).

We will be using some alternating functions, C(K;L), which are functions of ori-
ented n-tuples in the sense that an odd permutation of K or of L multiplies C(K;L)
by c. Therefore we introduce some (ad hoc) ordering conventions for the dele-
tion, addition, and replacement of members of n-tuples. L \ li = (l1, . . . , l̂i, . . . , ln)
means the (n − 1)-tuple obtained by deleting li from its coordinate and simi-
larly for L \ (li, lj); these deletions are well–defined because the li, lj are always
distinct. For the m-tuple B = (b1, . . . , bm) we let B

e←↩x denote the (m + 1)-
tuple (b1, . . . , be−1, x, be, . . . , bm) which is the insertion of x in the eth coordinate.
(L+x) \ (li, lj) will denote the deletion of lj followed by the replacement of li by x.

3.4.9 Lemma. Let G be an abelian group and c ∈ G an element of order two.
For all distinct i, j ∈ {1, . . . , N}, let q(i, j) ∈ G be given such that q(j, i) = cq(i, j).
For all n-tuples K = (k1, . . . , kn), L = (l1, . . . , ln), where ki, lj ∈ {1, . . . , N} are
distinct, let C(K;L) ∈ G be given. Let M ≤ 1

2N be an integer. Then (1) holds if
and only if (2) holds, and either implies (3).

(1) For all n such that 1 ≤ n ≤M,

C(K;L) =

∏
1≤s<t≤n q(ks, kt)q(lt, ls)∏

1≤s,t≤n q(ks, lt)
.

(2) C((k1); (l1)) = 1
q(k1,l1)

, and for all n such that 2 ≤ n ≤M ,

C(K;L)P (L \ lt;K \ ks; ks, lt) = cs+tC(K \ ks;L \ lt)q(ks, lt)−1.

(3) For all n such that 2 ≤ n ≤M + 1 ,

C(K\ks; (L+ks)\(lu, lt))q(lu, lt)−1 = P (L\lu;K\ks; ks, lu)C(K\ks;L\lt)q(ks, lt)−1
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Proof. We begin by demonstrating that (1) for (n− 1)-tuples and n-tuples implies
(2) for n-tuples. When n = 1 in (1), we interpret the empty products as 1 and
obtain C((k1); (l1)) = 1·1

q(k1,l1)
as needed. For 1 < n we calculate the factors in

C(K;L) which are absent from C(K \ ka;L \ lb). We have

C(K;L)
C(K \ ka;L \ lb)

=

∏
1≤s<t≤n q(ks, kt)

∏
1≤s<t≤n q(lt, ls)∏

1≤s,t≤n q(ks, lt)

∏
1≤s,t≤n
s �=a,t�=b

q(ks, lt)∏
1≤s<t≤n
s,t�=a

q(ks, kt)
∏

1≤s<t≤n
s,t�=b

q(lt, ls)

=
∏n
t=a+1 q(ka, kt)

∏a−1
s=1 q(ks, ka)

∏b−1
s=1 q(lb, ls)

∏n
t=b+1 q(lt, lb)

q(ka, lb)−1
∏n
t=1 q(ka, lt)

∏n
s=1 q(ks, lb)

=
cn−a

∏
s �=a q(ks, ka) · cb−1

∏
t�=b q(lt, lb)

q(ka, lb)
∏
s �=a q(ks, lb) · cn−1

∏
t�=b q(lt, ka)

=cn−a+b−1−n+1P (K \ ka;L \ lb; ka, lb)
1

q(ka, lb)
.

We note that P (K \ ka;L \ lb; ka, lb)−1 = P (L \ lb;K \ ka; ka, lb) and obtain (2):

ca+bC(K \ ka;L \ lb)q(ka, lb)−1 = C(K;L)p(L \ lb;K \ ka; ka, lb).

Conversely this calculation shows that if C(K \ka;L\ lb) is given by (1) for (n−1)-
tuples, and if

P (K \ ka;L \ lb; ka, lb) =

∏
s �=a q(ks, ka)

∏
t�=b q(lt, lb)∏

s �=a q(ks, lb)
∏
t�=b q(lt, ka)

then C(K;L) is given by (1) for n-tuples. Thus (2) inductively defines (1) as long
as we provide the case n = 1 which we have done. This shows that (1) is equivalent
to (2).

Item (3) is stated in the form in which it is used in §2.2; however, to derive (3)
it is helpful to make the following change of notation:

A = (a1, . . . , an−1) = K\ks, B = (b1, . . . , bn−2) = L\(lu, lt), x = ks, y = lu, z = lt.

Let e be the index at which lu would have to be inserted into L \ (lu, lt) to regain
L\ lt, so that L\ lt = B

e←↩y, (L+ks)\ (lu, lt) = B
e←↩x, and B

e←↩z is some reordering
of L \ lu. Then (3) may be rewritten as:

(3.4.10 ) C(A;B
e←↩x)q(y, z)−1 = P (B

e←↩z;A;x, y)C(A;B
e←↩y)q(x, z)−1.

The fact that B
e←↩z is a reordering of L \ lu can be ignored because B

e←↩z occurs in
P which is a function of unordered n-tuples. To verify equation 3.4.10 we compute
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C(A;B
e←↩x)/C(A;B

e←↩y). This quotient is actually independent of the index e
because the function C is alternating; hence we may permute x and y to the first
coordinate and compute with e = 1. We have

C(A;B
1←↩x)

C(A;B
1←↩y)

=

∏
i<j

q(ai, aj)
∏n−2
i=1 q(x, bi)

∏
i<j

q(bi, bj)∏n−1
i=1 q(ai, x)

∏
i,j

q(ai, bj)

∏n−1
i=1 q(ai, y)

∏
i,j

q(ai, bj)∏
i<j

q(ai, aj)
∏n−2
i=1 q(y, bi)

∏
i<j

q(bi, bj)

=
n−2∏
i=1

q(x, bi)
q(y, bi)

n−1∏
i=1

q(ai, y)
q(ai, x)

= (
n−2∏
i=1

q(bi, x)
q(bi, y)

) · q(z, x)
q(z, y)

(
n−1∏
i=1

q(ai, y)
q(ai, x)

) · q(y, z)
q(x, z)

=P (B
1←↩z;A;x, y)

q(y, z)
q(x, z)

.

This gives 3.4.10 and completes the proof of lemma 3.4.9. �
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