Example 2a First, we compute the KKT matrix for the semigroup \( \langle 2,3 \rangle\) with \(N=3\) and \(I = \emptyset\), and the Unsimplified Problem.
Macaulay2, version 1.24.05
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems, Isomorphism,
LLLBases, MinimalPrimes, OnlineLookup, PrimaryDecomposition, ReesAlgebra,
Saturation, TangentCone, Truncations, Varieties
i1 : load "Worst1PS.m2"
i2 : -- Example 2a
KKTmatrix(3,{2,3},{})
o2 = | -1 0 8 2 |
| 3 -1 4 2 |
| -2 2 2 2 |
| 0 -1 0 2 |
4 4
o2 : Matrix QQ <-- QQ
i3 : avector(3,{2,3})
o3 = {2, 3, 2, 1}
o3 : List
i4 : KKTsolutionVector(3,{2,3},{})
36 6 8 8
o4 = {--, -, --, -}
35 5 35 5
o4 : List
Thus, the KKT matrix equation for this face is
\[
\left[\begin{array}{rrrr}
-1 & 0 & 8 & 2 \\
3 & -1 & 4 & 2 \\
-2 & 2 & 2& 2 \\
-0 & -1 & 0 & 2 \\
\end{array} \right]
\left[
\begin{array}{r}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{array}
\right] =
\left[
\begin{array}{r}
4\\
6\\
4 \\
2
\end{array}
\right]
\]
and it has solution \(x =
\left(\frac{36}{35},\frac{6}{5},\frac{8}{35},\frac{8}{5}\right).\)
Since all of these coordinates are nonnegative, we
conclude that the optimal solution to the Unsimplified Problem lies on
this face for this value of \(N\).
Example 2b We continue the Macaulay2 session started above and compute the KKT matrix for the same semigroup, \(N\), and face \(I\), but for the Simplified Problem. The left hand side of the matrix equation is the same as before; only the right hand side changes.
i5 : -- Example 2b
avector(3,{2,3},Simp=>true)
o5 = {2, 3, 2, 2}
o5 : List
i6 : KKTsolutionVector(3,{2,3},{},Simp=>true)
22 2 1 11
o6 = {--, -, --, --}
35 5 35 5
o6 : List
Thus, the KKT matrix equation for this face is
\[
\left[\begin{array}{rrrr}
-1 & 0 & 8 & 2 \\
3 & -1 & 4 & 2 \\
-2 & 2 & 2& 2 \\
-0 & -1 & 0 & 2 \\
\end{array} \right]
\left[
\begin{array}{r}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{array}
\right] =
\left[
\begin{array}{r}
4\\
6\\
4 \\
4
\end{array}
\right]
\]
and it has solution \(x =
\left(\frac{22}{35},\frac{2}{5},\frac{1}{35},\frac{11}{5}\right).\) Since all of these coordinates are nonnegative, we
conclude that the optimal solution to the Simplified Problem lies on
this face for this value of \(N\).
Example 2c We compute the KKT matrix for the semigroup \( \langle 4,9 \rangle\) with \(N=14\) and \(I = \{7,8,10\}\), and the Simplified Problem.
i7 : -- Example 2c
KKTmatrix(14,{4,9},{7,10})
o7 = | -4 0 0 0 0 0 34 0 0 42 0 0 0 52 2 |
| 8 -1 0 0 0 0 26 0 0 34 0 0 0 44 2 |
| -4 5 -3 0 0 0 18 0 0 26 0 0 0 36 2 |
| 0 -4 4 -1 0 0 16 0 0 24 0 0 0 34 2 |
| 0 0 -1 4 -3 0 10 0 0 18 0 0 0 28 2 |
| 0 0 0 -3 4 -1 8 0 0 16 0 0 0 26 2 |
| 0 0 0 0 -1 4 2 0 0 10 0 0 0 20 2 |
| 0 0 0 0 0 -3 0 -2 0 8 0 0 0 18 2 |
| 0 0 0 0 0 0 0 3 -1 6 0 0 0 16 2 |
| 0 0 0 0 0 0 0 -1 3 2 0 0 0 12 2 |
| 0 0 0 0 0 0 0 0 -2 0 -2 0 0 10 2 |
| 0 0 0 0 0 0 0 0 0 0 3 -1 0 8 2 |
| 0 0 0 0 0 0 0 0 0 0 -1 3 -1 4 2 |
| 0 0 0 0 0 0 0 0 0 0 0 -2 2 2 2 |
| 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 2 |
15 15
o7 : Matrix QQ <-- QQ
i8 : avector(14,{4,9},Simp=>true)
o8 = {4, 8, 5, 4, 4, 4, 4, 2, 3, 3, 2, 3, 3, 2, 2}
o8 : List
i9 : KKTsolutionVector(14,{4,9},{7,10},Simp=>true)
205561 280694 54604 663836 193490 81040 3353 160 4686 1442 17890 24552
o9 = {------, ------, -----, ------, ------, ------, ------, -----, -----, -----, -----, -----,
204306 102153 18027 306459 102153 102153 102153 34051 34051 34051 34051 34051
--------------------------------------------------------------------------------------------
14312 3084 75258
-----, -----, -----}
34051 34051 34051
Thus, the KKT matrix equation for this face is
\[
\left[\begin{array}{rrrrrrrrrrrrrrr}
-4 & 0 & 0 & 0 & 0 & 0 & 34 & 0 & 0 & 42 & 0 & 0 & 0 & 52 & 2\\
8 & -1 & 0 & 0 & 0 & 0 & 26 & 0 & 0 & 34 & 0 & 0 & 0 & 44 & 2\\
-4 & 5 & -3 & 0 & 0 & 0 & 18 & 0 & 0 & 26 & 0 & 0 & 0 & 36 & 2\\
0 & -4 & 4 & -1 & 0 & 0 & 16 & 0 & 0 & 24 & 0 & 0 & 0 & 34 & 2\\
0 & 0 & -1 & 4 & -3 & 0 & 10 & 0 & 0 & 18 & 0 & 0 & 0 & 28 & 2\\
0 & 0 & 0 & -3 & 4 & -1 & 8 & 0 & 0 & 16 & 0 & 0 & 0 & 26 & 2\\
0 & 0 & 0 & 0 & -1 & 4 & 2 & 0 & 0 & 10 & 0 & 0 & 0 & 20 & 2\\
0 & 0 & 0 & 0 & 0 & -3 & 0 & -2 & 0 & 8 & 0 & 0 & 0 & 18 & 2\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & -1 & 6 & 0 & 0 & 0 & 16 & 2\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 3 & 2 & 0 & 0 & 0 & 12 & 2\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 & -2 & 0 & 0 & 10 & 2\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & -1 & 0 & 8 & 2\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 3 & -1 & 4 & 2\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 2 & 2 & 2\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 2
\end{array} \right]
\left[
\begin{array}{r}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_6 \\
x_7 \\
x_8 \\
x_9 \\
x_{10} \\
x_{11} \\
x_{12} \\
x_{13} \\
x_{14} \\
x_{15}
\end{array}
\right] =
\left[
\begin{array}{r}
4\\
8\\
5\\
4\\
4\\
4\\
4\\
2\\
3\\
3\\
2\\
3\\
3\\
2\\
2
\end{array}
\right]
\]
Here, the coordinates \(x_7\), \(x_8\), and \(x_{10}\) correspond to
parameters on this face of the cone \(W\), while the remaining
coordinates are KKT multipliers. Since \(x_7\), \(x_8\), and
\(x_{10}\) are positive, and the remaining coordinates of \(x\) are
nonnegative, we conclude that optimal solution to the Simplified
Problem lies on this face for this value of \(N\), and on no smaller face.