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Chapter 1

Introduction

This essay concerns the behaviour, in contact and symplectic manifolds, of
certain structure-preserving flows with respect to certain submanifolds. Our
two main results are the following:

Theorem 1.1 (Arnold chord conjecture). Let (N,α) be a compact simply-
connected contact-type hypersurface of R2n. Then for each compact Legen-
drian submanifold l of (N,α), some integral curve of α’s Reeb vector field
runs from l to l.

Theorem 1.2. Let XFt be a compactly supported time-dependent Hamilto-
nian vector field on R2n of Hofer norm less than σ. Let L be a compact
Lagrangian submanifold of R2n, such that no disc with boundary on L has
positive symplectic area less than σ. Then some length-1 integral curve of
XFt runs from L to L.

Versions of both appear in Vladimir Arnold’s classic and influential set
[Arn86] of conjectures in symplectic topology, inspired by “nebulous ideas”
on analogies between the category of symplectic manifolds and the category
of manifolds.

Theorem 1.1 was proved in 2001 by Mohnke [Moh01]. His beautiful
(and very short) argument deduces the theorem from Theorem 1.2 by con-
sidering l’s extensions, within a fixed neighbourhood of N in R2n, to closed
Lagrangian submanifolds of R2n. We present this argument in this essay as
Proposition 3.1.7 and Theorem 6.2.1.

Theorem 1.2 has a more intricate history. The ‘σ =∞’ version

Theorem 1.3 (Arnold conjecture). Let XFt be a compactly supported time-
dependent Hamiltonian vector field on R2n . Let L be a compact Lagrangian
submanifold of R2n, such that every disc with boundary on L has zero sym-
plectic area. Then some length-1 integral curve of XFt runs from L to L.

was proved by Gromov, in the foundational paper [Gro85] in which he in-
troduced techniques of J-holomorphic curves to symplectic geometry. After
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Hofer’s introduction of the Hofer norm, Polterovich [Pol93] built on Gro-
mov’s ideas to prove the weakening of Theorem 1.2 in which the bound σ
needed on symplectic areas of discs is increased to 2σ.

At roughly the same time, Floer [Flo88] established a new approach to
Theorem 1.3 and related problems. His method was to consider strips with
edges in L satisfying versions of the PDE

∂su+ J(∂tu−XFt |u) = 0.

Such strips tend to concentrate around integral curves of XFt , providing a
way of discovering such integral curves. Later Chekanov [Che98], building
on Floer’s ideas, established the full Theorem 1.2.

In fact Floer’s proof of Theorem 1.3, and Chekanov’s proof following
Floer of Theorem 1.2, use a much more powerful and general framework,
and deduce a refinement of the theorems which we do not need for deduc-
ing the chord conjecture Theorem 1.1. The framework is Lagrangian Floer
homology, which roughly speaking is a homology theory generated by the
length-1 integral curves of XFt from L to L. The consequent refinement
of Theorems 1.3 and 1.2 is, ‘generically,’ the much stronger lower bound
dimH∗(L,Z2) for the numbers of such integral curves – in fact, the bound
originally conjectured by Arnold.

On the other hand, the monograph [MS04] proves the basic Theorem 1.3
(their Theorem 9.2.14) using Floer’s equation and analytical content, but
without explicitly setting up Lagrangian Floer homology. It is this argument
(suitably sharpened), rather than Chekanov’s original presentation, that we
use in Section 6.1 to prove Theorem 1.2.

The plan of this essay is as follows. Chapter 2 reviews necessary back-
ground in contact and symplectic geometry. Chapter 3 is a detailed intro-
duction to problems concerning Reeb and Hamiltonian flows’ relation with
Legendrian and Lagrangian submanifolds. It includes a number of examples
and a further discussion of the literature.

Chapters 4 and 5 are the essay’s technical core. The target of these
chapters is Proposition 5.3.1. We state it here for convenience:

Proposition 1.4. Let (M,ω, J) be a tame compact symplectic manifold,
and L a compact Lagrangian submanifold of M , such that no sphere in M
or disc in M with boundary on L has positive symplectic area less than σ.
Then for each Hamiltonian form H on D2×(M,L) whose curvature satisfies∫

Σ

sup
p∈M

RH |(·,p) < σ,

each w ∈ ∂D2 and each p ∈ L, there is a map u : (D2, ∂D2, w)→ (M,L, p)
such that for all z ∈ D2,

∂Ju|z +X0,1
H |(z,u(z)) = 0.
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Observe that this proposition asserts the existence of discs with boundary on
L which satisfy perturbations of certain PDE, so long as the perturbations
are small in relation to the symplectic areas of spheres and discs in M .

There are two main components to the proof of Proposition 5.3.1. The
first, discussed in Chapter 4, is a very general pair of theorems, valid in any
almost-complex manifold, which describes the moduli space of such discs for
a typical perturbation of the Cauchy-Riemann equations. The proof of these
theorems uses the Sard-Smale theorem and a version of the Riemann-Roch
theorem. Roughly speaking, the theorems say: ‘generically,’ this moduli
space is a manifold, and depends smoothly on the perturbation.

The second component, developed in Chapter 5, is Gromov’s compact-
ness theorem, which severely prescribes the ways in which a sequence of so-
lutions in a symplectic manifold to a perturbation of the Cauchy-Riemann
equations can fail to have a convergent subsequence. The power of com-
bining this result (on compactness of moduli spaces of solutions) with those
of Chapter 4 is that we can conclude that the moduli spaces for different
perturbation terms are all compact, and cobordant to each other. Results
on existence of solutions for the zero perturbation then immediately imply
existence of solutions in general.

The conclusion of the essay, Chapter 6, uses Proposition 5.3.1 to deduce
Theorem 1.2, and thence Theorem 1.1, as previously described.

We make one major simplification throughout: we prove Theorems 1.1
and 1.2 for R2n (as we have stated them here), rather than for the class of
tame geometrically bounded symplectic manifolds as seen in the versions of
these theorems in the literature.

This essay was written in 2010 as coursework for the Cambridge “Part
III.” I would like to thank Gabriel Paternain, the essay-setter, for his en-
couragement and for helpful mathematical discussions. I am also grateful
to Chris Elliott for proofreading Chapters 1 and 3. The blame for all errors
and misrepresentations is my own.

Notation

• Let A and B be manifolds. We write

pr1 : A×B → A, pr2 : A×B → B,

for the projections from A × B onto its co-ordinates. For a vector
bundle E over A, we write pr1

∗E for the pullback of E under pr1 to a
bundle over A × B. Likewise for a section η of E, we write pr1

∗η for
η’s pullback to a section of pr1

∗E . (By contrast, π1, π2, . . . denote the
first, second, ... homotopy groups.
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• Let A and B be manifolds, and E and F vector bundles over A and
B respectively. We write E � F for the vector bundle

pr1
∗E ⊗ pr2

∗F

over A×B. We will sometimes also write, for instance, E�R, to denote
the bundle pr1

∗E; the idea is that R stands for the trivial bundle over
B.

• Let X1, X2, Y1, Y2 be topological spaces, with Y1 ⊆ X1 and Y2 ⊆ X2.
A map

f : (X1, Y1)→ (X2, Y2)

is a continuous function f : X1 → X2 such that f(Y1) ⊆ Y2.

• In a number of related senses defined throughout the essay, a tilde ũ
denotes the graph of a map u.

• Let Σ be a Riemann surface. Then Λi,jΣ denotes its bundle of (i, j)-
forms.
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Chapter 2

Contact and symplectic
geometry

In this chapter we briefly review some basic definitions, facts and examples
in contact and symplectic geometry. Our presentation derives from the texts
[CdS01], [MS98] and [Gei08] and the notes [Etn03].

2.1 Contact manifolds

Let N be a manifold of odd dimension 2n− 1.

Definition. A contact form on N is a nonzero 1-form α, such that the
(2n− 1)-form α ∧ (dα)n−1 is nonvanishing.

(Equivalently, such that dα has kernel of dimension 1, and

ker(dα) ∩ kerα = (0).)

If α is contact, then for each smooth function f : N → R+, the form fα
is also contact: for

fα ∧ [d(fα)]n−1 = fα ∧ (fdα+ df ∧ α)n−1 = fn
[
α ∧ (dα)n−1

]
.

A contact structure on N is an equivalence class of contact forms on N ,
where α ∼ β if β = fα for some smooth f : N → R+. A contact manifold
is a manifold equipped with a contact structure.

Remark. Strictly speaking, it is standard to define a contact structure on
a manifold N to be a (2n − 2)-plane distribution on N which locally is the
kernel of a contact form as we have defined them. The two concepts are
equivalent if the distribution is co-orientable. For simplicity, we restrict to
this case throughout the essay.
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Example 2.1.1 (Standard contact form on R2n−1). Consider the 1-form

α = dz +
2n−1∑
i=1

xjdyj

on R2n−1. We have

dα =
2n−1∑
i=1

dxj ∧ dyj ;

α ∧ (dα)n−1 = dz ∧ (dx1 ∧ dy1) ∧ · · · ∧ (dxn−1 ∧ dyn−1),

the standard volume form, so α is contact.

Example 2.1.2 (Standard overtwisted form on R3). Consider the 1-form
on R3 defined in cylindrical co-ordinates by

α = (cos r)dz + (r sin r)dθ.

We have

dα = −(sin r)dr ∧ dz + [r cos r + sin r] dr ∧ dθ;
α ∧ dα = (cos r) [r cos r + sin r] dz ∧ dr ∧ dθ − (r sin r)(sin r)dθ ∧ dr ∧ dz

=
[
1 +

sin r
r

]
(rdr) ∧ dθ ∧ dz.

Since 1+ sin r
r is ≥ 2 for nonnegative r, we conclude α∧dα is nonvanishing.

Thus α is contact.

Henceforth in this section fix a contact form α on N .

Definition. A Legendrian submanifold of (N,α) is a submanifold l of N ,
of dimension n− 1, such that α vanishes on T l.

Example 2.1.3 (Legendrian submanifolds of standard R3). The following
discussion is from [Etn03]. Recall from Example 2.1.1 the standard (not-
overtwisted) contact structure

α = dz + xdy

on R3. We can construct a Legendrian submanifold of (R3, α) as follows:
Pick a closed curve γ in R2 which satisfies the following conditions:

1. γ is smooth except for a finite number of points, ‘cusps,’ at which γ’s
slope tends to 0 from above from one direction and from below from
the other direction, but γ’s ’direction’ reverses.

2. γ is never tangent to vertical.
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3. At points where γ crosses itself, the slopes of the different branches at
the crossing points are all distinct.

Now identify R2 with the yz-plane (y horizontal, z vertical). Construct
a closed loop l in R3 whose projection to yz is γ, and whose x-co-ordinate is
−dz/dy. This gives a continuous map into R3 by conditions (1) and (2), and
by condition (3) does not self-intersect. Since x = −dz/dy, the submanifold
l is Legendrian.

Conversely, it is clear by projection onto the yz-plane that every compact
Legendrian submanifold of (R3, α) arises uniquely in this way.

It is clear that equivalent contact forms α, fα have the same Legendrian
submanifolds. Thus we can talk of Legendrian submanifolds as associated
with a contact structure rather than with a particular contact form.

Definition. The Reeb vector field of α is the vector field Y on N such that
Y ∈ ker dα and α(Y ) = 1.

(Since dα has kernel of dimension 1, and

ker(dα) ∩ kerα = (0),

there indeed exists a unique such vector field.)

Lemma 2.1.4. The flow along the Reeb vector field of (N,α) preserves α.

2.2 Symplectic manifolds

Let M be a manifold of even dimension 2n.

Definition. A symplectic form on M is a closed 2-form ω, such that the
2n-form ωn is nonvanishing.

(Equivalently, such that ω has zero kernel.)
A symplectic manifold is a manifold equipped with a symplectic form.

A symplectomorphism of a symplectic manifold is a diffeomorphism of the
manifold under which the symplectic form is preserved.

Example 2.2.1 (Standard symplectic form on R2n). Consider the closed
2-form

ω =
2n−1∑
i=1

dxj ∧ dyj

on R2n. We have

ωn = (dx1 ∧ dy1) ∧ · · · ∧ (dxn ∧ dyn),

the standard volume form, so α is contact.
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Example 2.2.2 (Cotangent bundles). Let W be a smooth n-manifold. Choose
co-ordinates (xi) on a neighbourhood of W , and corresponding co-ordinates
((xi), (ξi)) on the lift of that neighbourhood to T ∗W . That is, (ξi) are
the co-ordinate functions such that the covector ξ =

∑n
i=1 ξ

idxi at a point
(x1, . . . xn) on W has co-ordinate expression (x1, . . . xn, ξ1, . . . ξn).

Consider the 1-form

α = −
n∑
i=1

ξidxi,

on T ∗W (that is, it is a section of T ∗(T ∗W ).) This 1-form is independent
of the defining choice (xi) of co-ordinates. The closed 2-form

dα =
n∑
i=1

dxi ∧ dξi

on T ∗W is therefore also independent of choice of co-ordinates, and has zero
kenel. We call dα the canonical symplectic form on T ∗W .

Example 2.2.3 (Products). Let (M1, ω1) and (M2, ω2) be symplectic man-
ifolds. Then

(M1 ×M2, pr1
∗ω1 − pr2

∗ω2)

is a symplectic manifold.

We now introduce some concepts of symplectic geometry.

Definition. A Lagrangian submanifold of (M,ω) is a submanifold L of M ,
of dimension n, such that ω vanishes on TL.

(Since ω has zero kernel, there indeed exists a unique such vector field.)

Example 2.2.4. All 1-dimensional submanifolds of R2 are Lagrangian.

Example 2.2.5. For each closed 1-form η on a manifold W , the graph of η
is a Lagrangian submanifold of the cotangent bundle T ∗W with its canonical
symplectic structure.

Also for each point p ∈ W , the fibre T ∗pW is a Lagrangian submanifold
of T ∗W .

Example 2.2.6. Let (M,ω) be a symplectic manifold. Then the graph of a
diffeomorphism φ : M →M is a Lagrangian submanifold of

(M1 ×M2, pr1
∗ω1 − pr2

∗ω2)

if and only if φ is a symplectomorphism. In particular the diagonal ∆ is a
Lagrangian submanifold.
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Definition. The symplectic area of an immersed two-dimensional subman-
ifold of (M,ω),

u : Σ→M,

is the integral ∫
Σ
u∗ω.

Since ω is closed, this is by Stokes’ theorem homology invariant.

Definition. Let H ∈ C∞(M) be a smooth function on (M,ω). The Hamil-
tonian vector field of H is the vector field XH such that

ω(XH , ·) = dH.

We will be interested in flows of Hamiltonian vector fields on symplectic
manifolds, and also in a slightly more general class of flows:

Definition. A smooth time-dependent vector field on a manifold M is a
smooth section of the pullback bundle pr2

∗TM over I ×M , where I (the
‘time interval’) is an interval of R containing 0.

For instance, a smooth function H : I×M → R on a symplectic manifold
(M,ω) defines a time-dependent Hamiltonian vector field XHt .

Proposition 2.2.7 (Flows of time-dependent vector fields). Let Xt : I →
C∞(M) be a smooth time-dependent vector field on a manifold M , and let
p ∈M . Then there exists an interval J ⊆ I containing 0, on which there is
a unique curve γ : J →M with γ(0) = p and for each t ∈ J ,

γ̇(t) = Xt|γ(t).

Proof. Apply the standard theorem on flows of (time-independent) vector
fields to the manifold I×M and the vector field defined as the section (1, Xt)
of TI � TM ∼= T (I ×M).

Lemma 2.2.8. A flow along a time-dependent Hamiltonian vector field is
a symplectomorphism.

2.3 Examples and constructions

Lemma 2.3.1. Let α be a contact form on a manifold N . Then the closed
2-form d(esα) on N × R has zero kernel.

Proof.

[d(esα)]n = ens(ds ∧ α+ dα)n = ens
[
ds ∧ α ∧ (dα)n−1

]
.

This is nonvanishing since α is contact.
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We call the symplectic manifold (N × R, d(esα)) thus constructed the
symplectization of N .

In some sense conversely, we have the following concept.

Definition. A hypersurface N of a symplectic manifold (M,ω) is of contact
type, if there exists a vector field X defined on a neighbourhood of N in M ,
which is tranverse to N and satisfies d(ιXω) = ω.

This is a global condition: locally we can always construct such an X,
by picking a vector field X with this property which is transverse to N
at p ∈ N , then restricting to a neighbourhood of p on which X remains
transverse.

Lemma 2.3.2. Let N be a contact-type hypersurface of a symplectic man-
ifold (M,ω), and let X be a vector field on a neighbourhood of N in M ,
which is tranverse to N and satisfies d(ιXω) = ω. Then the restriction of
ιXω to N is a contact form on N .

Proof. Let α = ιXω. Then

α ∧ (dα)n−1 = ιXω ∧ ωn−1 = ιXω
n,

and since ωn is nonvanishing and X is transverse to N , this has nonvanishing
restriction to N .

Let us make precise the sense in which the two concepts are converse:

Example 2.3.3. Let (N,α) be a manifold with contact form. Then

d (ι∂s [es(dα+ ds ∧ α)]) = d(esα),

so N is a contact-type hypersurface of (N,α)’s symplectization; the induced
contact form ι∂sd(esα) is just α.

Lemma 2.3.4. Let N be a contact-type hypersurface of a symplectic man-
ifold (M,ω). Then there exists a neighbourhood of N in M which is sym-
plectomorphic, via a symplectomorphism fixing N , to a neighbourhood of
(N,α)’s symplectization.

Proof. Suppose α is induced by a vector field X on some neighbourhood of
N , so that ιXω = α, and dα = ω, and X is is tranverse to N . Then flow
along X in a neighbourhood of N to define the s-co-ordinate.

We now use the hypersurface construction to define two fundamental
examples of contact forms.
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Example 2.3.5 (Standard contact structure on S2n−1). Let ω be the stan-
dard symplectic form on R2n. Let X be the outward-pointing vector field

n∑
i=1

xi
∂

∂xi
+ yi

∂

∂yi

on R2n; for α := ιXω, we have

α =
n∑
i=1

xidyi − yidxi

and dα = ω. Therefore each hypersurface of R2n which is star-shaped about
the origin is of contact type, and has a contact form induced by X, the
restriction of α to that hypersurface.

However, a star-shaped-about-the-origin hypersurface of R2n is uniquely
defined by a tautological embedding of the sphere S2n−1 into R2n,

(x1, y1, . . . xn, yn) 7→ f(x1, y1, . . . xn, yn)(x1, y1, . . . xn, yn) ∈ R2n,

for some smooth positive function f on the sphere S2n−1. Let αf be the
contact form on S2n−1 which is the pullback under this embedding of that
induced on its image by X. Then αfg = fαg, so the contact forms αf are
precisely the representatives of a single contact structure on S2n−1, which
we call the standard contact structure on S2n−1.

In particular, we call S1 the standard contact form on S2n−1; it is the
restriction of α to the unit sphere of R2n.

Example 2.3.6 (Riemannian sphere bundles). Let W be a smooth manifold,
and recall the 1-form

α = −
n∑
i=1

ξidxi,

and symplectic form

dα =
n∑
i=1

dxi ∧ dξi

defined on T ∗W in Example 2.2.2. Consider the vector field

X =
n∑
i=1

ξi∂/∂ξi

on T ∗W (that is, it is a section of T (T ∗W ). Observe that

ιX(dα) = −
n∑
i=1

ξidxi = α.
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Therefore any hypersurface of T ∗W transverse to X is of contact type, and
α’s restriction to it is a natural contact form.

In particular, the unit sphere bundle SW with respect to any Riemannian
metric g on W has a natural contact form. (This is the cotangent unit sphere
bundle, but the Riemannian metric gives a canonical identification with the
tangent unit sphere bundle.)

The 1-form α vanishes on tangent vectors ∂/∂ξi, so the fibres of SW are
Legendrian submanifolds. The Reeb vector field is the geodesic vector field
on SW .

The dynamics of a Hamiltonian vector field on a symplectic manifold are
closely related to those of contact-type hypersurfaces that arise as its level
sets:

Lemma 2.3.7. Let N be a contact-type hypersurface of a symplectic mani-
fold (M,ω), let α be some contact form on N thus induced, and let H be a
smooth function on M whose level set H−1(c) is N .

Then the restriction of the Hamiltonian vector field XH to N is contained
in the tangent space TN , and is a nonvanishing multiple (not necessarily
constant) of the Reeb vector field of α.

Proof. Both vector fields lie in the 1-dimensional distribution ker(ω|N ) =
ker(dα) on N .
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Chapter 3

Two problems of Arnold

In this chapter we introduce the two classical [Arn86] conjectures of Arnold
whose proofs will occupy the rest of the essay: the Reeb chord problem in
Section 3.1, and the Lagrangian intersections problem in Section 3.2.

Parts of Section 3.1 were inspired by the survey article [Hut10b], which,
though primarily devoted to a different problem, the Weinstein conjecture,
containes a number of interesting examples of phenomena more generally
associated with Reeb flow. Section 3.2 draws heavily on discussions of the
Arnold conjecture in the texts [CdS01] and [MS98].

3.1 The chord conjecture

Let us investigate more closely the behaviour of some Reeb flows on contact
manifolds. One interesting issue is the behaviour of such a flow in relation
to a given Legendrian submanifold. For instance, one could ask about a
Legendrian submanifold l’s Reeb chords: those integral curves of a Reeb
vector field which both start and finish on l.

Equivalently, these are intersections of a Legendrian submanifold with
its image under a Reeb flow some time forward.

Example 3.1.1. We prove that in the contact manifold (R3, dz + xdy) of
Example 2.1.3, all closed Legendrian submanifolds have Reeb chords. Indeed,
that the closed Legendrian submanifolds of are uniquely determined by their
yz-plane projections to ‘cusped’ loops, via

x = −dz
dy
.

The Reeb vector field of (R3, dz + xdy) is ∂/∂z. Therefore the Reeb chords
of a Legendrian submanifold correspond to pairs of points on its yz-plane
projection which have the same yz-co-ordinate and same slope.

In the simplest case, when this projection has only two cusps, there must
be at least one such pair of points by the mean value theorem: we parametrize
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the two branches of the curve to give smooth functions z1, z2 : [a, b] → R,
and observe that since z1(a) = z2(a) and z1(b) = z2(b) there must be a point
in (a, b) with z′1(c) = z′2(c).

A more careful treatment extends this argument to a general Legen-
drian submanifold; we obtain that every compact Legendrian submanifold
of (R3, dz + xdy) admits a Reeb chord.

The next example is taken from [Abb99].

Example 3.1.2. We prove that ‘overtwisted’ contact form on R3 from Ex-
ample 2.1.2, given in cylindrical co-ordinates by α = cos rdz+ r sin rdθ, has
Legendrian submanifolds with no Reeb chords.

Observe that all circles centred at the origin in some plane z = z0 are
Legendrian submanifolds. The Reeb vector field, though complicated at a
general point in R3, is simply (−1)k∂/∂z along the cylinders r = πk for
k ∈ N.

It follows that the circles of radius πk centred at the origin in the planes
z = z0 are Legendrian submanifolds of (R3, α) which admit no Reeb chords.

For some more examples, recall from Example 2.3.6 that the sphere
bundle SW of a Riemannian manifold W has a natural contact form. The
fibre over each point is a Legendrian submanifold, and the geodesic vector
field is the Reeb vector field. The Reeb chords of the fibre SpW , for p ∈W ,
are therefore the geodesics which self-intersect at p.

Example 3.1.3. Every geodesic on the sphere Sn is periodic. Therefore the
fibres of Sn’s sphere bundle are Legendrian submanifolds with the property:
every integral curve starting on the Legendrian submanifold is a Reeb chord.

Example 3.1.4. No geodesic on Rn self-intersects. Therefore the fibres
of Rn’s sphere bundles are Legendrian submanifolds which admit no Reeb
chords.

We can generalize this as follows:

Example 3.1.5. Suppose W is complete and of nonpositive sectional cur-
vature. We show that each nontrivial homotopy class of W contains exactly
one geodesic from each p ∈ W to itself. Therefore the fibres of W ’s sphere
bundle each admit exactly |π1(W )| − 1 Reeb chords.

Indeed, all geodesics self-intersecting at p ∈ W lift to geodesics in W ’s
universal cover W̃ which connect two preimages p0, p1 of p. But by the
Cartan-Hadamard theorem, the exponential map from p0 is a diffeomorphism
onto W̃ , and thus any point in W̃ is connected to p0 by exactly one geodesic.

And, generalizing again:
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Example 3.1.6. Suppose W is compact and p ∈ W . We give a classical
variational argument (modified from one in [Cha06] IV.5.1 for a related
problem) to show: in each nontrivial homotopy class of W there is a geodesic
from p to p. Therefore, for a non-simply-connected compact manifold W :
all fibres of W ’s sphere bundle admit Reeb chords.

Indeed, take a sequence of constant-speed smooth curves from p to p in
the given homotopy class whose lengths tend to the infimum. By the Arzela-
Ascoli theorem some subsequence converges uniformly to a Lipschitz curve
γ from p to p. Now make a piecewise smooth version γ′ of γ by chopping γ
into very short pieces and then replacing each very short piece by the unique
minimizing constant-speed geodesic on the same domain which connects its
endpoints. It is easy to check that γ′ does what we want.

The existence of Reeb chords of Legendrian submanifolds was among
the phenomena considered in [Arn86]. Regarding Reeb chords, Arnold’s
prediction was that there should be good topological lower bounds for the
number admitted by a Legendrian submanifold.

What has become known as the Arnold chord conjecture is the following:

Conjecture. Let α be a contact form on a compact odd-dimensional man-
ifold N , and let l be a closed Legendrian submanifold of (N,α). Then l
admits a Reeb chord.

This conjecture is still open. However, it has been proved in numerous
special cases, using a wide variety of techniques.

• In 2000, Cieliebak [Cie02] proved the chord conjecture for certain,
topologically uncomplicated, Legendrian submanifolds of boundaries
of subcritical Stein domains.

(We will not define subcritical Stein domains here. They are complex
manifolds-with-boundary which possess a certain ‘convexity’ property. Their
boundaries inherit natural contact forms.
A wide class of compact contact manifolds arise as boundaries of subcritical
Stein domains, including all contact forms compatible with the standard
contact structure on S2n−1, and more generally all contact-type hypersur-
faces of R2n.)

• In 2001, Mohnke [Moh01] proved the chord conjecture for (among
other things) boundaries of subcritical Stein domains. Mohnke’s work
uses Gromov’s theory of J-holomorphic curves.

• In 2010, Hutchings and Taubes [Hut10a] proved the chord conjec-
ture for all compact 3-manifolds. Their work uses deep techniques
of low-dimensional topology, including embedded contact homology
and Seiberg-Witten Floer homology.

16



We will present Mohnke’s result in Section 6.2 (restricting for simplicity
to contact-type hypersurfaces of R2n), after developing in Chapters 4 and 5
the facts about J-holomorphic curves of which he makes use. The key obser-
vation is to convert the problem into a statement about discs in symplectic
manifolds:

Proposition 3.1.7. Let α be a contact form on an odd-dimensional man-
ifold N , and let l be a closed Legendrian submanifold of (N,α). Suppose
T > 0 such that l has no Reeb chord of length less than or equal to T . Then
for each S > 0, the symplectic manifold (N×[S, 0], d(esα)) has a Lagrangian
submanifold L, such that the symplectic areas of all discs with boundary on
L are multiples of (1− eS)T .

Proof. By compactness of N and l, in fact l has no Reeb chord of length less
than or equal to T + ε, for some ε > 0. Therefore we have an embedding of
l × [0, T + ε] into N , given by

(p, t) 7→ Φt(p),

where Φt is the flow associated with the Reeb vector field. (It is defined for
all time since N is compact.) We thence construct an embedding of l×[0, T+
ε]× [S, 0] into the finite cylinder (N × [S, 0], d(esα)) of N ’s symplectization,
via

(p, t, s) 7→ (Φt(p), s).

Since α vanishes on TN , the 1-form esα on N × [S, 0] pulls back to esdt on
l × [0, T + ε]× [S, 0].

The area with respect to the form esds ∧ dt = d(est) of the rectangle
[0, T + ε] × [S, 0] is (T + ε)(1 − eS). Pick a simple closed smooth curve in
[0, T + ε]× [S, 0],

(γ1, γ2) : S1 → [0, T + ε]× [S, 0]

which encloses an area of T (1− eS). We claim the embedding of l×S1 into
N × [S, 0] constructed from this loop,

(p, θ) 7→ (φγ1(θ)(p), γ2(θ))

has image a Lagrangian submanifold of (N × [S, 0], d(esα)). This is clear
since dα vanishes on T l, whereas the Reeb flow and ∂/∂s are transverse to
kerα.

By Stokes’ theorem, since the symplectic form d(esα) on N × [S, 0] is
exact, the symplectic areas of discs with boundary on l × S1’s image are
integrals of esα along their boundaries, closed loops in l×S1’s image. Pulling
back under the embedding, these become: integrals of esdt along closed loops
in l× [0, T + ε]× [S, 0] whose projection to [0, T + ε]× [S, 0] is contained in
the loop (γ1, γ2).

But by construction (γ1, γ2) encloses an area of T (1 − eS) with respect
to d(esdt), so all such integrals are multiples of T (1− eS).
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3.2 Lagrangian intersections

The most famous of Arnold’s conjectures in [Arn86] concerns the intersec-
tions of a Lagrangian submanifold of a symplectic manifold with its image
under a Hamiltonian isotopy ; that is, the time-1 flow of a time-dependent
Hamiltonian vector field.

Such intersections are precisely the initial points, of those length-1 in-
tegral curves of the Hamiltonian flow which both start and finish on the
Lagrangian submanifold. This problem is thus a natural symplectic ana-
logue of the chord conjecture.

Let us discuss some examples.

Example 3.2.1. Let F : W × [0, 1] → R be a smooth time-dependent
function on a manifold W , and consider the time-dependent Hamiltonian
H = F ◦ π on the symplectic (recall Examples 2.2.2 and 2.2.5) manifold
T ∗W . That is, Ht is a time-dependent Hamiltonian on the cotangent bun-
dle T ∗W which is constant on T ∗W ’s fibres.

The Hamiltonian vector field of Ht is dFt, where we interpret the section
dFt of T ∗W tautologically as a section of T (T ∗W ). The time-1 flow of this
Hamiltonian on T ∗W is the diffeomorphism

(p, η) 7→

p, η +

1∫
0

dFt|p dt

 .

Each closed section of T ∗W has graph a Lagrangian submanifold of T ∗W .
Intersections of such a section with its image under Ht’s time-1 flow, cor-
respond to points p ∈W such that

0 =

1∫
0

dFt|p dt = d

 1∫
0

Ft dt

 |p;
that is, to critical points of the function

∫ 1
0 Ftdt on W . If W is compact and

this function is ‘generic,’ then Morse theory gives the lower bound

dimH∗(W )

for the number of such critical points. In any event, if W is compact, there
are at least two critical points (maximum and minimum).

Example 3.2.2. We show the study of Lagrangian intersections subsumes
the study of fixed points of Hamiltonian isotopies.

Let Ht be a time-dependent Hamiltonian on a symplectic manifold M .
Then Ht ◦ pr2 is a time-dependent Hamiltonian on the symplectic (recall
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Examples 2.2.3 and 2.2.6) manifold M ×M ; their time-1 flows ψH , ψH◦pr2
respectively satisify,

ψH◦pr2(p1, p2) = (p1, ψH(p2)).

So the image of the diagonal ∆ ⊆ M ×M under M ×M ’s Hamiltonian
symplectomorphism ψH◦pr2 is the graph in M × M of M ’s Hamiltonian
symplectomorphism ψH .

Thus we have a correspondence between:

• Intersections of the Lagrangian submanifold ∆ ⊆M×M with its image
under the time-1 flow of Ht ◦ pr2; and,

• Fixed points of the time-1 flow of Ht.

Example 3.2.3. Let (N,α) be a manifold with contact form. Consider,
for some smooth function F : R → R, the (time-independent) Hamiltonian
H = F ◦ pr2 on N ’s symplectization (N × R, d(esα)). That is, H is a
Hamiltonian on N × R which is constant on cross-sections N × {s0}.

Let Y be the Reeb vector field of α. We claim that −F ′(s)e−sY is the
Hamiltonian vector field of H. Indeed,

d(esα)(−F ′(s)e−sY ) = es(dα+ ds ∧ α)(−F ′(s)e−sY )
= −F ′(s)(dα(Y, ·)− α(Y )ds)
= F ′(s)ds = dH.

Each Legendrian submanifold l ⊆ N gives rise to a Lagrangian subman-
ifold l×R of (N,α). Intersections of l×R with its image under time-1 flow
of H correspond to Reeb chords of l of length |F ′(s)|e−s for some s ∈ R.

In particular, if s 7→ |F ′(s)|e−s is surjective onto R+ (say, F (s) = e2s),
then l×R intersects its image under H’s time-1 flow precisely if l admits a
Reeb chord.

Example 3.2.4. This is a cautionary example: any compact Lagrangian
submanifold L of R2n can be completely displaced from itself by a compactly-
supported Hamiltonian isotopy.

For instance, enclose L in some product of open half-discs S1×· · ·×Sn ⊆
R2n, centred without loss of generality at the origin, so

Si = {(x, y) ∈ R2 : x > 0, x2 + y2 < R2
i }.

Define Hi : R2 → R by

Hi(x, y) =

{
0, x2 + y2 ≥ R2

i
1
2π(R2

i − x2 − y2), x2 + y2 < R2
i
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and H : R2n → R

H(x1, y1, . . . xn, yn) = Σn
i=1Hi(xi, yi).

H is compactly supported and continuous, and smooth except on the bound-
ary of S1×· · ·×Sn. Its Hamiltonian vector field XH at (x1, y1, . . . xn, yn) ∈
R2n not on S1 × · · · × Sn’s boundary is

(XH1 |(x1,y1), . . . XHn |(xn,yn)) ∈ T(x1,y1)R2 × · · · × T(xn,yn)R2,

with, more explicitly,

XHi |(x, y) =

{
0, x2 + y2 ≥ R2

i

π(−y, x), x2 + y2 < R2
i ;

its time-1 flow is rotation by π, inside the circle x2 + y2 = R2
i , and the

identity, outside the circle x2 + y2 = R2
i .

Smoothly approximating H gives a smooth compactly-supported Hamil-
tonian isotopy which displaces L.

What has become known as the Arnold conjecture for Lagrangian inter-
sections, is versions of the following:

Conjecture. Let L0, L1 be compact Lagrangian submanifolds of a symplec-
tic manifold M , such that some compactly-supported Hamiltonian isotopy of
M sends L0 to L1. Then L0 and L1 must have at least as many intersection
points as a function on L0 must have critical points.

Example 3.2.4 shows we must place some restrictions on L0 if working
in complete generality. The arguments of Example 3.2.1 suggest consider-
ing, if L0 and L1 intersect transversely, the interesting weaker lower bound
dimH∗(L0).

The two breakthroughs on this conjecture came in the late ’80s:

• In 1985, Gromov [Gro85] considered the Arnold conjecture for tame
geometrically bounded symplectic manifolds, and Lagrangian subman-
ifolds L0 such that all discs with boundary on L0 have zero symplectic
area. He proved that L0 and its image must intersect at least once.

(We will not define tame geometrical boundedness here. It is a property
possessed by all compact symplectic manifolds, and also by well-behaved
non-compact ones such as R2n and cotangent bundles.)

• In 1988, Floer [Flo88], under essentially the same restrictions as Gro-
mov, proved that if L0 and its image intersect transversely then they
intersect in at least dimH∗(L0,Z2) points.
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In Section 6.1, we will prove an sharpening, due to Chekanov [Che96],
of Gromov’s result (restricting for simplicity to the symplectic manifold
R2n). This relates the minimal ‘size’ of a Hamilton isotopy which displaces
a Lagrangian submanifold L to the minimal symplectic area of a disc with
boundary on L.
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Chapter 4

Curves in almost-complex
manifolds

This chapter discusses the set of solutions to a generic perturbed Cauchy-
Riemann equation in an almost-complex manifold. Section 4.1 introduces
these objects. Sections 4.2-3 discuss the Sard-Smale theorem and the Riemann-
Roch theorem, in preparation for the two transversality theorems of Section
4.4, which are the major results of the chapter.

Theorem 4.2.1’s neat summary of the Morse theory paradigm is taken
from the lecture notes [Hut02]. Section 4.3’s discussion of Cauchy-Riemann
operators, the Maslov index and the Riemann-Roch theorem is based on
that of [MS04] Appendix C.

The notation and arguments of Section 4.4 are modelled on that of
[MS04]’s Chapter 3 (and the lecture notes [Wen10] which amplify it). How-
ever, their discussion there has a rather different focus:

• They are interested in maps with closed domain (for instance, S2),
whereas we are most interested in the surface with boundary D2.

• They are interested in the moduli space of J-holomorphic curves for a
variable almost-complex structure J , whereas we are interested in the
moduli space of solutions to a perturbed Cauchy-Riemann equation
for a variable perturbation, having fixed a particular almost-complex
structure.

In the second of these differences, our needs are simpler: we have a nice
linear structure on the space of things we vary, and because solutions for
a generic perturbation have no notrivial automorphisms our compactness
proofs will be easier later on.

The statements of Theorem 4.4.2 and 4.4.3 are therefore instead modelled
on [MS04]’s Section 8.3; this section is a brief discussion of a pair of theorems
which matches our needs on the second point (though not on the first).
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The final chapter of [AL94] contains similar arguments in concrete form
and in a context very close to our intended applications, and was very useful
as an introduction.

Most of this section is intended to be heuristic rather than rigorous.
We are deliberately vague about the regularity demanded of functions in
our ‘spaces’ (for instance, the ‘space’ of maps u : (D2, ∂D2) → (M,L), the
‘space’ of sections of Λ0,1D2 �TM , and so on) and about the topology that
we put on them. We hope that the purely formal approach of this chapter
conveys some intuition despite the necessary technical gaps.

The reason that a naive argument will fail is that the natural class and
topology of maps – the class of smooth maps, in the topology of uniform
convergence in all derivatives – is not Banach. A rigorous argument would
first carry out analogues of this chapter’s arguments in the kth-order weakly
differentiable category, for each k ∈ N, and thence deduce the smooth-
category result.

4.1 Almost-complex structures

An almost-complex structure on a manifold M is a section J of T 1
1M , such

that J2 = −1. If M admits an almost-complex structure, it is forced even-
dimensional: at each point p ∈M , the endomorphism J |p of TpM can have
as eigenvalues only ±i, and must have an equal number of each.

An n-submanifold L of an almost-complex 2n-manifold (M,J) is totally
real, if for each nonzero X ∈ TL the vector JX is not in TL.

Henceforth we fix a compact almost-complex manifold (M,J).
Let (Σ, j) a Riemann surface (possibly with boundary). From a smooth

map u : Σ→M we define the object ∂Ju, the complex anti-linear part of u’s
differential, which is a section of the complex vector bundle Λ0,1Σ⊗C u

∗TM
over Σ, and is given explicitly by

∂Ju|z =
1
2
(
duz + Ju(z) ◦ du|z ◦ jz

)
.

A map u : Σ → M is J-holomorphic, if it satisfies the Cauchy-Riemann
equation: for all z ∈ Σ,

∂Ju|z = 0.

More generally, we will be interested in solutions to perturbed Cauchy-
Riemann equations. That is, consider the complex vector bundle Λ0,1Σ �C
TM over Σ ×M , whose fibre over (z, p) is Λ0,1

z Σ ⊗C TpM , canonically iso-
morphic to the space of complex anti-linear homomorphisms from TzΣ into
TpM . Given a typical section g of Λ0,1Σ �C TM , we will be interested in
the solutions u : Σ→M to the equation: for all z ∈ Σ,

∂Ju|z + g|(z,u(z)) = 0. (4.1)
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Henceforth we will often abbreviate this equation as:

∂Ju+ g|eu = 0.

The rest of this section is a slight digression, which will be useful in
Chapter 5. We observe that the graphs of solutions of a perturbed Cauchy-
Riemann equation can be interpreted as pseudoholomorphic curves for a
perturbed almost-complex structure on the product manifold.

Lemma 4.1.1. Let (M,J) be an almost-complex manifold, (Σ, j) a Riemann
surface, and g a section of Λ0,1Σ �C TM .

(i) The (1, 1)-tensor

Jg =
(
j 0
2Jg J

)
on Σ×M is an almost-complex structure.

(ii) Fix w ∈ Σ. Let Σ′ be another Riemann surface, and let u : Σ′ → M .
Then the map (w, u) : Σ′ → Σ×M into the fibre {w}×M , defined by

(w, u)(z) = (w, u(z)),

is Jg-holomorphic if and only if u is J-holomorphic.

(iii) Let u : Σ→M . Then u’s graph ũ : Σ→ Σ×M , defined by

ũ(z) = (z, u(z)),

is Jg-holomorphic if and only if u is a solution of (4.1).

Proof. 1. Since g is complex anti-linear, Jgj + J2g = g − g = 0. So

J2
g =

(
j2 0
2(Jgj + J2g) J2

)2

= 0.

2. Clear.

3. Let u : Σ→M have graph ũ : Σ→ Σ×M , and let z ∈ Σ. Then

∂Jg ũ|z =
1
2

[(
I
duz

)
+
(
jz 0
2Ju(z) ◦ g|(z,u(z)) Ju(z)

)(
I
duz

)
jz

]
=

1
2

(
I − jz2

duz + 2Ju(z) ◦ g|(z,u(z)) ◦ jz + Ju(z) ◦ du|z ◦ jz

)
=

(
0
∂Ju|z + g|(z,u(z))

)
.

So ∂Jg ũ|z = 0 for all z, if and only if ∂Ju|z + g|(z,u(z)) = 0 for all z.
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4.2 Banach manifolds and generic behaviour

We begin this section by summarizing, very abstractly, the analytical setup
for this chapter’s results on moduli spaces of solutions to perturbed Cauchy-
Riemann equations. We follow Hutchings’ notes [Hut02].

Definition. Let R be a separable Banach manifold, E → R a separable
Banach space bundle, and ψ : R→ E a smooth section. Then the lineariza-
tion of the section ψ at a point r ∈ R at which ψ vanishes, is the map
Dψ|r : TrR→ Er defined by, for v ∈ TrR,

Dψ|r(v) = ∇vψ,

where ∇ is an arbitrary connection on R.

Remark. To check the linearization is well-defined, we should show that its
definition is independent of the choice ∇ of connection. Indeed, if ∇ and ∇
are connections on R, then their difference is tensorial, so, since ψ vanishes
at r, (∇−∇)ψ does also.

Theorem 4.2.1. Let Q be a separable Banach manifold, R a separable
Banach manifold with (possibly null) boundary, E → Q × R a separable
Banach space bundle, and ψ : Q × R → E a smooth section. Suppose that
for all (q, r) ∈ ψ−1(0), the following hold:

1. The linearization Dψ|(q,r) : T(q,r)(Q×R)→ E(q,r) is surjective.

2. The restricted linearization D(ψq)|r : TrR → E(q,r) is Fredholm of
index l ≥ 0.

Suppose also that for all (q, r) ∈ ψ−1(0) with r ∈ ∂R,

3. The (further-)restricted linearization D(ψq)|r : Tr(∂R) → E(q,r) is
surjective.

Let Qreg be the subset of Q consisting of those q ∈ Q such that, for all
r ∈ R with ψ(q, r) = 0, the restricted linearization D(ψq)|r : TrR → E(q,r)

is surjective. Then:

1. For each q ∈ Qreg, the subset {r ∈ R : ψ(q, r) = 0} of R is a a smooth
manifold of dimension l, with boundary {r ∈ ∂R : ψ(q, r) = 0}.

2. The set Qreg is of the second category in Q.

Remark. The tangent space T(q,r)(Q × R) splits as TqQ × TrR. The lin-
earization

Dψ|(q,r) : TqQ× TrR→ E(q,r)
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splits as D(ψq)|r +D(ψr)|q, where

D(ψq)|r : TrR→ E(q,r) and D(ψr)|q : TqQ→ E(q,r)

respectively are the ‘restricted linearizations’ of Dψ|(q,r); that is, the lin-
earizations of the section ψq := ψ(q, ·) of Eq → R, and the section ψr :=
ψ(·, r) of Er → Q, respectively.

Proof of Theorem 4.2.1. An application of the Sard-Smale theorem (a Banach-
space generalization of Sard’s theorem on regular values of smooth maps),
together with the implicit function theorem.

Roughly speaking, the plan for this chapter is to apply Theorem 4.2.1,
in the context of an almost-complex manifold (M,J) and fixed totally real
submanifold L ⊆M , to the following two situations:

1. (a) As R, the space of maps u : (D2, ∂D2) → (M,L) in a fixed
homology class A ∈ H2(M,L).

(b) As Q, the space of sections of Λ0,1D2 � TM .

(c) As E, the bundle overQ×R whose fibre over (g, u) is Ω0,1(u∗(TM)).

(d) As ψ, the section of E given by,

∂J + g|e.
More explicitly, the section of E whose value in the fibre over
(g, u) is

∂Ju+ g|eu.
(For this notation, see the previous section.)

Theorem 4.2.1 will tell us that for generic sections g of Λ0,1D2 � TM ,
the space

M(A; g) := {u ∈ R : ψ(g, u) = 0},

consisting of the solutions to the perturbed Cauchy-Riemann equation
(4.1) in the homotopy class A, is a smooth oriented manifold.

2. Fix sections g0 and g1 of Λ0,1D2 � TM .

(a) As R, the product of [0, 1] with the space of maps u : (D2, ∂D2)→
(M,L) in a fixed homology class A ∈ H2(M,L).

(b) As Q, the space of homotopies (gλ)λ from g0 to g1 through sec-
tions of Λ0,1D2 � TM .

(c) As E, the bundle over Q × R whose fibre over ((gλ)λ, λ, u) is
Ω0,1(u∗(TM)).
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(d) As ψ, the section of E given by,

∂J + g|e.
More explicitly, the section of E whose value in the fibre over
((gλ)λ, λ, u) is

∂Ju+ gλ|eu.
Theorem 4.2.1 will tell us that for generic homotopies (gλ)λ from g0

to g1, the space

W(A; (gλ)λ) = {(λ, u) : λ ∈ [0, 1], u ∈M(A; gλ)}

consisting of the disjoint union of the solutions in the homology class
A to the perturbed Cauchy-Riemann equations along the homotopy
(gλ)λ, is a smooth manifold with boundary

M(A; g0) ∪M(A; g1).

It is clear from our intended applications that the linearization at a
solution u ∈ M(A; g) of the section ∂J + g|e will be of crucial interest.
We conclude this section by describing an operator which, again roughly
speaking, is this linearization. The objects of Section 4.3 will be to show
this operator is Fredholm and to calculate its index.

Lemma 4.2.2. Let g be a section of Λ0,1D2 �C TM , let u ∈M(A; g), and
let ξ ∈ Ω0(u∗(TM)). Pick a symmetric connection ∇ on M , and consider
the element of Λ1D2 ⊗ u∗(TM) given by

(∇ξ)0,1 +
1
2

(∇ξJ) ◦ du ◦ j +∇ξg;

or, more explicitly, as the bundle map from TD2 to u∗(TM) given by,

v 7→ 1
2
[
(u∗∇)vξ + J(u∗∇)jvξ + (∇ξ(z)J)(du(jv))

]
+
[
∇ξ(z)(g|z)

]
(v).

Then this element of Λ1D2⊗u∗(TM) is independent of the choice of ∇, and
is complex anti-linear in v.

Proof. Straightforward calculations applying the perturbed Cauchy-Riemann
equation (4.1).

We write
Dg,u : Ω0(u∗(TM))→ Ω0,1(u∗(TM))

for the thus-defined operator

ξ 7→ (∇ξ)0,1 +
1
2

(∇ξJ) ◦ du ◦ j +∇ξg.
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Roughly speaking, the tangent space at u of the manifold{
maps from (D2, ∂D2) to (M,L) in the homology class A

}
.

is the space of sections of the pullback complex vector bundle u∗(TM) →
D2 which, on the disc’s boundary ∂D2, lie in the totally real sub-bundle
u|∂D2

∗(TL), which we write as

Ω0(u∗(TM), u|∂D2
∗(TL)).

Again roughly speaking, the restriction of Dg,u to

Ω0(u∗(TM), u|∂D2
∗(TL)),

is the linearization at u of the section ∂J + g|e.
4.3 The Riemann-Roch theorem

Definition. Let E be a complex vector bundle over a Riemann surface (pos-
sibly with boundary) Σ. We write J for the complex structure on E.

1. A real linear Cauchy-Riemann operator on E is a linear operator

D : Ω0(E)→ Ω0,1(E)

which satisfies the Leibnitz rule: for ξ ∈ Ω0(E) and smooth real func-
tions f ∈ C∞(Σ),

D(fξ) = fDξ +
1
2

[dfξ + (df ◦ j)Jξ] .

2. A (complex linear) Cauchy-Riemann operator on E is a real linear
Cauchy-Riemann operator which commutes with J : for ξ ∈ Ω0(E),

D(Jξ) = JDξ.

The idea of the preceding definition is as follows: A (complex linear)
Cauchy-Riemann operator is a very natural geometric object. (In fact
it can be shown that a Cauchy-Riemann operator is essentially the same
data as a choice of holomorphic structure on a bundle pair.) A real lin-
ear Cauchy-Riemann operator is a ‘zeroth-order perturbation’ of a complex
linear Cauchy-Riemann operator; that is, a real linear Cauchy-Riemann op-
erator differs by a tensor from some complex linear one.

The following example is our intended use of the concept.
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Example 4.3.1. Let (M,J) be an almost-complex manifold, let L be a
totally real submanifold of M , let g be a section of Λ0,1D2 �C TM , let
A ∈ H2(M,L), and let u ∈ M(A; g). Then the operator Dg,u is a real
linear Cauchy-Riemann operator on the complex bundle u∗(TM) (with com-
plex structure J) over the Riemann surface D2.

Proof. Let ξ ∈ Ω0(u∗(TM)) and f ∈ C∞(D2), and pick a symmetric con-
nection ∇ on M . Then

Dg,u(fξ) =
1
2

[∇fξ + J(∇fξ) ◦ j + (∇fξJ) ◦ du ◦ j] +∇fξg

=
1
2

[f∇ξ + (df)ξ + fJ(∇ξ) ◦ j + (df ◦ j)Jξ + f(∇ξJ) ◦ du ◦ j] + f∇ξg

= fDg,uξ +
1
2

[dfξ + (df ◦ j)Jξ] .

The classical Riemann-Roch theorem can be interpreted as a formula for
the index of a complex-linear Cauchy-Riemann operator. Since the index of
a Fredholm operator is invariant under perturbation, it is therefore plausible
that some variant of the Riemann-Roch theorem should give a formula more
generally for the indices of real linear Cauchy-Riemann operators. We spend
the rest of the section describing such a variant on the disc D2.

First we specify some boundary conditions. Following [MS04], we define
a bundle pair over a Riemann surface Σ to be a pair (E,F ), where E is a
complex vector bundle over Σ and F is a totally real sub-bundle of E|∂Σ.

Example 4.3.2. Let (M,J) be an almost-complex manifold, let L be a
totally real submanifold of M , and let u : (D2, ∂D2) → (M,L). Then
(u∗(TM), u|∂D2

∗(TL)) is a bundle pair over the disc D2.

A useful invariant of bundle pairs is the boundary Maslov index, defined
by the following lemma.

Lemma 4.3.3. There is a unique operation, assigning to each bundle pair
(E,F ) over the complex disc an integer µ(E,F ), for which the following
conditions are satisfied:

1. Let (E1, F1) and (E2, F2) be isomorphic bundle pairs over D2. Then

µ(E1, F1) = µ(E2, F2).

2. Let (E1, F1) and (E2, F2) be bundle pairs over D2. Then

µ(E1 ⊕ E2, F1 ⊕ F2) = µ(E1, F1) + µ(E2, F2).
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3. Let E = D × C be the trivial line bundle over D2, and let Fk be the
totally real sub-bundle of E|∂D2 whose fibre over eiθ ∈ ∂D2 is Reikθ/2.
Then

µ(E,Fk) = k.

Lemma 4.3.4 (Homology invariance for pullback bundles). Let (M,J) be
an almost-complex manifold, let L be a totally real submanifold of M , and
let u : (D2, ∂D2) → (M,L). Then the Maslov index of the bundle pair
(u∗(TM), u|∂D2

∗(TL)) over D2 depends only on u’s homology class in M
relative to L.

We therefore introduce the notation µ(A), for A ∈ H2(M,L). The inte-
ger µ(A) is the Maslov index of the bundle pair (u∗(TM), u|∂D2

∗(TL)), for
any map u : (D2, ∂D2)→ (M,L) in the class A.

Example 4.3.5. If u is nullhomologous relative to L, then the bundle pair
(u∗(TM), u|∂D2

∗(TL)) is isomorphic to the trivial bundle pair (D2×Cn, D2×
Rn), and the Maslov index of (u∗(TM), u|∂D2

∗(TL)) is 0.

Using the Maslov index we can state the appropriate version of Riemann-
Roch:

Theorem 4.3.6 (Riemann-Roch for the disc). Let (E,F ) be a bundle pair
over D2. Let D be a real linear Cauchy-Riemann operator on E, and con-
sider its restriction

D : Ω0(E,F )→ Ω0,1(E)

to the space of smooth sections of E which, on ∂D2, lie in F . Then this
restriction is Fredholm, with index n+ µ(E,F ).

Example 4.3.7. Consider the standard complex anti-linear differential

∂ : Ω0(Σ× C, ∂Σ× R)→ Ω0,1(Σ× C);

it is (in fact the prototypical example of) a Cauchy-Riemann operator.
The kernel of ∂ with the given boundary conditions is the set of holo-

morphic functions on the disc which are real on the disc’s boundary. By
the mean value property of harmonic functions, the complex parts of such
functions are uniformly 0, so such functions must be constant. The real
dimension of ∂’s kernel is therefore 1.

Since the bundle pair (Σ×C, ∂Σ×R) is trivial, it has zero Maslov index.
Therefore by the Riemann-Roch theorem ∂’s restriction to Ω0(Σ×C, ∂Σ×R)
is Fredholm of index 1.

We conclude that with these boundary conditions ∂ has cokernel dimen-
sion 1− 1 = 0, so is surjective.
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Corollary 4.3.8. Let (M,J) be an almost-complex manifold, let L be a
totally real submanifold of M , let g be a section of Λ0,1D2 �C TM , let A ∈
H2(M,L), and let u ∈M(A; g). Then the restriction to

Ω0(u∗(TM), u|∂D2
∗(TL)),

of the operator Dg,u is Fredholm, with index n+ µ(A).

Proof. The homology invariance of the Maslov index for pullback bundles,
Lemma 4.3.4.

4.4 Generic perturbed Cauchy-Riemann equations

As in previous sections, we let (M,J) be a compact almost-complex manifold
and L a compact totally real submanifold of M , and denote by (D2, ∂D2)
the unit disc with its standard Riemann-surface-with-boundary structure.

We continue to writeM(A; g) for the set of solutions in a homology class
A to the perturbed Cauchy-Riemann equation (4.1).

Definition. Let G be a Banach subspace of the space of sections of Λ0,1D2�
TM . We will say G is sufficiently full, if for each map u : (D2, ∂D2) →
(M,L) and each v ∈ Ω0,1(u∗(TM)), there is an element g ∈ G which agrees
with v along the graph of u; that is, such that for all z ∈ Σ,

g|(z,u(z)) = vz ∈ Λ0,1
z Σ⊗ Tu(z)M.

We now fix some more notation for the rest of the section. Let B be a
Banach space, and̂(more explicitly,

B 7→ B̂)

a bounded linear map from B into the sections of Λ0,1D2 �TM . We impose
the following hypothesis on (B,̂ ): we demand its image B̂, a subspace of the
space of sections of Λ0,1D2 � TM , be sufficiently full.

We also fix a homology class A ∈ H2(M,L), and an open subset V of B.

Definition. The regular subset of V , denoted Vreg(A), consists of those
B ∈ V such that, for all u : (D2, ∂D2)→ (M,L) in the class A solving

∂Ju+ B̂|eu = 0,

the linearization D bB,u is surjective.

Example 4.4.1. Let us show that if the homology class A is zero, then
0 ∈ Vreg. We need to prove: for all J-holomorphic u : (D2, ∂D2) → (M,L)
which are nullhomologous relative to L, the the associated linearization

D0,u : Ω0(u∗(TM), u|∗∂D2(TL))→ Ω0,1(u∗(TM))

31



is surjective.
The key observation is that a J-holomorphic curve which is zero in rel-

ative homology is constant. (Indeed, J-holomorphic maps preserve orienta-
tion, so nonconstant ones have strictly positive symplectic area and hence
nonzero homology class.)

So the bundle pair (u∗(TM), u|∗∂D2(TL)) is isomorphic to the trivial bun-
dle pair

(Σ× Cn, ∂Σ× Rn),

and the operator D0,u must correspond under some such isomorphism to the
trivial operator

Dn : Ω0(Σ× Cn, ∂Σ× Rn)→ Ω0,1(Σ× Cn)

constructed from the complex anti-linear differential ∂ with trivial boundary
conditions,

∂ = D : Ω0(Σ× C, ∂Σ× R)→ Ω0,1(Σ× C),

as discussed in Example 4.3.7. We proved in that example that ∂ is surjec-
tive. Therefore its n-fold product is surjective too.

Theorem 4.4.2. (i) For each B ∈ Vreg(A), the space M(A; B̂) is a
smooth oriented manifold of dimension n+ µ(A).

(ii) The set Vreg(A) is of the second category in V .

Proof. We apply the setup outlined (in a special case) previously: the idea
is to apply Theorem 4.2.1 with:

1. As R, the space of maps u : (D2, ∂D2)→ (M,L) in the homology class
A.

2. As Q, the open subset V of B.

3. As E, the bundle over Q×R whose fibre over (B, u) is Ω0,1(u∗(TM)).

4. As ψ, the section ∂J + B̂|e of E.

For a solution u ∈M(A; B̂), the restricted linearizations at (B, u) are:

• In theR-direction, the mapD(ψB)|u = D bB,u : Ω0(u∗(TM))→ Ω0,1(u∗(TM))
described in Sections 4.2-3: for ξ ∈ Ω0(u∗(TM)), we have

D bB,uξ = (∇ξ)0,1 +
1
2

(∇ξJ) ◦ du ◦ j +∇ξB̂.

• In the Q-direction, the map D(ψu)|B : B → Ω0,1(u∗(TM)) given by,
for B′ ∈ B,

D(ψu)|B(B′) = B̂′|eu;

that is, D(ψu)|B(B′) is the section of Λ0,1Σ⊗ u∗(TM) which at z ∈ Σ
gives B̂′|(z,u(z)) ∈ Λ0,1

z Σ⊗ Tu(z)M .
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We need only check that Theorem 4.2.1’s hypotheses hold. The condition
that B’s image be sufficiently full means that, for each B ∈ V and each
u ∈M(A; B̂), the Q-direction restricted linearization D(ψu)|B is surjective.
Therefore the full linearization Dψ|(B,u) is also surjective, which is the first
of Theorem 4.2.1’s hypotheses.

By the results of Section 4.3, for each B ∈ V and each u ∈ M(A; B̂),
the R-direction restricted linearization D bB,u is Fredholm of index n+µ(A).
This establishes the the second of Theorem 4.2.1’s hypotheses.

Let B0, B1 ∈ Vreg. By a homotopy from B0 to B1 through V we mean
a map from [0, 1] into V , such that 0 maps to B0 and 1 to B1. Following
[MS04], our standard notation for a homotopy from B0 to B1 will be (Bλ)λ.
Note the distinction between the ‘variable’ λ in this notation and the use
of a fixed λ ∈ [0, 1], which, confusingly, may sometimes occur in the same
formula.

We denote by V (B0, B1) the set of homotopies (Bλ)λ through V from
B0 to B1.

For a homotopy (Bλ)λ through V , we continue to write

W(A; (B̂λ)λ) = {(λ, u) : λ ∈ [0, 1], u ∈M(A; B̂λ)}

for the disjoint union of the sets of solutions in the homology class A to any
of the equations along the homotopy.

Definition. The regular subset of V (B0, B1), denoted Vreg(A;B0, B1), con-
sists of those homotopies (Bλ)λ through V from B0 to B1 such that, for all
λ ∈ [0, 1] and all u : (D2, ∂D2)→ (M,L) in the class A solving

∂Ju+ B̂λ|eu = 0,

the linearization

D bBλ,u +
dB̂λ
dt
|eu

(see more detailed description in the proof below) is surjective.

Theorem 4.4.3. (i) For each homotopy (Bλ)λ ∈ Greg(A;B0, B1), the
space W(A; (B̂λ)λ) is a smooth oriented manifold-with-boundary of di-
mension n+ 1, with boundary

M(A; B̂1)−M(A; B̂0).

(ii) The set Vreg(A;B0, B1) is of the second category in V (B0, B1).

Proof. We apply the setup outlined (in a special case) previously: the idea
is to apply Theorem 4.2.1 with:
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1. As R, the product of [0, 1] with the space of maps u : (D2, ∂D2) →
(M,L) in the homology class A ∈ H2(M,L). Its boundary is the
product of {0, 1} with the space of maps.

2. As Q, the space V (B0, B1).

3. As E, the bundle overQ×R whose fibre over ((Bλ)λ, λ, u) is Ω0,1(u∗(TM)).

4. As ψ, the section of E given by,

((Bλ)λ, λ, u) 7→ ∂Ju+ B̂λ|eu.
For a solution (λ, u) ∈ W(A; (Bλ)λ), the restricted linearizations at the

point ((Bλ)λ, λ, u) in Q×R are:

• In the R-direction, since R is itself a product manifold, let us consider
the further restrictions of the linearization to each of the factors:

– In the {maps u : (D2, ∂D2) → (M,L)}-direction, the restricted
linearization is the Cauchy-Riemann operator

D(ψ((Bλ)λ,λ))|u = D bBλ,u : Ω0(u∗(TM))→ Ω0,1(u∗(TM))

described in previous sections: for ξ ∈ Ω0(u∗(TM)), we have

D bBλ,uξ = (∇ξ)0,1 +
1
2

(∇ξJ) ◦ du ◦ j +∇ξB̂λ.

– In the [0, 1]-direction, the restricted linearization is the map

D(ψ((Bλ)λ,u))|λ : R→ Ω0,1(u∗(TM))

defined by multiplication by

dBλ
dt
|eu ∈ Ω0,1(u∗(TM)).

• In the Q-direction, the tangent space at the point (Bλ)λ is B(0, 0),
the vector space of homotopies from 0 to 0 through B. The restricted
linearization is the map

D(ψ(λ,u))|(Bλ)λ : B(0, 0)→ Ω0,1(u∗(TM))

given by, for (B′λ)λ ∈ B(0, 0),

D(ψ(λ,u))|(Bλ)λ((B′λ)λ) = B̂′λ|eu;

that is, D(ψ(λ,u))|(Bλ)λ((B′λ)λ) is the section of Λ0,1Σ⊗u∗(TM) which
at z ∈ Σ gives B̂′λ|(z,u(z)) ∈ Λ0,1

z Σ⊗ Tu(z)M .
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We need only check that Theorem 4.2.1’s hypotheses hold. The con-
dition that B’s image be sufficiently full means that, for each (Bλ)λ ∈
Vreg(A;B0, B1) and each (λ, u) ∈ W(A; (Bλ)λ), the Q-direction restricted
linearization D(ψ(λ,u))|(Bλ)λ is surjective. Therefore the full linearization
Dψ|((Bλ)λ,λ,u) is also surjective, which is the first of Theorem 4.2.1’s hy-
potheses.

By the results of Section 4.3, for each (Bλ)λ ∈ Vreg(A;B0, B1) and each

(λ, u) ∈ W(A; (Bλ)λ), the R-direction restricted linearization D bBλ,u + d bBλ
dt |eu

restricts on a codimension-1 subspace to an operator which is Fredholm of
index n+ µ(A). Therefore it itself is Fredholm of index n+ µ(A) + 1. This
establishes the the second of Theorem 4.2.1’s hypotheses.

Finally, since B0 and B1 are in Vreg(A), for each (Bλ)λ ∈ Vreg(A;B0, B1)
and each (i, u) ∈ W(A; (Bλ)λ) (i zero or 1), the restriction

D bBi,u = D(ψ((Bλ)λ,i))|u : Ω0(u∗(TM))→ Ω0,1(u∗(TM))

of the linearization to the boundary tangent space at ((Bλ)λ, i, u) is surjec-
tive.
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Chapter 5

Curves in tame
almost-complex manifolds

The object of this chapter is Proposition 5.3.1, which gives a lower bound for
the “radius of solubility” of certain families of perturbed Cauchy-Riemann
equations in a symplectic manifold in terms of the symplectic areas of discs
in the manifold. Its proof has two key technical inputs: the transversality
theorems of the previous chapter, and Gromov’s compactness theorem which
we describe in Section 5.1.

Section 5.2 introduces the PDE of interest: Hamiltonian perturbations
of the Cauchy-Riemann equations of a symplectic manifold’s tame almost-
complex structures. Section 5.3 is devoted to the proof of Proposition 5.3.1.

Our major source for this chapter is [MS04]. Specifically, our statement
the compactness theorem is essentially [MS04] Theorem 4.6.1, the example
is theirs, and the proof of the compactness theorem which we outline is their
proof. The concept of Hamiltonian perturbations and the development of
their properties in Section 5.2 is distilled from [MS04] Section 8.1. Our
Proposition 5.3.1 and its proof are modelled on the (similar though slightly
weaker) [MS04] Proposition 9.2.16.

Corollary 5.2.4, the explicit re-working of Gromov’s compactness theo-
rem for sequences of solutions to Hamiltonian perturbed Cauchy-Riemann
equation, does not have an analogue in [MS04], since the sharp estimates
using curvature are not required for the applications there. The set-up of
this step in the argument owes much to Polterovich’s presentation ([Pol93]
Proposition 3.1) of the analogous technical result for his work.

The final chapter of [AL94] sketches an argument similar in spirit to that
with which we, following [MS04], prove Proposition 5.3.1. This sketch was
invaluable as an introduction to the subject.
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5.1 Gromov’s compactness theorem

This section is devoted to a fundamental theorem of Gromov. The theorem
concerns compactness properties for families of pseudoholomorphic curves;
that is, the question of whether a suitably bounded sequence of pseudoholo-
morphic curves must have an (in some sense) convergent subsequence.

We will see that, for a symplectic manifold’s tame almost-complex struc-
tures, “suitably bounded” includes any sequence of pseudoholomorphic curves
in a fixed homology class, and that we can ensure the existence of a subse-
quence “convergent” in a very strong way: uniformly in all derivatives on all
compact subsets which avoid a finite number of singular points. We can also
obtain a detailed understanding of what happens near these singular points:
pseudoholomorphic “bubbles” form, absorbing all the energy and area and
topology otherwise lost in the limit.

We state Gromov’s theorem, and describe some aspects of the proof.

Definition. An almost-complex structure J on a symplectic manifold (M,ω)
is tame, or ω-tame, if for all nonzero Y ∈ TM , ω(Y, JY ) > 0.

Theorem 5.1.1. Let (M,ω) be a compact symplectic manifold, L a compact
Lagrangian submanifold, and Σ a Riemann surface (possibly with boundary).
Let J be an ω-tame almost complex structure, and Jn a sequence of almost-
complex structures, such that Jn converges to J in the C∞ topology. Let
un : (Σ, ∂Σ) → (M,L) be a sequence of maps, Jn-holomorphic respectively,
whose symplectic area satisfies

sup
n

Ω(un) <∞.

Then there exists a subsequence (still denoted by un), a J-holomorphic curve
u : (Σ, ∂Σ)→ (M,L), and a finite subset Z = {z1, . . . zl} of Σ, such that the
following holds:

(i) un converges to u uniformly with all derivatives on compact subsets of
Σ \ Z.

(ii) For every j, “bubbling occurs at zj”: For every ε > 0 such that Bε(zj)∩
Z = {zj}, the limit

mε(zj) := lim
n→∞

Ω(un;Bε(zj))

exists and is a continuous function of ε. Moreover there exists ei-
ther a non-constant J-holomorphic sphere v : S2 → M or a non-
constant J-holomorphic disc v : (D2, ∂D2) → (M,L), whose im-
age can be approximated for each ε > 0 and N > 0 by points in
{un(z) : n ≥ N, z ∈ Bε(zj)}, and whose symplectic area Ω(v) is at
most

m(zj) := lim
ε→0

mε(zj).
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(iii) For every compact subset K ⊆ Σ with Z ⊆ int(K),

Ω(u;K) +
l∑

j=1

m(zj) = lim
n→∞

Ω(un;K).

Example 5.1.2. As Σ, the unit disc with boundary; as (M,ω, J), the Rie-
mann sphere, identified with C ∪∞; as L, the unit circle in C ⊂ M . Pick
a subsequence (zn) of the open unit disc which converges to 1, and define
un : Σ→ C ⊂M by,

un(z) =
z − zn
1− zzn

.

This has one bubble, a disc, at 1 ∈ Σ: On compact subsets K ⊂ Σ \ {1},
the sequence (un) converges uniformly in all derivatives to the constant map
onto −1. However, for arbitrarily large N and arbitrarily small ε, the union⋃

n≥N
un(Bε(1)) ⊂ C ⊂M

covers all of the unit disc in M except the point −1.

We now briefly discuss the compactness theorem’s proof. The following
claim is key:

Proposition 5.1.3. Under the hypotheses of Theorem 5.1.1, there exists a
subsequence (still denoted (un)), and and a finite subset Z = {z1, . . . zl} of
Σ, such that on each compact subset K of Σ \ Z, the sequence (dun|K) is
uniformly bounded.

Note that for a family of maps, such as (un|K), between fixed compact
manifolds, it is meaningful to speak of (dun|K) as being uniformly bounded,
even when, as here, we have no metrics in place with which to measure
the differentials du; this is because all metrics on a compact manifold are
equivalent.

Sketch proof. Typically established by some geometric argument. For in-
stance, [MS04] shows: points with arbitrarily large dun nearby must be the
sites of pseudoholomorphic bubbles, and pseudoholomorphic bubbles absorb
at least a certain fixed ‘quantum’ of symplectic area; hence there is a global
bound on how many singular points there can be. Away from the singular
points, passing to a subsequence if necessary, we have uniform boundedness.

Alternatively, Gromov’s original [Gro85] approach, also presented in
[AL94] and in [Hum97], gives an argument in hyperbolic geometry.
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Having established Proposition 5.1.3, one can immediately conclude, for
instance by the Arzela-Ascoli theorem, that un has a subsequence converging
uniformly on compact subsets of Σ \ F . But in fact much more is true:
elliptic regularity theory makes pseudoholomorphic curves very rigid in their
convergence, so that a sequence which converges uniformly in fact turns out
to converge uniformly in all derivatives. This establishes the existence of
a subsequence with the property Theorem 5.1.1(i). The other parts of the
theorem follow from a more detailed analysis of the points of singularity.

5.2 Hamiltonian perturbations

Let (M,ω, J) be a tame almost-complex manifold, and Σ a Riemann surface
(possibly with boundary).

Definition. Let L be a compact Lagrangian submanifold of M . A Hamil-
tonian form on Σ × (M,L) (or, if L is irrelevant or clear from context, on
Σ×M) is a section of Λ1Σ � R which vanishes on T (∂Σ)× L.

Let H be a Hamiltonian form on Σ × M . Notice that the bundle of
1-forms on Λ1(Σ×M) splits as

Λ1(Σ×M) ∼= (Λ1Σ � R)⊕ (R⊕ Λ1M).

In particular, H is naturally a 1-form on Σ×M .
We thus have three natural exterior derivative operations on H:

• d1H is a section of Λ2Σ � R.

• d2H is a section of Λ1Σ � Λ1M .

• dH is a section of Λ2(Σ×M).

They are related by the formula dH = d1H − 2Alt(d2H).
Denote by XH the section of Λ1Σ � TM which satisfies,

pr2
∗ω(XH , ·) = d2H.

As previously, we can identify a fibre Λ1
zΣ ⊗ TpM of this bundle with the

space of real homomorphisms from TzΣ into TpM . Thus we can extract the
complex antilinear part X0,1

H of XH , defined by

X0,1
H |(z,p) =

1
2
[
XH |(z,p) + Jp ◦XH |(z,p) ◦ jz

]
,

a section of (Λ1Σ �R TM)0,1 ∼= Λ0,1Σ �C TM .

Definition. Let L be a compact Lagrangian submanifold of M . A Hamilto-
nian perturbation on Σ×(M,L) (or, on Σ×M) is a section of Λ0,1Σ�CTM
which arises as X0,1

H , for some Hamiltonian form H on Σ× (M,L).
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Solutions to Hamiltonian-perturbed Cauchy-Riemann equations – that
is, maps u : (Σ, ∂Σ)→ (M,L), such that for all z ∈ Σ,

∂Ju|z +X0,1
H |(z,u(z)) = 0. (5.1)

will be our focus for the rest of the essay. Let us first prove that the space of
Hamiltonian perturbations is sufficiently full, so that the results of Section
4.4 apply. This gives us a guarantee that the moduli space of solutions
to a generic Hamiltonianian-perturbed Cauchy-Riemann equation is well-
behaved.

Lemma 5.2.1. The space of Hamiltonian perturbations is sufficiently full.

Proof. Let u : (Σ, ∂Σ) → (M,L), and pick a section v of Λ0,1 ⊗ u∗(TM).
We need to show there is a Hamiltonian form H such that X0,1

H ’s restriction
to u’s graph agrees with v. To construct such a Hamiltonian form, do so
locally, then patch together local solutions using a partition of unity.

Next we will use Gromov’s compactness theorem to deduce some com-
pactness properties of solutions to Hamiltonian-perturbed Cauchy-Riemann
equations. We can do this because of Lemma 4.1.1, which interprets graphs
of solutions to perturbed Cauchy-Riemann equations as J-holomorphic curves
in a product manifold.

More precisely, we recall: X0,1
H will induce an almost-complex structure

JH := J
X0,1
H

on Σ ×M . This almost-complex structure has the property that a curve
u : Σ → M has its graph ũ := (·, u(·)) be JH -holomorphic precisely if u
solves (5.1).

The special property of Hamiltonian perturbations which will let us de-
duce useful compactness results, is that we can give a good definition for
such a perturbation’s ‘size’.

Definition. The curvature of a Hamiltonian form H is the section RH of
Λ2Σ � R defined by,

RH = d1H + (pr2
∗ω)(XH , XH).

Remark. The term ‘curvature’ comes from an interpretation of this quan-
tity as the curvature of a connection on the trivial principal G-bundle over
Σ, where G is the group of Hamiltonian symplectomorphisms of M , see eg
McDuff-Salamon [REF].

In Chapter 6 we will make use the following bound provided by the
curvature:
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Lemma 5.2.2. Let (M,ω, J) be a tame almost-complex manifold, L a com-
pact Lagrangian submanifold of M , Σ ⊂ C a Riemann surface (possibly with
boundary) contained in the plane, and H a Hamiltonian form on Σ×(M,L).
Write the natural metric on M as

|X|2 = ω(X, JX).

Then for each solution u : (Σ, ∂Σ)→ (M,L) to

∂Ju|z +X0,1
H |(z,u(z)) = 0,

with respect to the natural conformal co-ordinates (s, t) on C,∫
Σ
|∂tu+XH(∂t)|eu|2ds ∧ dt =

∫
Σ
u∗ω +

∫
Σ
RH |eu.

Proof. It is easy to check that

|∂tu+XH(∂t)|eu|2ds ∧ dt = u∗ω +RH |eu − ũ∗dH.
The final term is exact, and vanishes on T (∂Σ); therefore by Stokes’ theorem
its integral vanishes.

Let us say that a section κ of Λ2Σ dominates a section R of Λ2Σ � R, if
for each (z, p) ∈ Σ×M , we have, with respect to the natural orientation on
Λ2
zΣ, that κ(z) > R(z, p).

Proposition 5.2.3. Let (M,ω, J) be a tame almost-complex manifold, L a
compact Lagrangian submanifold of M , Σ a Riemann surface (possibly with
boundary), H a Hamiltonian form on Σ × (M,L), and κ a section of Λ2Σ
which dominates the curvature RH . Then:

(i) The section of Λ2(Σ×M) defined by

ωH,κ := pr1
∗κ+ pr2

∗ω − dH

is a symplectic form on Σ×M .

(ii) The symplectic form ωH,κ tames the almost-complex structure JH .

(iii) Fix w ∈ Σ. Let Σ′ be another Riemann surface, and let u : Σ′ → M .
Then the ωH,κ-symplectic area of (w, u) : Σ′ → Σ×M is the same as
the ω-symplectic area of u : Σ′ →M .

(iv) The submanifold ∂Σ× L of (Σ×M,ωH,κ) is Lagrangian.

(v) Let u : (Σ, ∂Σ) → (M,L). Then the ωH,κ-symplectic area of its graph
ũ : (Σ, ∂Σ)→ (Σ×M,∂Σ× L) is∫

Σ
κ+

∫
Σ
u∗ω.
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Proof. (i) The 2-form ωH,κ is a sum of closed terms, so closed. To check
that it is nondegenerate, we will show that the (2n+ 2)-form

ωH,κ
n+1 = (pr1

∗κ+ pr2
∗ω − dH)n+1

is nonvanishing.

First, it’s clear that κ ∧ κ and κ ∧ dH and ωn+1 and dH ∧ dH ∧ dH
vanish, so most of the terms in consideration disappear. Moreover,
straightforward computation shows that

dH ∧ dH ∧ (pr2
∗ω)n−1 = − 2

n
(pr2

∗ω)(XH , XH) ∧ (pr2
∗ω)n,

dH ∧ (pr2
∗ω)n = d1H ∧ (pr2

∗ω)n.

So we can evaluate the whole expression at once:

(pr1
∗κ+ pr2

∗ω − dH)n+1

= (n+ 1)pr1
∗κ ∧ (pr2

∗ω)n − (n+ 1)dH ∧ (pr2
∗ω)n +

n(n+ 1)
2

dH ∧ dH ∧ (pr2
∗ω)n−1

= (n+ 1) [pr1
∗κ ∧ (pr2

∗ω)n − d1H ∧ (pr2
∗ω)n − (pr2

∗ω)(XH , XH) ∧ (pr2
∗ω)n]

= (n+ 1) [pr1
∗κ−RH ] (pr2

∗ω)n.

Since κ is chosen to dominate the curvature RH , this expression van-
ishes nowhere.

(ii) We will use the following identity: for (z, p) ∈ Σ×M , and v, v′ ∈ TzΣ,
Y, Y ′ ∈ TpM ,

(pr2
∗ω−dH)(v+Y, v′+Y ′) = ω(XH(v)+Y,XH(v′)+Y ′)−KH(v, v′).

To see this, observe that both sides reduce to

ω(Y, Y ) + d2H(v, Y ′)− d2H(v′, Y )− d1H(v, v′).

Using this identity, evaluating the expression ωH,κ(·, JH(·)) on a typical
element v + Y ∈ TzΣ⊕ TpM of T (Σ×M) gives,

(pr1
∗κ+ pr2

∗ω − dH)(v + Y, JH(v + Y ))
= κ(v, jv) + (pr2

∗ω − dH)(v + Y, jv + 2JX0,1
H (v) + JY )

= (κ−RH)(v, jv) + ω(XH(v) + Y,XH(jv) + 2JX0,1
H (v) + JY )

= (κ−RH)(v, jv) + ω(XH(v) + Y, J(XH(v) + Y )).

Since κ − RH tames j (since κ dominates RH , so their difference is
positively-oriented) and ω tames J , we conclude that this expression
is positive except when v = Y = 0. Therefore ωH,κ tames JH .

(iii) Clear.
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(iv) The submanifold ∂Σ × L of Σ ×M is of the correct dimension. We
need to check that for each (z, p) ∈ ∂Σ×L, the subspace Tz(∂Σ)×TpL
of T(z,p)(Σ× L) is isotropic.

Indeed, let v, v′ ∈ Tz(∂Σ), Y, Y ′ ∈ TpL. Then

ωH,κ(v+Y, v′+Y ′) = κ(v, v′)+ω(Y, Y ′)−d1H(v, v′)+d2H(v, Y ′)−d2H(v′, Y ).

The first and third terms vanish since κ and d1H are alternating and
Tz(∂Σ) is one-dimensional. The second term vanishes since L is a
Lagrangian submanifold of (M,ω). The fourth and fifth terms vanish
since the assumption that H vanishes on T (∂Σ)×L implies that d2H
vanishes on T (∂Σ)× TL.

(v) Clear.

Corollary 5.2.4. Let (M,ω, J) be a tame compact symplectic manifold, L
a compact Lagrangian submanifold, H a Hamiltonian form on Σ × (M,L)
whose curvature satisfies ∫

Σ

sup
p∈M

RH |(·,p) <∞,

and (Hn) a sequence of Hamiltonian forms on Σ × (M,L), such that (Hn)
converges to H in the C∞ topology. Let un : (Σ, ∂Σ) → (M,L) be a corre-
sponding sequence of maps, which are nullhomologous relative to L, and for
which, for all n and all z ∈ Σ,

∂Ju|z +X0,1
Hn
|(z,u(z)) = 0.

Then one of the following holds:

1. There exists a subsequence (still denoted by un), and solution u :
(Σ, ∂Σ)→ (M,L) (nullhomologous relative to L) to

∂Ju|z +X0,1
H |(z,u(z)) = 0, (5.2)

such that un converges to u uniformly in all derivatives on compact
subsets of Σ.

2. For each ε > 0, there exists either a J-holomorphic sphere u : S2 →M
or a J-holomorphic disc u : (D2, ∂D2) → (M,L), of symplectic area
at most ∫

Σ

sup
p∈M

RH |(·,p) + ε.
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Proof. Let ε > 0. Pick a section κ of Λ2Σ, which dominates KH and satisfies∫
Σ
κ <

∫
Σ

sup
p∈M

RH |(·,p) + ε.

We will produce either a subsequence of (un) which converges as required
in (1), or a J-holomorphic curve in M with symplectic area constrained as
in (2). We will do this by applying Gromov’s compactness theorem to the
manifold Σ×M and the graphs of the un’s. Let us therefore check that its
hypotheses hold. Indeed:

• By Proposition 5.2.3(i), (Σ×M,ωH,κ) is a compact symplectic mani-
fold (with boundary).

• By Proposition 5.2.3(iv), ∂Σ×L is a compact Lagrangian submanifold
of (Σ×M,ωH,κ).

• Using Lemma 4.1.1(i), form an almost-complex structure JH on Σ×M .
By Proposition 5.2.3(ii), JH is ωH,κ-tame.

• Using Lemma 4.1.1(i), form for each n an almost-complex structure
JHn on Σ × M . The sequence (JHn) of almost-complex structures
converges uniformly in all derivatives to JH .

• By Lemma 4.1.1(iii), for each n, the map un satisfies, for all z ∈ Σ,

∂Jun|z = hn|(z,un(z)),

so its graph ũn : (Σ, ∂Σ)→ (Σ×M,∂Σ× L) is JHn-holomorphic.

• By Proposition 5.2.3(v), the maps un are all nullhomologous relative
to L,, and therefore their graphs ũn all have ωH,κ-symplectic area∫

Σ
κ.

In particular their symplectic areas are uniformly bounded.

Therefore, applying the compactness theorem, we obtain a subsequence
(still denoted by ũn), a JH -holomorphic curve ũ : (Σ, ∂Σ)→ (Σ×M,∂Σ×L),
and a finite subset Z = {z1, . . . zl} of Σ, such that the following holds:

1. (ũn) converges to ũ uniformly with all derivatives on compact subsets
of Σ \ Z.

2. For every j, “bubbling occurs at zj”: For every ε > 0 such that Bε(zj)∩
Z = {zj}, the limit

mε(zj) := lim
n→∞

ΩH,κ(un;Bε(zj))
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exists and is a continuous function of ε. Moreover there exists either
a non-constant JH -holomorphic sphere ṽj : S2 → Σ ×M or a non-
constant JH -holomorphic disc ṽj : (D2, ∂D2) → (Σ × M,∂Σ × L),
whose image can be approximated for each ε > 0 and N > 0 by
points in {(z, un(z)) : n ≥ N, z ∈ Bε(zj)}, and whose symplectic area
ΩH,κ(ṽj) is at most

m(zj) := lim
ε→0

mε(zj).

3. ΩH,κ(ũ) +
∑l

j=1m(zj) = limn→∞ΩH,κ(ũn).

Case 1: Z is empty.
Then (ũn) tends to ũ uniformly in all derivatives on compact subsets of Σ.
So (un) converges uniformly in all derivatives on compact subsets to the
M -projection

u : (Σ, ∂)→ (M,L)

defined by, u = pr2 ◦ ũ. Moreover this limit u must also be nullhomologous
relative to L, and a solution of (5.1).

Case 2: Z is nonempty.
Then l ≥ 1; let us study the singularity z1. The image of the JH -holomorphic
sphere or disc ṽ1 can be approximated, for each ε > 0 and N > 0, by points
in

{(z, un(z)) : n ≥ N, z ∈ Bε(z1)} ⊆ Bε(z1)×M.

Therefore the image of ṽ1 is contained in the fibre⋂
ε>0

Bε(z1)×M = {z1} ×M.

Let v1 be the projection pr2 ◦ ṽ1 of the v1 into M , so that for each z ∈ Σ,
ṽ1(z) = (z, v1(z)). We obtain a sphere or disc with boundary on L. Then by
Lemma 4.1.1(ii), v1 is J-holomorphic, and by Proposition 5.2.3(iii), it has
ω-symplectic area at most the ωH,κ-symplectic area of ṽ1,

m(z1) ≤ lim
n→∞

ΩH,κ(ũn)− ΩH,κ(ũ) ≤
∫

Σ
κ ≤

∫
Σ

sup
p∈M

RH |(·,p) + ε.

5.3 A J-holomorphic Fredholm alternative

Let (M,ω, J) be a tame compact symplectic manifold, and L a compact
Lagrangian submanifold of M . Suppose that no sphere in M or disc in M
with boundary on L has positive symplectic area less than σ.
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Proposition 5.3.1. For each Hamiltonian form H on D2 × (M,L) whose
curvature satisfies ∫

Σ

sup
p∈M

RH |(·,p) < σ,

each w ∈ ∂D2 and each p ∈ L, there is a solution u : (D2, ∂D2, w) →
(M,L, p) to equation (5.1).

For convenience we re-state equation (5.1) here : it says, for all z ∈ D2,

∂Ju|z +X0,1
H |(z,u(z)) = 0.

Our proof will deduce the existence of a solution nullhomologous rel-
ative to L, by showing the moduli space of L-nullhomologous solutions is
sufficiently similar to the moduli space of L-nullhomologous J-holomorphic
discs.

Proof. Let H be the Banach space of Hamiltonian forms D2 × (M,L), and
V the open subset of H consisting of forms H whose curvature satisfies∫

Σ

sup
p∈M

RH |(·,p) < σ,

We have a natural map
H 7→ X0,1

H

from H into the space of sections of Λ0,1D2 �C TM . By Lemma 5.2.1, the
image of this map is sufficiently full.

Recall the notation of Chapter 4:

• byM(0;X0,1
H ), (for H ∈ V ) the set of solutions to (5.1) in the homol-

ogy class 0 ∈ H2(M,L).

• by W(0; (X0,1
Hλ

)λ), (for a homotopy (Hλ)λ through forms in V ), the
disjoint union

{(λ, u) : λ ∈ [0, 1], u ∈M(0;X0,1
Hλ

)},

of the sets of zero-homology solutions to any of the equations along
the homotopy.

By Theorems 4.4.2 and 4.4.3, together with the fact that V is path-
connected, and the index calculation Example 4.3.5, there exists a second-
category subset Vreg of V , such that:

• For each Hamiltonian form H ∈ Vreg, the spaceM(0;X0,1
H ) is a smooth

oriented manifold of dimension n + µ(0) = n, and carries a natural
orientation.
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• For each pair (H0, H1) of Hamiltonian forms in Vreg, there exists a
homotopy (Hλ)λ from H0 to H1 through V , such that the space

W(H0, H1) :=W(0; (X0,1
Hλ

)λ)

is a smooth oriented manifold-with-boundary of dimension n+1, with
(oriented) boundary M(0;X0,1

H1
)−M(0;X0,1

H0
).

Remark. Of course, Theorem 4.4.3 in fact tells us that the space of such
homotopies is of second category in Vreg(H0, H1). However, we just need the
existence of one!

Since all J-holomorphic spheres or discs in (M,L) have symplectic area
at least σ, greater than any ∫

Σ

sup
p∈M

RH |(·,p),

for H ∈ V , we conclude by the bubble-bounding Corollary 5.2.4 that:

• For each Hamiltonian formH ∈ Vreg, the oriented n-manifoldM(0;X0,1
H )

is compact.

• For each pair (H0, H1) of Hamiltonian forms in Vreg, the oriented (n+
1)-manifold-with-boundary W(H0, H1) is compact.

Thus the manifolds {M(0;X0,1
H ) : H ∈ Vreg} are all mutually oriented-

cobordant.
Henceforth fix w ∈ ∂D2. For each H ∈ V , we have a w-evaluation map

evH :M(0;X0,1
H )→ L defined by,

evH(u) = u(w).

We need to show that for each H ∈ V , evH is surjective.
First we will show this for Vreg. For each pair (H0, H1) of Hamiltonian

forms in Vreg, the w-evaluation maps evH0 (on M(0;X0,1
H0

)) and evH1 (on
M(0;X0,1

H1
)) extend to a map evH0,H1 : W(H0, H1) → L on the cobordism

between M(0;X0,1
H0

) and M(0;X0,1
H1

), defined by,

evH0,H1(λ, u) = u(w).

Therefore the parity of the degrees of evH0 and evH1 is the same. Thus the
degrees of the w-evaluation maps {evH : H ∈ Vreg} all have the same parity.

Let’s determine what this parity is by checking it in the easiest case.
Recall from Example 4.4.1 that 0 ∈ Vreg. The elements of M(0; 0) are
precisely those J-holomorphic discs in M with boundary in L which are
nullhomologous relative to L. But the only such discs are the constant ones,
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so M(0; 0) is just L, and ev0 : M(0; 0) → L is just the identity. Thus the
parity of the degree of ev0, and hence of evH for any H ∈ Vreg, is odd.

It follows that for each H ∈ Vreg, the degree of evH is nonzero, hence the
map evH is surjective. Can we extend this to V \Vreg? Yes: Corollary 5.2.4
implies that surjectivity of evH for a dense subset of V implies surjectivity
for all of it.

More explicitly: let H ∈ V \ Vreg and p ∈ L. Since Vreg is of second
category in V , there is a sequence (Hn) in Vreg which tends C∞ to H. Our
result on Vreg shows that for each n, there is a solution un : (D2, ∂D2, w)→
(M,L, p) to

∂Jun|z +X0,1
Hn
|(z,un(z)) = 0.

So, by Corollary 5.2.4 again, a limit of some subsequence of the un’s provides
a solution u : (D2, ∂D2, w)→ (M,L, p) to equation (5.1).

Corollary 5.3.2. For each compactly supported Hamiltonian form H on
R× [0, 1]× (M,L) whose curvature satisfies∫

Σ

sup
p∈M

RH |(·,p) < σ,

each w ∈ ∂D2 and each p ∈ L, there is a solution u : R × [0, 1],R ×
{0, 1}, w)→ (M,L, p) to equation (5.1).

Proof. Identify the Riemann surfaces R × [0, 1] and D2 \ {−1, 1}. Since H
is compactly supported, the resulting Hamiltonian form on D2 \ {−1, 1} ×
(M,L) extends to a Hamiltonian form on D2 × (M,L). Now apply Propo-
sition 5.3.1.

We obtain a solution u : (D2, ∂D2, w) → (M,L, p) to equation (5.1).
Restricting to D2 \ {−1, 1} ∼= R× [0, 1] gives what we want.
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Chapter 6

Symplectic corollaries

We are now in a position to prove the two theorems described in the intro-
duction and in Chapter 3. We prove the Lagrangian intersections theorem
in Section 6.1, following the argument [MS04] Theorem 9.2.14 (with appro-
priate modifications). In Section 6.1, following [Moh01], we prove the chord
conjecture.

6.1 Lagrangian intersections and displacement en-
ergy

Recall from Chapter 3 that a Hamiltonian isotopy is a symplectomorphism
obtained as the time-1 flow of a (possibly time-dependent) Hamiltonian
vector field. In this section we will define a notion of ‘size’ for Hamilto-
nian isotopies, and relate the size of Hamiltonian isotopies which displace
a Lagrangian submanifold to the symplectic area of discs the submanifold
bounds.

Definition. Let F : M×[0, 1]→ R be a compactly supported time-dependent
Hamiltonian on a manifold M . Then the Hofer norm of F is

||F || :=
∫ 1

0
sup
p
Ft(p)− inf

p
Ft(p)dt.

The displacement energy (possibly infinite) of a subset X of M is the infi-
mum of the Hofer norms of compactly supported Hamiltonians whose time-1
flow displaces X.

Example 6.1.1. Recall, from Example 3.2.4, the time-independent, com-
pactly supported Hamiltonians H : R2 → R which we construct as smooth
approximations of

H(x, y) =

{
0, x2 + y2 ≥ R2

1
2π(R2 − x2 − y2), x2 + y2 < R2;
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they have Hofer norm just over 1
2πR

2 and their flow displaces the open half-
disc

S = {(x, y) ∈ R2 : x > 0, x2 + y2 < R2},

which has area 1
2πR

2, from itself.
Therefore a connected simply connected open subset of R2, of area A,

has displacement energy at most A. The same holds for a simple loop in R2

which encloses the area A.

We will use the results of Chapter 5 to prove the following result, due to
Chekanov [Che96].

Theorem 6.1.2. Let L be a compact Lagrangian submanifold of

1. R2n such that no disc with boundary on L has positive symplectic area
less than σ; or,

2. a compact manifold M such that no sphere in M or disc in M with
boundary on L has positive symplectic area less than σ.

Then the displacement energy of L is at least σ.

The strength of this theorem is clear already from Example 6.1.1, which
shows that this bound is tight.

Proof that 6.1.2(2) implies 6.1.2(1). Let L be a compact Lagrangian sub-
manifold of R2n, and F : R2n × [0, 1] → R a compactly-supported time-
dependent Hamiltonian function on R2n whose flow displaces L. Take a
torus R2n/KZ2n such that L and supp(F ) are contained (translating if nec-
essary) in the fundamental domain (0,K)2n ⊆ R2n.

Applying Theorem 6.1.2(2) to this torus, we obtain in in R2n/KZ2n

either a disc with boundary on L or a sphere which has symplectic area
positive but less than σ. Since the disc and sphere are simply connected,
this lifts to a disc or sphere with this property in R2n. In fact it will have to
be a disc, since by Stokes’ theorem and the contractibility of R2n all spheres
in it have vanishing symplectic area.

Proof of 6.1.2(2). Let L be a compact Lagrangian submanifold of M , and
let σ > 0 such that no disc with boundary on L has positive symplectic
area less than σ. Suppose that F : M × [0, 1]→ R is a compactly-supported
time-dependent Hamiltonian function on M with ||F || < σ. We will produce
an integral curve of XFt which both starts and finishes on L.

First, fix N ∈ N. Choose a smooth bump function βN : R → R, such
that

βN (s) =


1, |s| ≤ N
monotone, N ≤ |s| ≤ N + 1
0, |s| ≥ N + 1.
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Observe that H := ((s, t), p) 7→ βN (s)F (p, t)dt is a compactly supported
Hamiltonian form on (R× [0, 1])× (M,L), whose curvature satisfies∫

R×[0,1]

sup
p∈M

RH |((s,t),p) =
∫ ∞
−∞

∫ 1

0

sup
p∈M

β′N (s)F (p, t)dtds

=
∫ 0

−∞
β′N (s)ds

∫ 1

0

sup
p∈M

F (p, t)dt+
∫ ∞

0

β′N (s)ds
∫ 1

0

inf
p∈M

F (p, t)dt

= ||F ||.

Since ||F || < σ, we may therefore apply Corollary 5.3.2 to H. We obtain
a map uN : (R× [0, 1],R× {0, 1})→ (M,L) whose restriction to [−N,N ]×
[0, 1], [−N,N ]× {0, 1}) satisifies: for all (s, t) ∈ [−N,N ]× [0, 1],

∂uN |(s,t) − Ju(s,t)XFt |u(s,t) = 0.

By Lemma 5.2.2, together with the curvature estimate just computed,∫ N

−N

∫ 1

0

|∂tuN +XFt
|fuN
|2dtds ≤

∫
R×[0,1]

|∂tuN + βN (s)XFt
|fuN
|2ds ∧ dt

=
∫

Σ

RH |eu ≤ ||F ||.
Therefore some strand xN = uN (s0, ·) : ([0, 1], {0, 1})→ (M,L) of this map

satisifes ∫ 1

0
|ẋN (t)−XFt |xN (t)|2dt ≤ ||F ||/2N.

Now, consider the sequence (xN ) of maps : ([0, 1], {0, 1}) → (M,L)
thus produced. Some subsequence converges uniformly to some map x :
([0, 1], {0, 1})→ (M,L), which must have∫ 1

0
|ẋ(t)−XFt |xN (t)|2dt = 0,

hence ẋ(t)−XFt = 0 for all t. Thus x is an integral curve of the Hamiltonian
F which both starts and finishes on L.

6.2 Proof of the chord conjecture

Theorem 6.2.1. Let (N,α) be a compact simply-connected contact-type hy-
persurface of R2n. Then each compact Legendrian submanifold of (N,α)
admits a Reeb chord.

This follows from the following more quantitative theorem:

51



Theorem 6.2.2. Suppose that (N,α) is a compact simply-connected manifold-
with-contact-form, and that the finite cylinder (N × [S, 0], d(esα)) of N ’s
symplectization admits a symplectic embedding into R2n, with displacement
energy σ. Then each compact Legendrian submanifold of (N,α) admits a
Reeb chord of length at most σ/(1− eS).

by making the following two observations:

• By Lemma 2.3.4, every compact contact-type hypersurface of a sym-
plectic manifold can be extended to an embedding into the symplectic
manifold of a finite cylinder of the contact manifold’s symplectization.

• By Example 3.2.4, every compact subset of R2n can be displaced from
itself by a compactly-supported Hamiltonian flow: proved

Proof of Theorem 6.2.2. We prove a contrapositive. Suppose the finite cylin-
der (N × [S, 0], d(esα)) of N ’s symplectization admits a symplectic embed-
ding into R2n. Let l be a compact Legendrian submanifold of (N,α). Sup-
pose that l admits no Reeb chord of length less than or equal to T .

By Proposition 3.1.7, there is a smooth (1 − eS)T -rational Lagrangian
embedding of l × S1 into (N × [S, 0], d(esα)). Let L denote its image. We
claim that L is still (1− eS)T -rational as a Lagrangian submanifold of R2n.
We will prove this by showing that for each disc in R2n with boundary in L,
there is a disc in N×[S, 0] with boundary in L and with the same symplectic
area.

Indeed, since N and hence N × [S, 0] are simply-connected, any loop in
N × [S, 0] is contractible and therefore bounds a disc in N × [S, 0]. So if A
is a disc in R2n with boundary ∂A contained in L ⊆ N × [S, 0], then ∂A
also bounds a disc in N × [S, 0]. Since the standard symplectic form on R2n

is exact, by Stokes’ Theorem the symplectic area of this disc is the same as
that of A.

So by Theorem 6.1.2, the displacement energy of L in R2n, and hence
also of N × [S, 0] in R2n, is at least (1 − eS)T . It follows that if N × [S, 0]
has displacement energy σ, then T ≤ σ/(1− eS).
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