We work with the semigroup \( \langle 4,9\rangle\) and face \(I = \{7,8,10\}\). Each coordinate of \(x\) should be given by a rational function in \(N\) once \(N \geq \max \{ \operatorname{c.i.}+2, \max(I)+2\}\). We begin by computing the conductor index.
Macaulay2, version 1.24.05
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems, Isomorphism,
LLLBases, MinimalPrimes, OnlineLookup, PrimaryDecomposition, ReesAlgebra,
Saturation, TangentCone, Truncations, Varieties
i1 : load "Worst1PS.m2"
i2 : ci = conductorIndex({4,9})
o2 = 12
We will use \(N=16\) for many of the calculations below.
Next, we compute the KKT solution vector \(x\) for the Simplified
Problem when \(N=16\).
i3 : x = KKTsolutionVector(16,{4,9},{7,8,10},Simp=>true)
3847 5258 17396 12452 1210 1520 331 114 54 13 32 320 220 4 18
o3 = {----, ----, -----, -----, ----, ----, ----, - -----, ---, ---, --, ---, ---, --, - ---,
3822 1911 5733 5733 637 1911 8673 37583 413 413 59 413 413 59 413
--------------------------------------------------------------------------------------------
41 817
---, ---}
413 413
o3 : List
Next, we compute the common denominator of these rational functions, which is
given by the polynomial
\[
Q(N) = (-1)^{N+1} \det A(N)
\]
where \(A(N)\) is the KKT matrix.
i4 : R=QQ[N];
i5 : q=Q({4,9},{7,8,10},R)
Q = -3669120*(N-14)^4-79252992*(N-14)^3-731622528*(N-14)^2-3121687296*(N-14)^1-4684732416*(N-14)^0
4 3 2
o5 = - 3669120N + 126217728N - 1717881984N + 11035245312N - 27861829632
o5 : R
Here, Macaulay2 prints the Taylor expansion of \(Q\) about
\(14 = \{ \operatorname{c.i.}+2, \max(I)+2\} \). The output is the
polynomial \(Q\) centered at 0.
Next, we compute the polynomial
\[
P_j(N) = (-1)^{N+1} \det A(N,j)
\]
and check that \(P_j/Q =x_3\).
i6 : p3=Pj(3,{4,9},{7,8,10},R)
P_3 = -11133440*(N-14)^4-240482304*(N-14)^3-2220007936*(N-14)^2-9472330752*(N-14)^1-14215176192*(N-14)^0
4 3 2
o6 = - 11133440N + 382990336N - 5212676608N + 33484934144N - 84542889984
o6 : R
i7 : substitute(p3,{N=>16})/substitute(q,{N=>16})
17396
o7 = -----
5733
o7 : QQ
Indeed, this gives the third coordinate of \(x\) shown above.
Next, we compute the polynomials
\[\begin{array}{rcl}
\chi(N) &=& (-1)^{N+1} \det A(N,N-1) \\
\psi(N) &= &(-1)^{N+1} \det A(N,N) \\
\omega(N) &= & (-1)^{N+1} \det A(N,N+1)
\end{array}
\]
and check that they give the numerators of the last three coordinates of \(x\).
i8 : f1=chi({4,9},{7,8,10},R)
chi = 35223552*(N-14)^3+352235520*(N-14)^2+457906176*(N-14)^1-1972518912*(N-14)^0
3 2
o8 = 35223552N - 1127153664N + 11306760192N - 35998470144
o8 : R
i9 : substitute(f1,{N=>16})/substitute(q,{N=>16})
18
o9 = - ---
413
o9 : QQ
i10 : f2=psi({4,9},{7,8,10},R)
psi = -52835328*(N-14)^2-405070848*(N-14)^1-422682624*(N-14)^0
2
o10 = - 52835328N + 1074318336N - 5107415040
o10 : R
i11 : substitute(f2,{N=>16})/substitute(q,{N=>16})
41
o11 = ---
413
o11 : QQ
i12 : f3=omega({4,9},{7,8,10},R)
omega = -7338240*(N-13)^4-111541248*(N-13)^3-908474112*(N-13)^2-3833496576*(N-13)^1-5494874112*(N-13)^0
4 3 2
o12 = - 7338240N + 270047232N - 3999340800N + 27723870720N - 73722894336
o12 : R
i13 : substitute(f3,{N=>16})/substitute(q,{N=>16})
817
o13 = ---
413
o13 : QQ
Next, we check the formulas for the coefficients of the Taylor
expansion of \(\chi\) as given by Lemma 3.11. By the printed formula
between i8 and o8 above, this is
\[
\chi = 35223552 (N-14)^3+352235520 (N-14)^2+457906176 (N-14)-1972518912.
\]
i14 : k=14
o14 = 14
i15 : M = Aprime(k,k-1,{4,9},{7,8,10},Simp=>true)
o15 = | -4 0 0 0 0 0 34 36 0 42 0 0 4 52 2 |
| 8 -1 0 0 0 0 26 28 0 34 0 0 12 44 2 |
| -4 5 -3 0 0 0 18 20 0 26 0 0 6 36 2 |
| 0 -4 4 -1 0 0 16 18 0 24 0 0 4 34 2 |
| 0 0 -1 4 -3 0 10 12 0 18 0 0 4 28 2 |
| 0 0 0 -3 4 -1 8 10 0 16 0 0 4 26 2 |
| 0 0 0 0 -1 4 2 4 0 10 0 0 4 20 2 |
| 0 0 0 0 0 -3 0 2 0 8 0 0 0 18 2 |
| 0 0 0 0 0 0 0 0 -1 6 0 0 2 16 2 |
| 0 0 0 0 0 0 0 0 3 2 0 0 2 12 2 |
| 0 0 0 0 0 0 0 0 -2 0 -2 0 0 10 2 |
| 0 0 0 0 0 0 0 0 0 0 3 -1 2 8 2 |
| 0 0 0 0 0 0 0 0 0 0 -1 3 2 4 2 |
| 0 0 0 0 0 0 0 0 0 0 0 -2 0 2 2 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 |
15 15
o15 : Matrix QQ <-- QQ
i16 : 1/3*(-1)^(k+1)*(2*del({k,k+1},{k,k+1},M)+2*del({k-1,k+1},{k,k+1},M))
o16 = 35223552
o16 : QQ
i17 : (-1)^(k+1)*(4*del({k,k+1},{k,k+1},M)+2*del({k-1,k+1},{k,k+1},M))
o17 = 352235520
o17 : QQ
i18 : 1/3*(-1)^(k+1)*(-14*del({k,k+1},{k,k+1},M)-8*del({k-1,k+1},{k,k+1},M)-6*del({k+2},{k+1},Aprime(k+1,k,{4,9},{7,8,10},Simp=>true)))
o18 = 457906176
o18 : QQ
i19 : (-1)^(k+1)*det(M)
o19 = -1972518912
o19 : QQ
We check the formulas for the coefficients of the Taylor
expansion of \(\psi\) as given by Lemma 3.11. By the printed formula
between i10 and o10 above, this is
\[
\psi = -52835328 (N-14)^2-405070848 (N-14)-422682624.
\]
i20 : k=14
o20 = 14
i21 : M = Aprime(k,k,{4,9},{7,8,10},Simp=>true)
o21 = | -4 0 0 0 0 0 34 36 0 42 0 0 0 4 2 |
| 8 -1 0 0 0 0 26 28 0 34 0 0 0 12 2 |
| -4 5 -3 0 0 0 18 20 0 26 0 0 0 6 2 |
| 0 -4 4 -1 0 0 16 18 0 24 0 0 0 4 2 |
| 0 0 -1 4 -3 0 10 12 0 18 0 0 0 4 2 |
| 0 0 0 -3 4 -1 8 10 0 16 0 0 0 4 2 |
| 0 0 0 0 -1 4 2 4 0 10 0 0 0 4 2 |
| 0 0 0 0 0 -3 0 2 0 8 0 0 0 0 2 |
| 0 0 0 0 0 0 0 0 -1 6 0 0 0 2 2 |
| 0 0 0 0 0 0 0 0 3 2 0 0 0 2 2 |
| 0 0 0 0 0 0 0 0 -2 0 -2 0 0 0 2 |
| 0 0 0 0 0 0 0 0 0 0 3 -1 0 2 2 |
| 0 0 0 0 0 0 0 0 0 0 -1 3 -1 2 2 |
| 0 0 0 0 0 0 0 0 0 0 0 -2 2 0 2 |
| 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 2 |
15 15
o21 : Matrix QQ <-- QQ
i22 : (-1)^(k+1)*(del({k+1},{k+1},M)+del({k},{k+1},M))
o22 = -52835328
o22 : QQ
i23 : (-1)^(k+1)*(3*del({k+1},{k+1},M)+del({k},{k+1},M))
o23 = -405070848
o23 : QQ
i24 : (-1)^(k+1)*det(M)
o24 = -422682624
o24 : QQ
We check the statement of Lemma 3.12.
i25 : (1/2)*leadCoefficient(f1)==-(1/3)*leadCoefficient(f2)
o25 = true
We also illustrate Lemma 3.13.
i26 : p14=Pj(14,{4,9},{7,8,10},R)
P_14 = 58705920*(N-15)^4+516612096*(N-15)^3+575318016*(N-15)^2-1009741824*(N-15)^1-1127153664*(N-15)^0
4 3 2
o26 = 58705920N - 3005743104N + 56580765696N - 462086037504N +
---------------------------------------------------------------------
1371886903296
o26 : R
i27 : p14 == (N-14)*(N-14+1)*(1/2*f1+1/3*(N-14-1)*f2)
o27 = true
Finally, we use the same semigroup, but a different set of corners, to
illustrate Proposition 5.5.
i28 : g1=chi({4,9},{7,8,10,20},R)
chi = 7021228032*(N-22)^3+42127368192*(N-22)^2+77233508352*(N-22)^1+42127368192*(N-22)^0
3 2
o28 = 7021228032N - 421273681920N + 8418452410368N - 56029399695360
o28 : R
i29 : factor(g1)
o29 = (N - 21)(N - 20)(N - 19)(7021228032)
o29 : Expression of class Product
i30 : g2=psi({4,9},{7,8,10,20},R)
psi = -10531842048*(N-22)^2-52659210240*(N-22)^1-63191052288*(N-22)^0
2
o30 = - 10531842048N + 410741839872N - 4002099978240
o30 : R
i31 : factor(g2)
o31 = (N - 20)(N - 19)(-10531842048)
o31 : Expression of class Product
i32 : (1/2)*leadCoefficient(g1)==-(1/3)*leadCoefficient(g2)
o32 = true
Indeed, the polynomials \(\chi\) and \(\psi\) factor as claimed in
Proposition 5.5.