
IVRG WEEK 3
A BRIEF INTRODUCTION TO RIEMANN SURFACES

DAVID SWINARSKI

The goal of today’s lecture is to give you a glimpse of the theory of Riemann surfaces. Riemann
surfaces arise in many different contexts in mathematics, and have been the subject of a great deal
of research over the past 150 years. I study them both because they are beautiful, and because
they are useful—they are the strings in string theory.

I’ll begin by stating the definition, and then try to explain what each word in it means.

Definition 0.1 A Riemann surface is a closed, compact, connected complex manifold of dimension
1.

Note: not all authors require the conditions closed and compact.

1. What is a complex manifold?

Before we define manifolds, I want to define something called a topological space.

1.1. Topological spaces.

Definition 1.1 A topological space is a pair (X, τ). X is called the set of points, and τ is the
set of open sets. τ is required to satisfy three conditions:

(1) The whole set X and the empty set ∅ are open.
(2) If U , V are open, then U ∩ V is open.
(3) If {Ui : i ∈ I} is any collection of open sets, then the union

⋃
i∈I Ui is open.

A good reference on topological spaces is Armstrong’s book [1]. This is the book I used when
I first learned topology, and I have very good memories of it. Chapter 1 (Introduction) is a good
place to start. Chapters 4 (Identification spaces) and 7 (Surfaces) might be relevant, too.

Example 1.2 X = R. We define open sets as follows: a set U ∈ R is open if for every point p ∈ U ,
there exists an interval (ap, bp) containing p such that (ap, bp) ⊆ U .

Notice that this topology is generated by the open intervals (a, b) because every open set is the
union of open intervals:

U =
⋃
p∈U

(ap, bp)

Example 1.3 X = R2. We define open sets as follows: a set U ∈ R2 is open if for every point
p = (x0, y0) ∈ U , there exists an open disk D(p, r) = {(x, y) ∈ R2 : (x − x0)2 + (y − y0)2 < r2}
containing p such that D(p, r) ∈ U .

Once again, we can say this topology is generated by open disks.

There’s really no reason to stop at dimension 2: we can put a topology on Rn for any n using
open disks defined by the n-dimensional distance formula. In fact, if you look closely, this definition
coincides exactly with what we did in dimension 1 in the first example, too.
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Example 1.4 X = C. As usual, we identify the complex plane C with R2 by the identification
x + iy 7→ (x, y). We define open sets in C the same way we did for R2 as follows: a set U ∈ R2

is open if for every point p = x0 + iy0 ∈ U , there exists an open disk D(p, r) = {x + iy ∈ C :
(x− x0)2 + (y − y0)2 < r2} containing p such that D(p, r) ∈ U .

Again, we can generalize this definition and define a topology on Cn.

1.2. Complex manifolds.

Definition 1.5 A neighborhood of a point p ∈ X is an open set U containing p.
A chart containing p is a map f : U → V . Here U is a neighborhood of p, V ⊆ Cn is an open

subset of Cn, and we require that f is continuous and 1:1. Then the inverse map f−1 also exists,
and we require this to be continuous, too.

Next we define compatibility of charts. See Figure 1.2 below. Suppose f1 : U1 → V1 and
f2 : U2 → V2 are two charts such that U1∩U2 6= ∅. Let W1 = f1(U1∩U2) and let W2 = f2(U1∩U2).
Then we can form two new maps

g12 := f2 ◦ f−1
1 : W1 →W2

g21 := f1 ◦ f−1
2 : W2 →W1

Note that W1 and W2 are both subsets of Cn. Then we say that the charts f1 and f2 are compatible
if g12 and g21 are complex analytic maps, i.e. around every point in W1 or W2, g12 and g21 can be
represented by a power series.

An n-dimensional complex manifold M is a topological space1 such that
(1) for every point p ∈M , there is at least one chart containing p;
(2) if f1 : U1 → V1 and f2 : U2 → V2 are two charts such that U1 ∩ U2 6= ∅, then f1 and f2 are

compatible.

Figure 1. The compatibility condition on two charts

1Some additional technical hypotheses are probably also needed, such as M is Hausdorff and has a countable basis,
but we will skip over this for now
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1.3. Closed, compact, connected. Let’s go in reverse order. Connected means what you think
it means: the space cannot be separated into two disjoint nonempty open sets. Now, I can always
partition any space X any space into two disjoint nonempty subsets A and B. But if X is connected,
you’d expect that there would be a boundary dividing these two subsets, and each of these boundary
points must be in either A or B. So either A or B would fail to be open. On the other hand, if X
is disconnected, you could call its connected components A and B. Then there do not have to be
any boundary points between them, so there is no contradiction.

The word “closed” gets used a lot in mathematics, and here there are two usages in play which
conflict pretty badly with each other. One usage is: a subset of a topological space is closed if its
complement is an open set. But the operative usage in the definition of a Riemann surface is as
follows: we call a compact manifold closed if it has no boundary. So for instance, the unit disk
{(x, y) ∈ R2 : x2 + y2 ≤ 1} is a closed subset of R2, since its complement is open set, but not closed
as a complex manifold, since it has a boundary (the unit circle). An example of a closed surface
would be the (hollow) unit sphere in R3.

A subset of Rn is compact if it is closed (i.e. its complement is open) and bounded. The definition
of compactness for a space that isn’t sitting inside Rn is a little more abstract: we say a topological
space is compact if every open cover has a finite subcover. That is, anytime I have a collection of
open sets which cover X, actually, I can find finitely many open sets from this collection that cover
X. I would say it is highly unobvious why these two properties are related.

2. The Riemann sphere

In this section we study one of the most basic and important examples: the Riemann sphere.
Let S2 be the unit sphere in R3. We identify the x, y-plane in R3 with C as usual.
I will define charts on S2 and show that S2 together with these charts satisfies the definition of

a 1-dimensional complex manifold.

2.1. Two charts. Let NP = (0, 0, 1) and SP = (0, 0,−1) be the North and South Poles, respec-
tively. Let U1 = S2 r {NP} and U2 = S2 r {SP}. I declare U1 and U2 to be open sets.

Next, I will define two maps by stereographic projection. Let sn be stereographic projection from
the North Pole. In words, if (x, y, z) ∈ U1, then we draw the ray R which starts at the North Pole
and goes through (x, y, z). We define sn(x, y, z) to be the point (X,Y, 0) where R intersects the
x, y-plane.

Figure 2. Stereographic projection from the North Pole
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We find formulas for sn: The ray through (0, 0, 1) and (x, y, z) can be parametrized as (0, 0, 1) +
t(x, y, z − 1). We can solve to find t such that 1 + t(z − 1) = 0 to get t = −1

z−1 . Then

sn(x, y, z) =
(
−x
z − 1

,
−y
z − 1

, 0
)
.

We are going to need a formula for the inverse map sn−1, so we compute this now: Let (X,Y, 0)
be a point in the x, y-plane. We can parametrize the ray through this point and (0, 0, 1) as (0, 0, 1)+
t(X,Y,−1) = (tX, tY,−t + 1), and we seek t that (tX, tY,−t + 1) ∈ S2. We can solve (tX)2 +
(tY )2 + (−t+ 1)2 = 1 to get t = 2

X2+Y 2+1
. Then

sn−1(X,Y, 0) =
(

2X
X2 + Y 2 + 1

,
2Y

X2 + Y 2 + 1
, 1− 2

X2 + Y 2 + 1

)
.

Exercise 2.1 Check that sn−1(sn(x, y, z)) = (x, y, z). You may need to use the fact that (x, y, z) ∈
S2, i.e. x2 + y2 + z2 = 1.

We define our first chart f1 : U1 → C by f1 = sn.
We can define stereographic projection from the South Pole analogously and find a formula for

it by calculations similar to those above.

Exercise 2.2 Show that ss, the stereographic projection from the South Pole is given by

(2.3) ss(x, y, z) =
(

x

z + 1
,

y

z + 1
, 0
)
.

Actually I don’t want to use ss for the chart f2. I want to modify it a little bit first. Here’s why:
The normal vector ∂f−1

1
∂X ×

∂f−1
1
∂Y for the map f−1

1 is inward pointing on U1. We can see this by a
direct calculation, or just by visualizing how the map f−1

1 parametrizes U1. In contrast, the normal
vector for the map ss−1 is outward pointing. I want my chart f−1

2 to be inward pointing on U2

so that it matches f−1
1 . To do this, I will compose ss in Formula (2.3) with a 180 degree rotation

of the x, y-plane in R3 along the x-axis. This rotation is given by the map (X,Y, 0) 7→ (X,−Y, 0).
Then I obtain

(2.4) f2(x, y, z) =
(

x

z + 1
,
−y
z + 1

, 0
)
.

Exercise 2.5 Show that

(2.6) f−1
2 (X,Y, 0) =

(
2X

X2 + Y 2 + 1
,

−2Y
X2 + Y 2 + 1

,−1 +
2

X2 + Y 2 + 1

)
.

and show that the normal vector ∂f−1
2
∂X ×

∂f−1
2
∂Y is inward pointing, as desired.

2.2. The topology. So far, I have declared that the following sets are open sets of S2: ∅, U1 ∩
U2, U1, U2, S

2. If you look up the definition of a continuous map in Armstrong’s book, you’ll see
that a map f : X → Y is continuous if f−1(V ) is open in X for every open set V in Y . So to make
my maps f1 and f2 above continuous, I declare that every set of the form f−1

1 (V ) or f−1
2 (V ) is also

open. Now I have told you all the open sets of S2, and my maps f1 and f2 are continuous.

2.3. Checking the compatibility condition. We need to check the compatibility condition for
our two charts. We want to show that g12 and g21 can be represented by power series.

Proposition 2.7 g12(ζ) = 1
ζ .
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Proof. Recall that g12 : C→ C is the composition f2 ◦ f−1
1 .

We start with a complex number ζ. Then to apply f−1
1 , we want to split ζ = X + iY into its

real and imaginary parts, and identify ζ with the point (X,Y, 0) in the x, y-plane in R3. We apply
f−1
1 and get (

2X
X2 + Y 2 + 1

,
2Y

X2 + Y 2 + 1
,
X2 + Y 2 − 1
X2 + Y 2 + 1

)
.

We apply f2 to this point and get(
2X

X2+Y 2+1

X2+Y 2−1
X2+Y 2+1

+ 1
,

−2Y
X2+Y 2+1

X2+Y 2−1
X2+Y 2+1

+ 1
, 0

)
We can simplify the first and second coordinates to get(

X

X2 + Y 2
,
−Y

X2 + Y 2
, 0
)
.

To finish, we need to show that the above expression is 1
ζ . As a complex number, it is X

X2+Y 2 −
i Y
X2+Y 2 . We have that

(X + iY )
(

X

X2 + Y 2
− i Y

X2 + Y 2

)
=
X2 + Y 2

X2 + Y 2
= 1,

and hence this is the multiplicative inverse of the complex number we started with. �

Why is the map ζ 7→ 1
ζ a power series? It looks like a rational function to me. When ζ 6= 0, we

can take as many derivatives of f(ζ) = 1
ζ as we want. Thus, near a point ζ0 6= 0, we can compute

the Taylor series for f(ζ) near ζ0, and it will converge on a disk of radius |ζ0| centered at ζ0.

3. Fundamental facts about Riemann surfaces

In the title of this section, I am using the word “fundamental” in the sense that lots of the rest
of the theory of Riemann surfaces rests on these facts. I don’t mean to imply that they are easily
proved.

Proposition 3.1 (1) Every Riemann surface looks like a donut with a certain number of
holes. The number of holes is called the genus.

(2) Every Riemann surface can be represented by the zeroes of a system of polynomial equations.

I won’t prove these statements, but I can at least point you to some references.
For the first statement: First, we need to know that complex manifolds are orientable (see

[3, pp.8-9] for 1-dimensional complex manifolds, or [4, p. 18] for any dimension). Then we just
need to know the classification of orientable surfaces; this can be found in [1, Ch. 7].

For the second statement: see the discussion in [5, Appendix B3].
In closing, I will elaborate on the kinds of polynomials that arise in the proposition.

3.1. Genus 0. There is a unique Riemann surface of genus 0, namely, the Riemann sphere we
explored in Section 2 above.

3.2. Genus 1. There exist infinitely many different Riemann surfaces of genus 1. (In fact, for any
g ≥ 1, there exist infinitely many different Riemann surfaces of genus g.) Every genus 1 Riemann
surface can be obtained in the following way: Choose a complex number ζ such that Im ζ 6= 0.
Draw the parallelogram in the complex plane with vertices at 0, 1, ζ, and 1 + ζ. Then if we roll up
this parallelogram and glue together opposite sides, we will get a donut or torus Cζ with one hole.

If you do this starting with two different complex numbers ζ1 and ζ2 with |ζ1| = |ζ2| = 1 but
ζ1 6= ζ2, then it turns out that there is no power series map between the two tori Cζ1 and Cζ2 .
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This explains what I meant by “different”: I think that in order for two complex manifolds to be
considered “the same,” there ought to be a power series map between them, with an inverse map
that’s also given by a power series.

Every genus 1 Riemann surface can be represented by an equation of the form y2 = x3 + ax+ b.

3.3. Genus 2. There exist infinitely many different Riemann surfaces of genus 2.
Every genus 2 Riemann surface can be represented by an equation of the form y2 = f(x), where

f is a polynomial of degree 5 or 6.
Next week I will try to give you feeling for how the polynomial y2 = x5 − x gives you a genus 2

Riemann surface.

3.4. Genus 3. There exist infinitely many different Riemann surfaces of genus 3.
Every genus 3 Riemann surface C can be represented by an equation of exactly one of the

following two forms:
(1) (General case) If C is nonhyperelliptic: F (x, y, z), where F is a degree four homogeneous

polynomial in three variables.
(2) If C is hyperelliptic: y2 = f(x), where f is a polynomial of degree 7 or 8.

3.5. Genus g ≥ 4. As noted above, for any g ≥ 1, there exist infinitely many different Riemann
surfaces of genus g.

Here we describe the kinds of polynomials that are involved. I will give some modern references
for the claims below. Much of the information below is classical, and I apologize that I lack sufficient
knowledge of the history of mathematics to credit the first discoverers.

Definition 3.2 A polynomial F in several variables is homogeneous of degree d if every monomial
in F has degree d; that is, there are no lower-order terms.

We call a homogeneous polynomial of degree 2 a quadric, and a homogeneous polynomial of
degree 3 a cubic.

Here is the general pattern:
Dave: find a reference for the second claim

Proposition 3.3 Let C be a Riemann surface of genus g ≥ 4. Suppose if g = 6 that C is not a
plane quintic. Then C can be represented by a set of equations of exactly one of the following three
forms:

(1) (General case) If C is nonhyperelliptic and not trigonal: (g − 2)(g − 3)/2 quadrics.
(2) If C is nonhyperelliptic and not trigonal: (g − 2)(g − 3)/2 quadrics and g − 3 cubics.
(3) If C is hyperelliptic: y2 = f(x), where f is a polynomial of degree 2g + 1 or 2g + 2.

If g = 6 and C is a plane quintic, then the equations are just like those for a trigonal curve, i.e.
six quadrics and three cubics.

Here are some references for the claims made above: For the number of quadrics in the nonhy-
perelliptic cases, see [2, Cor. 9.4]. For the number of cubics required to define a trigonal curve:
(need a reference). For the case of a plane quintic, see [6, p. 107]. For hyperelliptic curves, see
[3, §IV.4].

We write out the details for a few small values of g. This information can be found in [5, §IV.4]
and [6, p. 107].

Corollary 3.4

Genus 4: Every genus 4 Riemann surface C can be represented by a set of equations of exactly one
of the following two forms:
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(a) (General case) If C is nonhyperelliptic: one irreducible quadric and one irreducible
cubic, i.e. {F1(a, b, c, d), F2(a, b, c, d)}, where F1 and F2 are homogeneous polynomials
in four variables of degree two and three, respectively.

(b) If C is hyperelliptic: y2 = f(x), where f is a polynomial of degree 9 or 10.
Genus 5: Every genus 5 Riemann surface C can be represented by a set of equations of exactly one

of the following three forms:
(a) (General case) If C is nonhyperelliptic and not trigonal: three quadrics, i.e.
{F1(a, b, c, d, e), F2(a, b, c, d, e), F3(a, b, c, d, e)}, where Fi are homogeneous polynomials
in five variables of degree two for i = 1, 2, 3.

(b) If C is nonhyperelliptic and trigonal: three quadrics and two cubics, i.e.
{F1(a, b, c, d, e), F2(a, b, c, d, e), F3(a, b, c, d, e), F4(a, b, c, d, e), F5(a, b, c, d, e), }, where Fi
are homogeneous polynomials in five variables of degree two for i = 1, 2, 3 and degree
three for i = 4, 5.

(c) If C is hyperelliptic: y2 = f(x), where f is a polynomial of degree 11 or 12.
Genus 6: Every genus 6 Riemann surface C can be represented by a set of equations of exactly one

of the following three forms:
(a) (General case) If C is nonhyperelliptic and not trigonal and not a plane quintic: six

quadrics, i.e. {Fi(a, b, c, d, e, f) : i = 1, . . . , 6}, where Fi are homogeneous polynomials
in six variables of degree two for i = 1, . . . , 6.

(b) If C is nonhyperelliptic and either trigonal or a plane quintic: six quadrics and three
cubics, i.e. {Fi(a, b, c, d, e, f) : i = 1, . . . , 9}, where Fi are homogeneous polynomials in
six variables of degree two for i = 1, . . . , 6 and degree three for i = 7, 8, 9.

(c) If C is hyperelliptic: y2 = f(x), where f is a polynomial of degree 13 or 14.
Genus 7: Every genus 7 Riemann surface C can be represented by a set of equations of exactly one

of the following three forms:
(a) (General case) If C is nonhyperelliptic and not trigonal: ten quadrics, i.e.
{Fi(a, b, c, d, e, f) : i = 1, . . . , 10}, where Fi are homogeneous polynomials in six vari-
ables of degree two for i = 1, . . . , 10.

(b) If C is nonhyperelliptic and trigonal: ten quadrics and four cubics, i.e.
{Fi(a, b, c, d, e, f) : i = 1, . . . , 14}, where Fi are homogeneous polynomials in five vari-
ables of degree two for i = 1, . . . , 10 and degree three for i = 11, 12, 13, 14.

(c) If C is hyperelliptic: y2 = f(x), where f is a polynomial of degree 15 or 16.
Genus 8: Every genus 8 Riemann surface C can be represented by a set of equations of exactly one

of the following three forms:
(a) (General case) If C is nonhyperelliptic and not trigonal: fifteen quadrics, i.e.
{Fi(a, b, c, d, e, f) : i = 1, . . . , 15}, where Fi are homogeneous polynomials in six vari-
ables of degree two for i = 1, . . . , 15.

(b) If C is nonhyperelliptic and trigonal: fifteen quadrics and five cubics, i.e.
{Fi(a, b, c, d, e, f) : i = 1, . . . , 20}, where Fi are homogeneous polynomials in five vari-
ables of degree two for i = 1, . . . , 15 and degree three for i = 16, . . . , 20.

(c) If C is hyperelliptic: y2 = f(x), where f is a polynomial of degree 17 or 18.
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