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Abstract. Every Siegel modular form has a Fourier-Jacobi expansion. This paper provides

various sets of Fourier coefficients whose vanishing implies that the associated cusp form is

identically zero. We call such sets estimates because in the Fourier series case, an upper

bound for the dimension of the vector space of cusp forms is provided by the cardinality of

the set. Our general estimates have, among others, those estimates of Siegel and Eichler as

corollaries. In particular, one new corollary of our general estimates appears to be superior for

computational purposes to all other known estimates. To illustrate the use of this corollary,

we prove the known result that the theta series of the lattices D+
16 and E8 ⊕E8 are the same

in degree n = 3 by computing just one Fourier coefficient.

§1. Introduction and Notation.

Siegel modular forms are holomorphic functions on the Siegel upper half space Hn

automorphic with respect to the action of the Siegel modular group Γn = Spn(Z) acting
on Hn. We let Mk

n denote the vector space of Siegel modular forms of weight k and let
Sk
n denote the cusp forms of weight k, the kernel of Siegel’s C-linear Φn map, Φn : Mk

n →
Mk

n−1. These notations are standard; for example see [9, pp. 43,47,54,56]. The vector
spaces Mk

n and Sk
n are finite dimensional, and an outstanding problem on this topic is to

understand the structure of the graded rings Mn =
⊕

kM
k
n and Sn =

⊕
k S

k
n by giving

their generating functions. This problem is answered only for n ≤ 3, and reliance has been
placed instead on methods which provide upper bounds on dimSk

n and allow computation
in individual cases. An important result is that every Siegel modular form has a Fourier
series, or more generally a Fourier–Jacobi series, and that if “enough” of the Fourier or
Fourier–Jacobi coefficients are zero then the modular form is zero itself. In this paper we
discuss how many Fourier–Jacobi coefficients are “enough,” and provide new methods for
bounding dimSk

n from above.
In the remainder of this section, we will give an overview of the entire paper, and we

also give the definition and notation of various standard objects. In section §2, we prove
a general estimate theorem (Theorem 2.4), from which we recover estimates of Siegel and
Eichler. In section §3, we prove our main theorem (Theorem 3.4), which is a generalization
of the theorem in the previous section; we then obtain as a corollary a new practical
estimate theorem. In section §4, we apply this new estimate theorem to show that the
theta series for the lattices E8 ⊕ E8 and D+

16 are the same in degree n = 3 by computing
just one Fourier coefficient.
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Theorems of the type we will discuss include two due to Siegel and Eichler. In order
to present Siegel’s Theorem, recall the following notation. Let Fn be Siegel’s fundamental
domain [9, p. 29] for the action of Γn on Hn. Let κn = supΩ∈Fn

tr(Y −1), where we always
write Ω = X+iY for Ω ∈ Fn throughout this paper. Every f ∈ Sk

n has a Fourier expansion
of the form f(Ω) =

∑
s>0 ase

2πitr(sΩ) where s runs over all symmetric, positive definite,
n× n matrices that are integer valued on Zn; we denote this set by Xn.

Theorem (Siegel). Let f ∈ Sk
n have Fourier expansion f(Ω) =

∑
s>0 ase

2πitr(sΩ). The
following two conditions are equivalent.

(1) f = 0.
(2) For all s ∈ Xn such that tr(s) ≤ κn

k
4π , we have as = 0.

Actually, the above result holds for all f ∈ Mk
n ; the theorem for Mk

n follows easily from
the theorem for Sk

n. To compute an upper bound for dimSk
n or to show that a particular

cusp form is zero using Siegel’s Theorem, one lists the classes [s] such that a representative
s ∈ Xn exists satisfying tr(s) ≤ κn

k
4π . The number of such classes [s] is then an upper

bound for dimSk
n and is the number of Fourier coefficients as of f that must be computed.

The class of s is the set [s] = { tvsv ∈ Xn : v ∈ GLn(Z)}. It suffices to count classes because
the Fourier coefficients as satisfy a tvsv = det(v)kas [9, p.45]; so the vanishing of as is a
class function on Xn. Notice that the fact that the trace, tr : Xn → R+, is not a class
function can be a nuisance. To discuss Eichler’s Theorem we need to introduce Hermite’s
constant µn. Let Pn(D) be the cone of positive definite, symmetric matrices with entries
from D, a subring of R. For A ∈ Pn(R) let m(A) = minc∈Zn\{0}

tcAc [9, p.14]. There is a
minimal number µn ∈ R+, called Hermite’s constant, such that for all A ∈ Pn(R) we have
m(A) ≤ µn det(A)1/n. For 1 ≤ n ≤ 8 the value of µn is known [11, p.28], as exhibited in
the following table.

n 1 2 3 4 5 6 7 8

(µn)n 1 4
3 2 4 8 64

3 64 256

For all n we have Minkowski’s bound, µn ≤ 4
(Vn)2/n

, where Vn = πn/2

(n/2)! is the volume
of a sphere of radius one in Rn. See Definition 2.1 for the definition of the Fourier–Jacobi
expansion. Eichler’s Theorem can also be used to provide upper bounds for dimMk

n but
it is particularly suited to show Sk

n = 0 for small k, namely whenever 2√
3
µ2
n

k
4π < 1.

Theorem (Eichler). [3, p. 286] Let f ∈ Sk
n have the type (n−1, 1) Fourier-Jacobi expan-

sion f(Ω) =
∑∞

s=1 as(π1(Ω), π12(Ω))e2πis π2(Ω). The following conditions are equivalent.
(1) f = 0.
(2) For all s ∈ Z+ : s ≤ 2√

3
µ2
n

k
4π , we have as = 0.

Our Theorem 2.4 has both Siegel’s and Eichler’s Theorems as corollaries, as well as the
more general estimates 2.6 and 2.8. The proof of Theorem 2.4 can be thought of as an
interpolation between the proof of Siegel’s Theroem in [6, p.206] and Eichler’s Theorem in
[3, p.286]. The approach is also similar to calculations in Freitag [5, pp.48-51]. We leave in
“free parameters” that may be chosen according to the application in mind. These “free
parameters” take the form of certain maps

C : Fn → Psemi(Q) \ {0} and U : Fn → GLn(Z),
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for which we define a transform T (see Definition 2.3) such that T [C,U ] : Psemi
n2

→ R≥0 .
Our unification of Siegel’s and Eichler’s results then has the following form.

Theorem (2.4). Let f ∈ Sk
n have a type (n1, n2) Fourier-Jacobi expansion

f(Ω) =
∑
s>0

as(π1(Ω), π12(Ω))e2πitr[s π2(Ω)].

Let
C : Fn → Psemi(Q) \ {0} and U : Fn → GLn(Z),

be any two maps such that π1( tUCU) = 0 and π12( tUCU) = 0. The following two condi-
tions are equivalent.

(1) f = 0.
(2) For all s ∈ Xn2 such that T [C,U ](s) ≤ k

4π , we have we have as = 0.

The C and the U functions can be selected with some freedom and each choice gives an
estimate of the type we have discussed. The choice C(Ω) = In, U(Ω) = In gives Siegel’s
Theorem. The choice C(Ω) = c tc for some c ∈ Zn \ {0} such that m(Y −1) = tcY −1c
and U(Ω) such that tU(Ω)c is of the form (0, . . . , 0, ∗) ∈ Zn \ {0} will give Eichler’s
Theorem. Other choices of C and U give the more general results 2.6, and 2.8. We do
not examine many choices of C : Fn → Psemi(Q), however, because Theorem 2.4 itself
has a generalization which allows maps C : Fn → Psemi(R) into real semidefinite matrices
instead of rational semidefinite matrices.

The main result of the paper is Theorem 3.4 which gives estimates for fairly general
choices of C : Fn → Psemi(R). The main condition on C in Theorem 3.4 is that the T -
transform T [C] : Xn2 → R≥0 has finite spheres. This means that for any B ∈ R+ there are
only a finite number of classes [s] with T [C](s) < B, see Definition 3.1. Theorem 3.4 gives
greater flexibility in choosing a map C suited to an intended application, and represents
an essential improvement upon Theorem 2.4.

We have a favorite choice of C in Theorem 3.4 , namely C(Ω) = Y , which seems to give
improved numerical upper bounds for dimSk

n. The details of this choice are spelled out in
Corollary 3.8.

Corollary (3.8). Let f ∈ Sk
n have a Fourier expansion f(Ω) =

∑
s>0 ase

2πitr(sΩ). The
following two conditions are equivalent.

(1) f = 0.
(2) For all s ∈ Xn such that infv∈GLn(Z) infΩ∈Fn tr( tvsvY ) ≤ n k

4π , we have as = 0.

The superiority of this estimate to known estimates is discussed at the end of section
§3. Briefly, we can compare estimates by using the class function det and converting the
estimates to the form det(s)1/n ≤ (const)k. From a computational point of view, the
size of the constant coefficient of k is the entire issue. In this form of Siegel’s Theorem
the constant that appears is 2√

3
cn

1
4π where cn is Minkowski’s constant [6, p.193]; whereas

for Corollary 3.8 the constant that appears is 2√
3
µn

1
4π where µn is Hermite’s constant.

Minkowski’s constant is bigger than Hermite’s constant and this makes a difference as k
increases.



4 CRIS POOR, DAVID S. YUEN

As an application of Corollary 3.8 we revisit a problem of Witt. For any Type II [2,
p.48] lattice Λ ⊆ RN we can associate a modular form ϑΛ ∈ M

N/2
n for each n ≥ 1 called

the theta series of Λ [9, p.48]. We can define ϑΛ for Ω ∈ Hn by

ϑΛ(Ω) =
∑

1,...,g∈Λ

exp
(
iπ

∑g

j,k=1
Ωjk( t�j �k)

)
.

The theta series ϑΛ is an isometry invariant of the lattice Λ and in R16 there are only two
isometry classes of Type II lattices, given by E8 ⊕ E8 and D+

16 [2, pp.119, 120].

Theorem (Witt, Kneser, Igusa). Let n ∈ Z+; we have

ϑE8⊕E8 = ϑD+
16

on Hn ⇐⇒ 1 ≤ n ≤ 3.

In [12], Witt proved the above case n = 2 by computing a few Fourier coefficients but
was unable to decide the case n = 3 due to the “ungeheueren Rechnung.” As an application
of Corollary 3.10, we give a straightforward proof of the difficult implication (⇐) of the

above Theorem by computing just one Fourier coefficient, as for s =
[

1
1/2
1/2

1/2
1
0

1/2
0
1

]
. We

hope that others will use the new estimations in Theorem 2.4, Theorem 3.4, and Corollary
3.8 as a computational aid.

§2. Estimate Theorems.

Definition 2.1. For n1, n2 such that n1 + n2 = n and n2 > 0, and for any symmetric
n× n matrix A ∈ M sym

n×n, let π1, π2 and π12 be projection maps that decompose A into
block form:

A =
[
π1(A) π12(A)
tπ12(A) π2(A)

]
where π1(A) ∈ M sym

n1×n1
, π2(A) ∈ M sym

n2×n2
and π12(A) ∈ Mn1×n2 .

The Fourier-Jacobi expansion of type (n1, n2) is the Fourier expansion of f ∈ Mk
n as a

function of π2(Ω),
f(Ω) =

∑
s≥0

as(π1(Ω), π12(Ω))e2πitr[s π2(Ω)],

where the sum is over integral valued semidefinite s ∈ Xn2 , and where the coefficients

as(π1(Ω), π12(Ω)) =
∑
s1,s2:

s′=
[
s1
ts2

s2
s

]
≥0

as′e
2πitr[s1π1(Ω)+2s2π12(Ω)]

are Jacobi forms, and where the as′ are the Fourier coefficients of f .

The following theorem of Siegel is the basis for many estimates of Sk
n. Also, remember

that we always write Ω = X + iY ; that is, Y always refers to the imaginary part of Ω.

Theorem 2.2. Let f ∈ Sk
n. Then φ(Ω) = |det(Y )

k
2 f(Ω)| attains its maximum at some

point Ω0 ∈ Fn.

Proof. See [6, p.205].

We now define the T -transform, which occurs naturally in the proof of Theorem 2.4.
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Definition 2.3. For any two maps

C : Fn → Psemi
n (R) \ {0} and U : Fn → GLn(Z),

and n2 ≤ n, we define their transform T [C,U ] : Psemi
n2

(R) → R≥0 by

T [C,U ](s) = inf
Ω∈Fn

tr[s π2( tU(Ω)C(Ω)U(Ω))]
tr[Y −1C(Ω)]

,

and we define T̂ [C,U ] : Psemi
n2

(R) → R≥0 by

T̂ [C,U ](s) = inf
v∈GLn(Z)

T [C,U ]( tvsv).

In the simple case where U = I we write T [C] = T [C, I] and T̂ [C] = T̂ [C, I].

Theorem 2.4. Let f ∈ Sk
n have a type (n1, n2) Fourier-Jacobi expansion

f(Ω) =
∑
s>0

as(π1(Ω), π12(Ω))e2πitr[s π2(Ω)].

Let
C : Fn → Psemi(Q) \ {0} and U : Fn → GLn(Z),

be any two maps such that π1( tUCU) = 0 and π12( tUCU) = 0. The following two condi-
tions are equivalent.

(1) f = 0.
(2) For all s ∈ Xn2 such that T [C,U ](s) ≤ k

4π , we have we have as = 0.

Proof. Fix f , n1, n2, C, U . Condition (1) clearly implies condition (2). So assume
condition (2); we will show that f = 0. We claim that without loss of generality, we
may assume C actually maps into Psemi

n (Z). Define C̃(Ω) = q(Ω)C(Ω) ∈ Psemi
n (Z) \

{0}, where q(Ω) ∈ Z+ by letting q(Ω) be the smallest positive integer that clears the
denominators of C(Ω). Since T [C̃, U ] = T [C,U ], condition (2) for C implies condition (2)
for C̃. Furthermore, π1( tUC̃U) = 0 and π12( tUC̃U) = 0 are clearly true. Replacing C

with C̃, we may indeed without loss of generality assume that C : Fn → Psemi(Z) \ {0}.
By Theorem 2.2, det(Y )

k
2 |f(Ω)| attains a maximum value M at some Ω0 = X0 + iY0 ∈

Fn. Let V = U(Ω0). Observe that |det(Y )
k
2 f(Ω)| is invariant under Ω �→ tV ΩV , so that

it also attains a maximum at tV Ω0V . Let

Ω̃0 = tV Ω0V,

Ỹ0 = tV Y0V,

T = tV C(Ω0)V.

Note Ỹ0 = Im(Ω̃0). Note also T ∈ Psemi
n (Z) \ {0}. Since Hn is open, there exists an ε > 0

such that Ω̃0 + ζT ∈ Hn whenever Imζ ≥ −ε. We define an analytic map

Q : {ζ ∈ C : Imζ ≥ −ε} → Hn

ζ �→ Ω̃0 + ζT.
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We will investigate f(Q(ζ)) as a function of ζ, with Imζ > −ε. Note that π1(T ) = 0 and
π12(T ) = 0 since T = tU(Ω0)C(Ω0)U(Ω0). So π1(Q(ζ)) = π1(Ω̃0) and π12(Q(ζ)) = π12(Ω̃0)
are independent of ζ. Therefore, we have

f(Q(ζ)) =
∑
s>0

bs e
2πitr[s π2(Ω̃0+ζT )],

where we write bs for the constants as(π1(Ω̃0), π12(Ω̃0)).
Note that f(Q(ζ)) is invariant under ζ �→ ζ + 1 because Q(ζ + 1) = Q(ζ) + T and T is

integral. Let q = e2πiζ . We may define the following function of q,

F (q) = F (e2πiζ) = f(Q(ζ))

=
∑
s>0

bs e
2πitr[s π2(Ω̃0)]qtr[s π2(T )],(2.5)

which is a priori analytic on the punctured disk 0 < |q| < e2πε. Let ζ = α + iβ, α, β ∈ R
with β > 0. We have

|F (q)| = |f(Q(ζ))| ≤
∑
s>0

|bs| |e2πitr[s π2(Ω̃0)+(α+iβ)s π2(T )]|

≤
∑
s>0

|bs| |e2πitr[s π2(Ω̃0)]| |e−2πiβtr[s π2(T )]|

≤
∑
s>0

|bs| |e2πitr[s π2(Ω̃0)]|

where in the last step we used the fact that since π2(T ) ≥ 0, we have tr[s π2(T )] ≥ 0.
Since the Fourier-Jacobi series for f(Ω̃0) converges absolutely, we have that the series∑

s>0 |bs| |e2πitr[s π2(Ω̃0)]| converges to some L ∈ R. So |f(Q(ζ))| ≤ L as ζ → i∞. Hence
|F (q)| is bounded as q → 0, and so F (q) is extendable to an analytic function at q = 0. So
the power series (2.5) must necessarily be the Maclaurin series of F (q).

Now, suppose by way of contradiction that f is not identically zero. So the order of F (q)
at q = 0 will be some nonnegative integer m. It is clear from the power series expression
(2.5) that

m = min
s:bs �=0

tr[s π2(T )] ≥ min
s:as �=0

tr[s π2(T )].

Now, suppose as �= 0 for some fixed s. Condition (2) implies that T [C,U ](s) > k
4π .

Since tr[s π2(
tU(Ω0)C(Ω0)U(Ω0))]

tr[Y −1
0 C(Ω0)]

≥ T [C,U ](s) in particular, we have

tr[s π2(T )]
tr[Y −1

0 C(Ω0)]
>

k

4π
.

So tr[s π2(T )] > k
4π tr[Y −1

0 C(Ω0)]. Observe that tr(Ỹ −1
0 T ) = tr[( tV Y0V )−1( tV C(Ω0)V )] =

tr[V −1Y −1
0 C(Ω0)V ] = tr[Y −1

0 C(Ω0)]. Hence tr[s π2(T )] > k
4π tr(Ỹ −1

0 T ). Since tr[s π2(T )] ∈
Z, this implies

tr[s π2(T )] ≥ [[
k

4π
tr(Ỹ −1

0 T )]] + 1.
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Therefore, the order of F (q) at q = 0 satisfies

m ≥ [[
k

4π
tr(Ỹ −1

0 T )]] + 1.

So defining the function h(q) on 0 < |q| ≤ e2πε by

h(q) =
F (q)
qm

=
f(Q(ζ))
e2πiζm

,

we obtain that this h(q) extends to an analytic function at q = 0 also.
For each 0 < η < ε, we apply the Maximum Modulus Principle to h(q) on the closed disc

|q| ≤ e2πη to obtain that |h(q)| achieves a maximum on this closed disc at some boundary
point qη = e2πiζη with Imζη = −η. In particular, since this closed disc contains 1, we have
|h(1)| ≤ |h(qη)|. Then from Q(0) = Ω̃0, we obtain∣∣∣∣∣f(Ω̃0)

1

∣∣∣∣∣ ≤
∣∣∣∣∣f(Ω̃0 + ζηT )

e2πiζηm

∣∣∣∣∣ .
Now, continuing with our assumption that f is not identically zero, we have M > 0 and
so |f(Ω̃0)| > 0. We can rewrite this inequality as

∣∣∣∣ 1
e2πiζηm

∣∣∣∣ ≥
∣∣∣∣∣ f(Ω̃0)
f(Ω̃0 + ζηT )

∣∣∣∣∣ .
Using

∣∣∣ 1
e2πiζηm

∣∣∣ =
∣∣e−2πiζηm

∣∣ = e−2πηm, we have

e−2πηm ≥
∣∣∣∣∣ f(Ω̃0)
f(Ω̃0 + ζηT )

∣∣∣∣∣ =
M det(Ỹ0)−

k
2

|f(Ω̃0 + ζηT )|
≥ M det(Ỹ0)−

k
2

M det(Ỹ0 − ηT )−
k
2

= det(In − ηỸ −1
0 T )

k
2 .

Therefore, we have

−2πηm ≥ ln det(In − ηỸ −1
0 T )

k
2 ,

−2πηm ≥ k

2
ln(1 − ηtr(Ỹ −1

0 T ) +O(η2)),

−2πηm ≥ k

2
(−ηtr(Ỹ −1

0 T ) +O(η2)).

Therefore, for all η with 0 < η < ε, we have m ≤ k
4π tr(Ỹ −1

0 T )+O(η). Since this is true for
all sufficiently small η, we obtain

m ≤ k

4π
tr(Ỹ −1

0 T ).

This contradicts that m ≥ [[ k
4π tr(Ỹ −1

0 T )]] + 1, and therefore we must have f = 0. �

We now deduce some corollaries through various choices of C and U .
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Corollary 2.6. Let f ∈ Sk
n have a type (n1, n2) Fourier-Jacobi expansion

f(Ω) =
∑
s>0

as(π1(Ω), π12(Ω))e2πitr[s π2(Ω)].

The following two conditions are equivalent.
(1) f = 0.

(2) For all s such that tr(s) ≤ k

4π
supFn

tr[π2(Y −1)], we have as = 0.

Proof. Choose C(Ω) =
[

0 0
0 In2

]
and U(Ω) = In in Theorem 2.4. So T [C,U ](s) =

infFn

tr(s)
tr(Y −1C(Ω)) = infFn

tr(s)
tr(π2(Y −1)) . Then condition (2) of Theorem 2.4 is for all s such

that inf tr(s)
tr(π2(Y −1)) ≤ k

4π we have as = 0. This is the same as condition (2) above. �

We may recover Siegel’s Theorem from from this corollary.

Theorem 2.7 (Siegel). Let f ∈ Sk
n have Fourier expansion f(Ω) =

∑
s>0 ase

2πitr(sΩ).
The following two conditions are equivalent.

(1) f = 0.
(2) For all s such that tr(s) ≤ κn

k
4π , we have as = 0.

Proof. Since κn = supFn
tr(Y −1), this is exactly Corollary 2.6 with n1 = 0, n2 = n. �

Here is another corollary of Theorem 2.4.

Corollary 2.8. Let f ∈ Sk
n have a type (n1, n2) Fourier-Jacobi expansion

f(Ω) =
∑
s>0

as(π1(Ω), π12(Ω))e2πitr[s π2(Ω)].

The following two conditions are equivalent.
(1) f = 0.
(2) For all s such that m(s) ≤ k

4π supFn
m(Y −1), we have as ≡ 0.

Proof. We will apply Theorem 2.4 with the following choices of C and U . For each Ω ∈ Fn,
choose C(Ω) = c tc such that tcY −1c = m(Y −1) and U(Ω) = tu such that uc has 0 in
the first n1 coordinates. Then tU(Ω)C(Ω)U(Ω) = (uc) t(uc) satisfies the hypothesis of
Theorem 2.4, since π1((uc) t(uc)) = 0 and π12((uc) t(uc)) = 0. We have

T [C,U ](s) = inf
Ω∈Fn

tr[s π2((uc) t(uc))]
tr(Y −1c tc)

= inf
Ω∈Fn

tr[s π2((uc) t(uc))]
m(Y −1)

≥ inf
Fn

m(s)
m(Y −1)

.

Suppose f satisfies condition (2) above. For s such that T [C,U ](s) ≤ k
4π , we have

infFn

m(s)
m(Y −1) ≤ k

4π as well by the preceding calculation. Hence m(s) ≤ k
4π supFn

m(Y −1),
and so as = 0. Thus f satisfies condition (2) of Theorem 2.4 with the above choices of C
and U , and so f = 0. �

We may recover Eichler’s Theorem from this corollary.
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Theorem 2.9 (Eichler). Let f ∈ Sk
n have the type (n − 1, 1) Fourier-Jacobi expansion

f(Ω) =
∑∞

s=1 as(π1(Ω), π12(Ω))e2πis π2(Ω). The following conditions are equivalent.

(1) f = 0.
(2) For s ≤ 2√

3
µ2
n

k
4π , we have as = 0.

Proof. Let f satisfy condition (2) above. We will show that f satisfies condition (2) of
Corollary 2.8 with n1 = n−1 and n2 = 1. Let s ∈ Z+ such that m(s) ≤ k

4π supFn
m(Y −1);

that is, s ≤ k
4π supFn

m(Y −1). Since m(Y −1) ≤ µn det(Y −1)
1
n = µn

det(Y )
1
n

≤ µn
1

µn
m(Y )

≤
2√
3
µ2
n, then s ≤ 2√

3
µ2
n

k
4π , and so as = 0. Here we have used m(Y ) ≥

√
3

2 for all Ω ∈ Fn [6,
p.195]. So by Corollary 2.8, we have f = 0. �

§3. Main Theorem.

Since Q is dense in R, we attempt to extend Theorem 2.4 to maps C : Fn → Psemi
n (R) \

{0}. However, this extension requires placing some restriction on the map C. For compu-
tational purposes, the condition T [C,U ](s) ≤ k

4π is more useful when it is satisfied by only
a finite number of classes [s] of integer valued positive definite quadratic forms. With this
in mind, we make the following definition.

Definition 3.1. Let φ : Xn → R≥0 be a map. For any B > 0, we call the set

{[s] : s ∈ Xn and φ(s) < B}

a B-sphere of φ. We say that φ has finite spheres if for all B > 0, the B-sphere of φ is a
finite set.

For a given map φ, it is sometimes necessary to consider an associated class function φ̂.

Lemma 3.2. For a map φ : Xn → R≥0 , define φ̂ : Xn → R≥0 by φ̂(s) = inf
v∈GLn(Z)

φ( tvsv).

Then φ has finite spheres if and only if φ̂ has finite spheres.

Proof. Since φ̂(s) ≤ φ(s), we have that the B-sphere of φ is contained in the B-sphere of
φ̂. On the other hand, if φ̂(s) < B, then there exists a v ∈ GLn(Z) such that φ( tvsv) < B
and so [s] = [ tvsv] will be in the B-sphere of φ. So the B-spheres are the same for φ and
φ̂. �

The following is a simple sufficient condition on C and U that implies that T [C,U ] has
finite spheres.

Lemma 3.3. Let C : Fn → Psemi
n (R) and U : Fn → GLn(Z) be maps. If

inf
Ω∈Fn

det[π2( tU(Ω)C(Ω)U(Ω))]
1
n2

tr[Y −1C(Ω)]
> 0,

then T [C,U ] has finite spheres.
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Proof. Let s ∈ Xn2 and assume T [C,U ](s) < B. Let δ = infΩ∈Fn

det[π2(
tU(Ω)C(Ω)U(Ω))]

1
n2

tr[Y −1C(Ω)] .
The arithmetic-geometric inequality gives us

B > inf
Ω∈Fn

tr[sπ2( tU(Ω)C(Ω)U(Ω))]
tr(Y −1C(Ω))

≥ inf
Fn

n2 det(s)
1
n2 det[π2( tU(Ω)C(Ω)U(Ω))]

1
n2

tr[Y −1C(Ω)]

≥ n2δ det(s)
1
n2 .

As a consequence, all s ∈ Xn2 such that [s] is in a B-sphere of T [C,U ] satisfy det(s) <(
B
n2δ

)n2

. Since the number of classes of integer valued positive definite quadratic forms
with determinant less than a fixed bound is finite, we see that T [C,U ] has finite spheres. �

Theorem 3.4. Let f ∈ Sk
n have a type (n1, n2) Fourier-Jacobi expansion

f(Ω) =
∑
s>0

as(π1(Ω), π12(Ω))e2πitr[s π2(Ω)].

Let C : Fn → Psemi(R) be map such that π1(C) = 0, π12(C) = 0, π2(C) > 0, and T [C]
has finite spheres. The following two conditions are equivalent.

(1) f = 0.
(2) For all s ∈ Xn2 such that T̂ [C](s) ≤ k

4π , we have we have as = 0.

Proof. We make use of Theorem 2.4 for U(Ω) = I and proceed by rational approximation.
Fix C, f, k, n, n1, n2. Assume that condition (2) holds; we will prove f = 0. For each ρ
with 0 < ρ < 1, we define a map Rρ : Fn → Psemi

n (Q) as follows. For any Ω ∈ Fn,
the set Oρ = {T ∈ Psemi

n2
(R) : ρπ2(C(Ω)) < T < π2(C(Ω))} is open in Pn2(R), because

it is the intersection in Mn2×n2(R) of three open sets: Pn2(R), (Pn2(R) + ρπ2(C(Ω)))
and (π2(C(Ω)) − Pn2(R)). We use the hypothesis that π2(C(Ω)) > 0 to ensure that
ρ+1
2 π2(C(Ω)) is in Oρ and hence that Oρ is nonempty. Since Pn2(Q) is dense in Pn2(R),

we may choose T ∈ Oρ∩Pn2(Q) and define Rρ(Ω) =
[
0
0

0
T

]
, thereby obtaining a never zero

function Rρ by the axiom of choice. Note that π1(Rρ) = 0 and π12(Rρ) = 0. We also set
R1 = C since limρ→1− Rρ(Ω) = C(Ω). Then for all ρ ∈ [ 12 , 1], we have ρC(Ω) ≤ Rρ(Ω) ≤
C(Ω).

We now show that the maps Rρ have T [Rρ] with uniformly finite spheres for ρ ∈ [ 12 , 1].
For each s ∈ Pn2(R), we have

ρ
tr[s π2(C(Ω))]
tr[Y −1C(Ω)]

≤ tr[s π2(Rρ(Ω))]
tr[Y −1C(Ω)]

≤ tr[s π2(Rρ(Ω))]
tr[Y −1Rρ(Ω)]

≤ tr[s π2(C(Ω))]
tr[Y −1Rρ(Ω)]

≤ 1
ρ

tr[s π2(C(Ω))]
tr[Y −1C(Ω)]

.

Taking infimums over Ω ∈ Fn and then over the equivalence classes of s, we have

ρT [C](s) ≤ T [Rρ](s) ≤
1
ρ
T [C](s) and

ρT̂ [C](s) ≤ T̂ [Rρ](s) ≤
1
ρ
T̂ [C](s)(3.5)
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Define the set
S(B) =

⋃
ρ∈[

1
2 ,1]

{[s] : T̂ [Rρ](s) ≤ B},

and use the above inequality 3.5 to deduce from the cases ρ = 1 and ρ = 1
2 the containments

(3.6) {[s] : T̂ [C](s) ≤ B} ⊆ S(B) ⊆ {[s] : T̂ [C](s) ≤ 2B}.

Use the hypothesis that T [C] (and hence T̂ [C]) has finite spheres to see that S(B) is a
finite set, and use inequality 3.5 to choose a ρ0 < 1 close enough to 1 so that

(3.7) {[s] ∈ S(
k

4π
) : T̂ [C](s) >

k

4π
} ⊆ {[s] ∈ S(

k

4π
) : T̂ [Rρ0 ](s) >

k

4π
}.

For example, we may take ρ0 as ρ0 = 1
2 [1 + max{ k

4π
1

T̂ [C](s)
}], where the maximum is over

[s] in {[s] ∈ S( k
4π ) : T̂ [C](s) > k

4π}. Since T̂ [C] and T̂ [Rρ0 ] are class functions, when we
take complements in equation 3.7 inside S( k

4π ), we obtain

{[s] ∈ S(
k

4π
) : T̂ [C](s) ≤ k

4π
} ⊇ {[s] ∈ S(

k

4π
) : T̂ [Rρ0 ](s) ≤

k

4π
}.

Using 3.6, we also have {[s] : T̂ [C](s) ≤ k
4π} = {[s] ∈ S( k

4π ) : T̂ [C](s) ≤ k
4π}. From the

definition of S( k
4π ), we have {[s] : T̂ [Rρ0 ](s) ≤ k

4π} = {[s] ∈ S( k
4π ) : T̂ [Rρ0 ](s) ≤ k

4π}.
Since T̂ [Rρ0 ] = infv T [Rρ0 ](

tvsv), we have the containment {[s] : T [Rρ0 ](s) ≤ k
4π} ⊆ {[s] :

T̂ [Rρ0 ](s) ≤ k
4π}. Combining the equalities and containments, we have

{[s] : T [Rρ0 ](s) ≤
k

4π
} ⊆ {[s] : T̂ [C](s) ≤ k

4π
}.

Since C satisfies condition (2) of this theorem, we see that Rρ0 : Fn → Psemi
n (Q) \ {0}

satisfies condition (2) of Theorem 2.4, and hence we have f = 0. �

We have a favorite choice of C in the above theorem.

Corollary 3.8. Let f ∈ Sk
n have a Fourier expansion f(Ω) =

∑
s>0 ase

2πitr(sΩ). The
following two conditions are equivalent.

(1) f = 0.

(2) For all s ∈ Xn such that inf
v∈GLn(Z)

inf
Ω∈Fn

tr( tvsvY ) ≤ n
k

4π
, we have as = 0.

Proof. We are in the Fourier-Jacobi case of type (0, n), so n1 = 0 and n2 = n. We show
that C : Fn → Pn(R) defined by C(Ω) = Y satisfies the hypotheses of Theorem 3.4. We
clearly have π1(C) = 0, π12(C) = 0 and π2(C) > 0. To show that T [C] has finite spheres,
we check the condition of Lemma 3.3. We have

inf
Ω∈Fn

det(Y )
1
n

tr(Y −1Y )
=

1
n

inf
Fn

det(Y )
1
n ≥ 1

n
inf
Fn

m(Y )
µn

≥
√

3
2

nµn
> 0
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since infΩ∈Fn m(Y ) ≥
√

3
2 [6, p.195]. So C indeed has finite spheres by Lemma 3.3. Since

T̂ [C](s) = inf
v∈GLn(Z)

inf
Ω∈Fn

tr( tvsvY )
tr(Y −1Y )

=
1
n

inf
v∈GLn(Z)

inf
Ω∈Fn

tr( tvsvY ),

we have that condition (2) above is exactly the condition that as = 0 when T̂ [C](s) ≤ k
4π .

So the corollary follows from Theorem 3.4 applied to this C. �

The Theorem of Siegel is actually true for f ∈ Mk
n if semidefinite s are included in the

estimate. We make a similar extension of Corollary 3.8.

Corollary 3.9. Let f ∈ Mk
n have a Fourier expansion f(Ω) =

∑
s≥0 ase

2πitr(sΩ). The
following two conditions are equivalent.

(1) f = 0.

(2) For all s ∈ X semi
n such that inf

v∈GLn(Z)
inf

Ω∈Fn

tr( tvsvY ) ≤ n
k

4π
, we have as = 0.

Proof. Again, we show that condition (2) implies condition (1). In light of Corollary 3.8,
we only need to show that an f satisfying the condition (2) here is necessarily a cusp form.
We proceed to prove the corollary by induction on n. The conclusion is valid for n = 1
because s = 0 always satisfies the inequality in condition (2) and a0 = 0 alone implies f is
a cusp form.

For the induction step, let n > 1, and let f satisfy the hypothesis. The Fourier series
for f ′ = Φnf is given by

f ′(Ω′) =
∑
s′≥0

as′e
2πitr(s′Ω′),

where as′ = as for s =
[
s′

0
0
0

]
(see [6, p203]). Consider any s′ ∈ X semi

n−1 satisfying
infv′∈GLn−1(Z) infΩ′∈Fn−1 tr( tv′s′v′Y ′) ≤ (n−1)k

4π ; we will show as′ = 0. For any Ω′ ∈ Fn−1,
there exists a λ ∈ R+, sufficiently large, such that

iY =
[
iY ′ 0
0 iλ

]
∈ Fn

(see [6, p.196]). Also, for any v′ ∈ GLn−1(Z), we have
[
v′

0
0
1

]
∈ GLn(Z). Therefore, we

have
inf

Ω∈Fn

tr( tvsvY ) ≤ inf
Ω′∈Fn−1

tr( tvsv
[
Y ′

0
0
λ

]
)

and

inf
v∈GLn(Z)

inf
Ω∈Fn

tr( tvsvY ) ≤ inf
v′∈GLn−1(Z)

inf
Ω′∈Fn−1

tr(
[ tv′

0
0
1

][
s′

0
0
0

][
v′

0
0
1

][
Y ′

0
0
λ

]
)

= inf
v′∈GLn−1(Z)

inf
Ω′∈Fn−1

tr( tv′s′vY ′) ≤ (n− 1)k
4π

< n
k

4π
.

By the hypothesis of this corollary, we have as = 0, hence as′ = 0. Since as′ = 0 for all
s′ ∈ X semi

n−1 satisfying infv′∈GLn−1(Z) infΩ′∈Fn−1 tr( tv′s′v′Y ′) ≤ (n−1)k
4π , we have f ′ = 0 by
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the induction hypothesis. This means that f is a cusp form, and so f = 0 by Corollary
3.8, completing the induction. �

Conditions on determinants are more serviceable in conjunction with tables of quadratic
forms so we state a slight reformulation of Corollary 3.8.

Corollary 3.10. Let f ∈ Sk
n have a Fourier expansion f(Ω) =

∑
s>0 ase

2πitr(sΩ). Suppose
that as = 0 for all s satisfying both

(i) det(s)
1
n ≤ µn

2√
3

k
4π , and

(ii) inf
v∈GLn(Z)

inf
Ω∈Fn

tr( tvsvY ) ≤ n
k

4π
.

Then we have f = 0.
Furthermore, item (ii) above implies item (i).

Proof. We first show that item (ii) implies item (i) above. We have

tr( tvsvY ) ≥ n det( tvsv)
1
n det(Y )

1
n = n det(s)

1
n det(Y )

1
n .

Therefore, we have

inf
v∈GLn(Z)

inf
Ω∈Fn

tr( tvsvY ) ≥ ndet(s)
1
n inf

Ω∈Fn

det(Y )
1
n

≥ n det(s)
1
n inf

Ω∈Fn

m(Y )
µn

≥ n

µn

√
3

2
det(s)

1
n .

The main statement then follows from Corollary 3.8. �

In concluding this section, we compare this new estimate with Siegel’s estimate. Tables
of quadratic forms are usually ordered by the value of the determinant. If Corollary 3.10
and Siegel’s Theorem are converted to estimates on the determinant, then the bounds
given by Siegel’s Theorem are never better than the bounds given by Corollary 3.10. In
order to convert Siegel’s Theorem to a condition on the determinant, we calculate

(3.11) κn
k

4π
≥ tr(s) ≥ n det(s)

1
n ,

whereas the conversion of Corollary 3.10 is

(3.12) n
k

4π
≥ inf

v
inf
Ω

tr( tvsvY ) ≥ n det(s)
1
n

(
inf
Ω

det(Y )
1
n

)
.

Accurate values of κn are not known for n ≥ 2 and some upper bound must be used in
practice. In any case, if a certain lower bound for κn is used in (3.11), the condition is
identical to that in (3.12), so that quadratic form classes [s] that satisfy (3.11) contain
those that satisfy (3.12) regardless of the true value of κn. This lower bound for κn is
given by

κn = sup
Ω∈Fn

tr(Y −1) ≥ sup
Ω

ndet(Y −1)
1
n =

n

infΩ det(Y )
1
n

.

This show that, as determinant conditions, the estimate of Corollary 3.10 is at least as
good as Siegel’s Theorem.



14 CRIS POOR, DAVID S. YUEN

In practice, moreover, we must use an upper bound for κn in (3.11). The best estimate
known to us [6, p.197] is

κn ≤ 2n√
3
cn ≤ 2√

3
nµnn,

where we have used the best known estimate cn ≤ µnn on Minkowski’s constant cn [1]. In
terms of a determinant condition, (3.11) gives

(3.13)
2√
3
µnn

k

4π
≥ det(s)

1
n .

In order to compare 3.13 with 3.12, we must estimate infΩ det(Y )
1
n . Since accurate values

of this constant are also unknown for n ≥ 2, we must use the lower bound infΩ det(Y )
1
n ≥

infΩ
m(Y )
µn

=
√

3
2

1
µn

used for item (i) of Corollary 3.10 and obtain said item,

(3.14)
2√
3
µn

k

4π
≥ det(s)

1
n .

In conclusion, the difference between applying Siegel’s Theorem via 3.13 and Corollary
3.10 via 3.14 is exactly the appearance of the smaller Hermite constant µn in 3.14 versus
the larger Minkowski constant cn ≤ µnn in 3.13. As mentioned in the introduction, the size
of the coefficient of k in these estimates is the entire issue for computational purposes. In
the last section, we give an example to illustrate the superiority of the new estimate given
by Corollary 3.10.

§4. An Example.

The calculation of linear relations among theta series attached to Type II lattices was
begun in [12] by Witt. From general estimates and the computation of three Fourier
coefficients, Witt showed that the theta series of E8 ⊕ E8 and D+

16 agreed for degree
n = 2. Witt also conjectured that these theta series also agreed for n = 3, but was unable
to decide the problem due to the “monstrous calculations.” Igusa [7] and Kneser [10]
settled Witt’s conjecture affirmatively using geometric and lattice-theoretic techniques,
respectively. We will illustrate the computational advantage of Corollary 3.10 by giving
a straightforward proof of ϑE8⊕E8 = ϑD+

16
in n = 3 that involves the computation of just

one Fourier coefficient for E8 ⊕ E8 and D+
16. We begin with n = 1 to illustrate the use of

Corollary 3.10.
For n = 1 and k = 8, Corollary 3.10 item (i) says that a cusp form in S8

1 is zero if as = 0
for all s ∈ X1 = Z+ with det(s) ≤ µ1

2√
3

8
4π . Using the value µ1 = 1, this inequality is

s ≤ 4√
3π

≈ .735105.

Since there are no such s, we have S8
1 = 0. In particular, ϑE8⊕E8 − ϑD+

16
= 0 in n = 1.

Applying the Siegel map Φ2, we see that ϑE8⊕E8 −ϑD+
16

is a cusp form in n = 2. Setting
n = 2 and k = 8, Corollary 3.10 item (i) says that a cusp form is zero if its Fourier
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coefficients as = 0 for all s ∈ X2 with det(s)
1
2 ≤ µ2

2√
3

8
4π . Using the value µ2 = 2√

3
, this

inequality is

det(s) ≤ 64
9π2

≈ .720506.

The smallest possible determinant for s ∈ X2 is det
[

1
1/2

1/2
1

]
= 3

4 . So we have S8
2 = 0, and

in particular, ϑE8⊕E8 − ϑD+
16

= 0 for n = 2 as well.
Applying the Φ3 map we have ϑE8⊕E8 − ϑD+

16
∈ S8

3 . Setting n = 3 and k = 8, item (i)

of Corollary 3.10 is that as = 0 for all s ∈ X3 with det(s)
1
3 ≤ µ3

2√
3

8
4π . Using the value

µ3 = 3
√

2, this inequality simplifies to

det(s) ≤ 128
π33

√
3
≈ 0.794472.

Examination of Intrau’s tables in [8] shows that there are only two classes of [s] ∈ [X3]
that satisfy the above inequality. Representatives of these two classes are:

A =


 1 1

2
1
2

1
2 1 0
1
2 0 1


 , B =


 1 1

2 0
1
2 1 0
0 0 1


 ,

which have determinants .5 and .75, respectively. These consequently give the only classes
that could satisfy the inequality in item (ii) of Corollary 3.10:

inf
v∈GL3(Z)

inf
Ω∈F3

tr( tvsvY ) ≤ 3
k

4π
=

6
π

≈ 1.90986.

We can actually show that no matrix equivalent to B can satisfy this equality, thereby
leaving only the Fourier coefficients corresponding to A for computation.

We write B as follows:

B =


 1 1

2 0
1
2 1 0
0 0 1


 = 1

2


 1 1 0

1 1 0
0 0 0


 + 1

2


 1 0 0

0 0 0
0 0 0


 + 1

2


 0 0 0

0 1 0
0 0 0


 + 1


 0 0 0

0 0 0
0 0 1




=
4∑

i=1

αi pi
tpi,

where α1 = α2 = α3 = 1
2 and α4 = 1, and p1 =

[ 1
1
0

]
, p2 =

[ 1
0
0

]
, p3 =

[ 0
1
0

]
and p4 =

[ 0
0
1

]
.

For any Ω = X + iY ∈ F3 and v ∈ GL3(Z), we have

tr( tvBvY ) =
4∑

i=1

αi tr(( tvpi) t( tvpi)Y ) =
4∑

i=1

αi tr( t( tvpi)Y ( tvpi)) ≥
4∑

i=1

αim(Y )

≥
4∑

i=1

αi

√
3

2
= 2.5

√
3

2
≈ 2.16506.
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Therefore infv infΩ tr( tvBvY ) ≥ 2.5
√

3
2 > 6

π , and we can remove the class of B from
consideration.

Consequently, ϑE8⊕E8 = ϑD+
16

in n = 3 if and only if their Fourier coefficients aA are
the same. Recall that to any integral lattice Λ ⊆ Rn we may define the theta series of Λ,
ϑΛ : Hn → C as follows: for Ω ∈ Hn let

ϑΛ(Ω) =
∑

1,...,n∈Λ

exp
(
iπ

∑n

j,k=1
Ωjk( t�j �k)

)
.

So the coefficient as in the Fourier expansion of ϑΛ is the number of ways we can choose
vectors �1, . . . , �n so that the dot products are exactly t�i �j = 2sij . For the lattice E8⊕E8,
there are 480 ways to choose �1 of length 2. For each of these there are 56 ways to choose �2
so that t�1 �2 = 1. For each choice of �1 and �2, noting that all such choices are equivalent
by an isometry of E8 ⊕E8, there are 27 ways to choose �3 so that t�3 �1 = 1 and t�3 �2 = 0.
Thus the coefficient aA is 480 · 56 · 27 = 725760. For the lattice D+

16, a similar counting
argument shows that the coefficient aA is also 480 · 56 · 27 = 725760. So in degree n = 3,
ϑE8⊕E8 −ϑD+

16
= 0. Thus we have shown that the theta series for E8⊕E8 and D+

16 are the
same in degrees n ≤ 3. Even in this low degree, the use of Siegel’s Theorem would require
the computation of eight Fourier coefficients for each lattice.
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