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Abstract. We calculate the dimensions of M12
4 ,M8

4 , S
12
4 , S8

4 , S
6
4 using Erokhin’s work on

Niemeier lattices and geometric methods involving the hyperelliptic locus.

§0. Introduction.

In this note we calculate some dimensions of spaces of Siegel modular forms and of cusp
forms. We obtain the results that dimM12

4 = 6, dimM8
4 = 2, dimS12

4 = 2, dimS8
4 = 1,

and dimS6
4 = 0. Explicit generators for these spaces of cusp forms are also given. The

dimensions of theMk
g are known for g ≤ 3 [14]; previously it was known [6, pg. 50] only that

Sk
4 = 0 for 1 ≤ k ≤ 5. Calculations of Erokhin for the Niemeier lattices play an essential

role in our arguments, as does a theorem of Igusa that elements of Sk
4 for even k ≤ 8 must

vanish on the hyperelliptic locus. The admittedly special nature of these calculations in
weights less than or equal to 12 has a natural origin. The Type II lattices in dimension
24 are 24 in number and have been classified by Niemeier, whereas the Type II lattices in
dimension 32 number in excess of 80 million and will never be classified in the same detail.
A complete classification is essential for applications to Siegel modular forms if Böcherer’s
result (Theorem 1.2) is to be applied. On the other hand, these dimensions are notoriously
difficult to calculate by any means (see [13, pp. 60–61]), and this note provides more data
toward this famous problem.

The results on cusp forms may be summarized as follows. The theta series for the
Niemeier lattices provide a basis for S12

4 and the study of S8
4 and S6

4 is reduced to S12
4 via

the inclusions M4
4S

8
4 ⊆ S12

4 and S6
4S

6
4 ⊆ S12

4 . Let f4 ∈ M4
4 be the theta series of the E8

lattice and let j8 ∈ S8
4 be Schottky’s modular form vanishing on the Jacobian locus. Then

S12
4 has a basis {f4j8, ψ12} such that ψ12 does not vanish on

⊕4 H1. For any e ∈ S8
4 and

f ∈ S6
4 we then have f4e = af4j8 + bψ12 and f2 = αf4j8 +βψ12. Since e and f necessarily

vanish on the hyperelliptic locus we can evaluate the coefficients a, b, α, β by restriction to⊕4 H1. We obtain S8
4 = Cj8 and S6

4 = 0 by this procedure. This note is another example
using geometric information to calculate the dimensions of spaces of cusp forms.

§1. Notation.

Let Hg be the Siegel upper half space of degree g ≥ 1 [12, pg. 2] and let Γg = Spg(Z)
denote the full Siegel modular group which acts on Hg. Let Mk

g be the complex vector
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space of Siegel modular forms of weight k on Hg [12, pg. 43], Φg : Mk
g → Mk

g−1 be the
Siegel map [12, pg. 54], and Sk

g = ker Φg be the subspace of cusp forms.
To any integral lattice Λ ⊆ R

n we may define the theta series of Λ (the analytic class
invariant) ϑΛ : Hg → C as follows: for Ω ∈ Hg let

(1.1) ϑΛ(Ω) =
∑

�1,...,�g∈Λ

exp
(
iπ

∑g

j,k=1
Ωjk〈�j , �k〉

)
.

A lattice is called “Type II” [2, pg. 48 ] if it is even and self dual. For Λ of Type II, we
have ϑΛ ∈ M

n/2
g for each g ≥ 1 [6, pg. 17]. We specify lattices in the notation of [2, pp.

119, 120, 407] and use the further designations:

f4 = ϑE8 ,

f8 = ϑD+
16
,

j8 = f2
4 − f8.

Also, for the 24 Niemeier lattices, we denote their theta series by

ϑi ∈M12
g for i ∈ {0, 1, . . . , 23},

where we index the Niemeier lattices by 0 through 23 in some manner with the Leech
lattice being the 0th one; that is, ϑ0 is theta series of the Leech lattice. Let hi be the
Coxeter number [2, pg. 407] of the ith Niemeier lattice and let τi = 24hi. Except for the
Leech lattice, where τ0 = 0, τi is the kissing number of the ith Niemeier lattice. The
following Theorem is due to Böcherer [1, pp. 22, 44].

1.2 Theorem. (Böcherer) For k > 2g and k ≡ 0 mod 4, the theta series of all Type II
lattices span Mk

g .

This Theorem assures us, for example, that the ϑi span M12
g for 1 ≤ g ≤ 5.

We now recall some geometrically defined subsets of H4/Γ4 that we will use. View
Ag = Hg/Γg as the moduli space of principally polarized abelian varieties. The Torelli
map sends a compact Riemann surface of genus g to its Jacobian’s class in Ag. The closure
in Ag of the image of the Torelli map is called the Jacobian locus, Jacg. Similarly, the
closure of the image of the restriction of the Torelli map to hyperelliptic Riemann surfaces
is called the hyperelliptic locus, hg. We call the image of

⊕g H1 in Ag the diagonal locus,
Diagg. The following inclusions hold:

Ag ⊇ Jacg ⊇ hg ⊇ Diagg .

The final inclusion follows easily from the techniques for the degeneration of curves in [5].
The following theorems of Igusa relate the above loci to the ring of Siegel modular forms.
We say that a Siegel modular form f vanishes on hg if for all Ω ∈ Hg such that [Ω] ∈ hg
we have f(Ω) = 0.

1.3 Theorem. (Igusa, [9, pg. 845]) A cusp form in Sk
g of even weight k < 8 + 4/g

necessarily vanishes on the hyperelliptic locus hg.

1.4 Theorem. (Igusa, [10][11]) The ideal of Siegel modular forms in
⊕∞

k=1M
k
4 that vanish

on the Jacobian locus, Jac4, is principal and is generated by the irreducible element j8.
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§2. Dimension Calculations.

We begin by constructing certain cusp forms of weight 12 for 1 ≤ g ≤ 4 with simple
behavior on direct sums of H1. We let ∆ ∈ S12

1 denote the usual generator of S12
1 [2, pg.

105]. We also use the following notation:

det
i,j,k,l

(ϑ, τ2, τ, 1) =

∣∣∣∣∣∣∣

ϑi ϑj ϑk ϑl
τ2
i τ2

j τ2
k τ2

l

τi τj τk τl
1 1 1 1

∣∣∣∣∣∣∣
.

2.1 Lemma. For all i, j, k, l,m ∈ {0, 1, . . . , 23} we have

det
i,j

(ϑ, 1) ∈ S12
1 and det

i,j
(ϑ, 1) = det

i,j
(τ, 1) ∆,

det
i,j,k

(ϑ, τ, 1) ∈ S12
2 and det

i,j,k
(ϑ, τ, 1)|⊕ 2 H1

= det
i,j,k

(τ2, τ, 1) ∆ ⊗ ∆,

det
i,j,k,l

(ϑ, τ2, τ, 1) ∈ S12
3 and det

i,j,k,l
(ϑ, τ2, τ, 1)|⊕ 3 H1

= det
i,j,k,l

(τ3, τ2, τ, 1) ∆ ⊗ ∆ ⊗ ∆,

det
i,j,k,l,m

(ϑ, τ3, τ2, τ, 1) ∈ S12
4 and det

i,j,k,l,m
(ϑ, τ3, τ2, τ, 1)|⊕ 4 H1

= det
i,j,k,l,m

(τ4, τ3, τ2, τ, 1) ∆ ⊗ ∆ ⊗ ∆ ⊗ ∆.

Proof. Recall that for Ω ∈ H1, the coefficient of e2πiΩ in the theta series ϑi(Ω) is τi, and
the coefficient of e2πiΩ in ∆(Ω) is 1. Since ϑi − ϑj ∈ S12

1 and ∆ is a generator of S12
1 , we

must have ϑi − ϑj = (τi − τj)∆ on H1. Another way of saying this is that deti,j(ϑ, 1) =
ϑi − ϑj = (τi − τj)∆ = deti,j(τ, 1) ∆ on H1. Using τ0 = 0 we have ϑi = ϑ0 + τi∆ with ϑ0

being the theta series of the Leech lattice. It follows that deti,j,k(ϑ, τ, 1) is identically zero
on H1 because the first row is a linear combination of the second and third rows in the
determinant; hence it is a cusp form on H2 because we have Φg(ϑΛ on Hg) = ϑΛ on Hg−1.
Restriction to

⊕2 H1 gives ϑi = ϑi|H1 ⊗ϑi|H1 = ϑ0 ⊗ϑ0 + τi(ϑ0 ⊗∆+∆⊗ϑ0)+ τ2
i ∆⊗∆

so that by subtracting multiples of the second and third rows from the first row in the
determinant, we have deti,j,k(ϑ, τ, 1)|⊕ 2 H1

= deti,j,k(τ2∆⊗∆, τ, 1) = deti,j,k(τ2, τ, 1) ∆⊗
∆ as claimed.

Without loss of generality and for convenience, we can number the Niemeier lattices
so that the first five Coxeter numbers are distinct [2, pg.407] and τ0 = 0 still. Then
det0,1,2(τ2, τ, 1) �= 0, so that we may let φ = det0,1,2(ϑ, τ, 1)/det0,1,2(τ2, τ, 1). Since
det0,1,2(ϑ, τ, 1) = det0,1,2(τ2, τ, 1) ∆ ⊗ ∆ on

⊕2 H1, we have φ = ∆ ⊗ ∆ on
⊕2 H1. This

implies φ is not identically zero on
⊕2 H1, and hence φ �= 0 in S12

1 . Since dimS12
2 = 1, φ

must be a generator. So on H2, we must have

(2.2) det
i,j,k

(ϑ, τ, 1) = sijkφ,

for some constant sijk. We also know that deti,j,k(ϑ, τ, 1) = deti,j,k(τ2, τ, 1) ∆ ⊗ ∆ on⊕2 H1. From (2.2), we also have that deti,j,k(ϑ, τ, 1) = sijk ∆⊗∆ on
⊕2 H1. So we con-

clude that sijk = deti,j,k(τ2, τ, 1). So on H2, we have deti,j,k(ϑ, τ, 1) = deti,j,k(τ2, τ, 1)φ.
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Expanding the determinant by cofactors using the second row (τ2), we have on H2,

det
i1,i2,i3,i4

(ϑ, τ2, τ, 1) =
4∑

k=1

(−1)k+1τ2
ik

det
i1,... ,i4
no ik

(ϑ, τ, 1)

=
4∑

k=1

(−1)k+1τ2
ik

det
i1,... ,i4
no ik

(τ2, τ, 1)φ

= det
i1,i2,i3,i4

(τ2, τ2, τ, 1)φ

= 0.

Therefore, deti,j,k,l(ϑ, τ2, τ, 1) is a cusp form on H3. Restriction to
⊕3 H1 gives ϑi =

ϑi ⊗ ϑi ⊗ ϑi = ϑ0 ⊗ ϑ0 ⊗ ϑ0 + · · · + τ3
i ∆ ⊗ ∆ ⊗ ∆ so that deti,j,k,l(ϑ, τ2, τ, 1)|⊕ 3 H1

=
deti,j,k,l(∆ ⊗ ∆ ⊗ ∆ τ3, τ2, τ, 1) = deti,j,k,l(τ3, τ2, τ, 1) ∆ ⊗ ∆ ⊗ ∆.

Since dimS12
3 = 1 [14, pg. 832] and since we have four distinct Coxeter numbers

τ0, τ1, τ2, τ3, we may employ the same linear algebra techniques as above to deduce that
deti,j,k,l,m(ϑ, τ3, τ2, τ, 1) is identically zero on H3 and is a cusp form on H4. Restriction to⊕4 H1 gives deti,j,k,l,m(ϑ, τ3, τ2, τ, 1)|⊕ 4 H1

= deti,j,k,l,m(τ4, τ3, τ2, τ, 1) ∆ ⊗ ∆ ⊗ ∆ ⊗ ∆
in the same manner as above. �

The simple pattern of this Lemma does not continue because dimS12
4 = 2, as we will

deduce from a Theorem of Erokhin [3][4].

2.3 Theorem. (Erokhin) We have dimC Span{ϑi on H4 : i ∈ {0, 1, . . . , 23}} = 6.

Proof. In the notation of [4] the assertion of the Theorem is dim Imφ4 = 6, where φg :
C

24 → M12
g is defined by c �→

∑
i ciϑi. Let Vg = {v ∈ C

24 : ∀c ∈ kerφg, tvc = 0}, then
we have dimVg = dim Imφg. Corollary 1 of [4, pg. 1017] and Theorem 2 of [4, pg. 1018]
assert that V4 has a basis of six elements. (These are {1, vA1 , v

2
A1
, v3

A1
, v4

A1
, vD4} in the

notation of [4].) �

2.4 Corollary. We have dimM12
4 = 6, dimS12

4 = 2.

Proof. From Theorem 1.2, and 12 > 2 · 4, we see that the theta series of the Niemeier
lattices span M12

4 and so dimM12
4 = 6 using the previous Theorem of Erokhin. From the

surjectivity of Φg : Mk
g → Mk

g−1 for even k > 2g [12, pg. 68] the following sequence of
complex vector spaces is exact: 0 → S12

4 →M12
4 →M12

3 → 0. Since dimM12
3 = 4 [14, pg.

835] we have dimS12
4 = 2. �

2.5 Proposition. For any five indices i, j, k, l,m ∈ {0, 1, . . . , 23} such that the Cox-
eter numbers τi, τj, τk, τl, τm are distinct, we have that S12

4 is spanned by f4j8 and
deti,j,k,l,m(ϑ, τ3, τ2, τ, 1).

Proof. Since dimS12
4 = 2 by Corollary 2.4 it suffices to show that the cusp forms f4j8

and deti,j,k,l,m(ϑ, τ3, τ2, τ, 1) are linearly independent. By Lemma 2.1 the cusp form
deti,j,k,l,m(ϑ, τ3, τ2, τ, 1) does not vanish on the diagonal locus whereas f4j8 does because
j8 vanishes on the Jacobian locus and hence on the diagonal locus. �
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2.6 Theorem. We have dimS8
4 = 1 and j8 spans S8

4 .

Proof. Since there exist five Niemeier lattices with distinct Coxeter numbers [2, pg.407],
let ψ12 = deti,j,k,l,m(ϑ, τ3, τ2, τ, 1) be such that f4j8 and ψ12 span S12

4 as in Proposition
2.5. Take any f ∈ S8

4 . By Theorem 1.3 f must vanish on the hyperelliptic locus and hence
on the diagonal locus. We also have f4f ∈ S12

4 and so f4f = af4j8+bψ12 for some a, b ∈ C.
Upon restriction to

⊕4 H1 we obtain 0 = bdet(τ4, τ3, τ2, τ, 1) ∆ ⊗ ∆ ⊗ ∆ ⊗ ∆ by Lemma
2.1. Therefore b = 0 and f4f = af4j8. We conclude that f = aj8 because the ring of Siegel
modular forms has no zero divisors. �

2.7 Corollary. We have dimM8
4 = 2.

Proof. Since M8
3 is spanned by f2

4 [9, pg. 854], the map Φ4 : M8
4 → M8

3 is onto and the
sequence 0 → S8

4 →M8
4 →M8

3 → 0 is exact. Hence we have dimM8
4 = 2. �

Remark. We see that the theta series also span M8
4 in this particular case where k = 2g.

2.8 Theorem. We have S6
4 = 0.

Proof. Let the notation be as in the proof of Theorem 2.6. Any f ∈ S6
4 vanishes on the

hyperelliptic locus by Theorem 1.3 and hence on the diagonal locus. Since f2 ∈ S12
4 we

have f2 = af4j8 + bψ12, for some constants a and b. Considering the restriction to
⊕4 H1,

since f and j8 both vanish there and ψ12 does not, we must have b = 0. Thus we have
f2 = af4j8. There are two ways to show that a = 0 and f = 0, completing the proof.
First, the ring of Siegel modular forms is a unique factorization ring for g ≥ 3 [7][8] and j8
is irreducible by Theorem 1.4. Second, since f2 = af4j8 vanishes on the Jacobian locus,
so must f itself. But since j8 generates the ideal of forms vanishing on the Jacobian locus
by Theorem 1.4, we must have that f = f−2j8 for some modular form f−2 of weight
6 − 8 = −2, which is necessarily 0. �

Remark. Since dimM6
3 = 1 [9, pg. 852] this Theorem shows that either dimM6

4 = 0 or
dimM6

4 = 1.
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1. S. Böcherer, Über die Fourier–Jacobi–Entwicklung Siegelscher Eisensteinreihen, Math.
Z. 183 (1983), 21-46.

2. J.H. Conway, and N.J.A. Sloane, Sphere Packings, Lattices and Groups, Grund. der
math. Wiss. 290, Springer–Verlag, New York, 1993.

3. V. A. Erokhin, Theta series of even unimodular 24-dimensional lattices, LOMI 86
(1979), 82-93, also in JSM 17 (1981), 1999-2008 [16].

4. V. A. Erokhin, Theta series of even unimodular lattices, LOMI 199 (1981), 59-70, also
in JSM 25 (1984), 1012-1020 [16].

5. J. Fay, Theta Functions on Riemann Surfaces, Springer Lecture Notes 352, Springer–
Verlag, Berlin, 1973.

6. E. Freitag, Siegelsche Modulfunktionen, Grundlehren der mathematische Wissenschaften
254, Springer Verlag, Berlin, 1983.

7. E. Freitag, Stabile Modulformen, Math. Ann. 230 (1977), 197-211.
8. E. Freitag, Die Irreduzibilität der Schottkyrelation (Bemerkung zu einen Satz von J.

Igusa), Arch. Math. 40 (1983), 255-259.
9. J. I. Igusa, Modular forms and projective invariants, Amer. J. Math. 89 (1967), 817-855.



6 CRIS POOR, DAVID S. YUEN

10. J. I. Igusa, Schottky’s invariant and quadratic forms, Christoffel Symposium, Birkhäuser
Verlag, 1981.

11. J. I. Igusa, On the irreducibility of Schottky’s divisor, Tokyo Imperial University Faculty
of Science Journal Section IA 28 (1981).

12. H. Klingen, Introductory lectures on Siegel modular forms, Cambridge studies in Ad-
vanced mathematics 20, Cambridge University Press, Cambridge, 1990.

13. R. Tsuhima, Automorphic Forms and Geometry of Arithmetic Varieties, Advanced
Studies in Pure Mathematics 15, Cambridge University Press, Cambridge, 1989, pp. 41–
64.

14. S. Tsuyumine, On Siegel modular forms of degree three, Amer. J. Math. 108 (1986),
755-862, 1001-1003.

Department of Mathematics, Fordham University, Bronx, NY 10458
Email: poor@murray.fordham.edu

Math/CS Department, Lake Forest College, 555 N. Sheridan Rd., Lake Forest, IL 60045
Email: yuen@math.lfc.edu


