arXiv:2502.00458v1 [math.AG] 1 Feb 2025

THE WORST DESTABILIZING 1-PARAMETER SUBGROUP FOR TORIC
RATIONAL CURVES WITH ONE UNIBRANCH SINGULARITY

JOSHUA JACKSON AND DAVID SWINARSKI

ABSTRACT. Kempf proved that when a point is unstable in the sense of Geometric Invariant Theory, there
is a “worst” destabilizing 1-parameter subgroup A*. It is natural to ask: what are the worst 1-PS for the
unstable points in the GIT problems used to construct the moduli space of curves ng? Here we consider
Chow points of toric rational curves with one unibranch singular point. We translate the problem as an
explicit problem in convex geometry (finding the closest point on a polyhedral cone to a point outside it).
‘We prove that the worst 1-PS has a combinatorial description that persists once the embedding dimension
is sufficiently large, and present some examples.

1. INTRODUCTION

There are several GIT results concerning the Hilbert or Chow stability of embedded singular curves. When
the dimension of the linear system is sufficiently small compared to the arithmetic genus, many singularities
are GIT stable. For example, cusps are semistable in several GIT problems, including plane quartics and 2-,
3-, or 4-canonical curves [IL[T0,I3]24.29]. In contrast, when the dimension of the linear system is sufficiently
large compared to the genus, the only singularities that are GIT semistable are nodes; see [7] for asymptotic
Hilbert semistability or [23] for Chow semistability.

Kempf showed in [I7] that when z € X is GIT unstable, there is a “worst” destabilizing 1-parameter
subgroup A\* associated to x. It is the worst in the sense that it maximizes p(x, \)/||A||, where p(z, A) is the
Hilbert-Mumford function. Thus, it is natural to ask: when a point [C] parametrising a singular curve is
GIT unstable, what is the worst 1-PS \*?

Knowledge of worst 1-PS has important applications in moduli theory. Hesselink and Kempf-Ness describe
a locally closed stratification that is invariant under the group action and arises from indexing each point by
its worst 1-PS; Kirwan uses this stratification to compute the cohomology of the GIT quotient [11L19,25].
More recently, this whole picture has been greatly generalised by Halpern-Leistern’s Beyond GIT program, in
which the HN filtration of an unstable point is a generalization of the worst 1-PS [§]. On the moduli side, it
has been shown that these unstable Hesselink-Kempf-Kirwan-Ness strata can themselves be quotiented using
results from Non-Reductive GIT [12], allowing one to construct moduli spaces of unstable objects. Although
we perform no such quotients in this paper, a principal motivation for our work here is the construction of
new moduli spaces of unstable (i.e. singular) curves.

We study the problem of Chow stability for a toric rational curve C' with one unibranch singularity.
There are two reasons we begin our study with these examples. The first reason is that we know where to
look: when X has an automorphism group whose action is multiplicity-free, the Kempf-Morrison Lemma
[22, Prop. 4.7] guarantees that the worst 1-PS will appear in the maximal torus diagonalizing this action.
The second reason is that when X is toric, the vertices of the Chow polytope can be identified with coherent
triangulations of the polytope of X. This allows us to interpret the value of the Hilbert-Mumford function
1([X], A) as the volume of a convex region. We can go even further when X is a rational curve with one
unibranch singularity and restate the problem of finding the worst 1-PS as finding the closest point on a
polyhedral cone W to a vector a that lies outside W. The cone W and vector a are completely explicit once
the singularity and embedding dimension are given.

Using these ideas, we wrote software that uses GAP, Macaulay2, and MATLAB or Octave [4,20,21.27] to
compute many examples. We observed that, for a fixed singularity, the worst 1-PS behaves in a predictable
way once the embedding dimension N is sufficiently large. There exists an integer ¢ such that the first
£ weights in the worst 1-PS are constant with respect to N, and the remaining weights are given by an
explicit formula that arises from a least squares linear regression calculation. We call this phenomenon the
persistence of the worst 1-PS for all N sufficiently large.
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We state this more precisely as follows. Let C' be a rational curve with one unibranch singularity at p.
Let ' = {70,71, ...} be the semigroup of the singularity. For all N, consider the map C' — PV given by

tes (L, 802, )
Let Cr be the image of C under this map, and let w* be the weights of the worst 1-PS.

Main Theorem (Persistence of the worst 1-PS). There exist an integer Ny and an integer £ (both depending
on T') such that for all N > Ny, the coordinates wg,...,w;_, are constant with respect to N, and the
coordinates wy, ..., wx are given by the formula

wi =mi—+b

where
—— 6
 (N—4+1D)(N-t+2)
b9 2(N+2¢0-1)

(N—(+1)(N —(+2)

To prove this theorem, we first prove a similar statement for a closely related optimisation problem that
we call the Simplified Problem. For each face F' of W, we use the Karush-Kuhn-Tucker (KKT) conditions
in nonlinear optimisation to study the proximum Prox(a,Span(F')), and show that the face containing the
global optimum has the same combinatorial description in all sufficiently large degrees. We then use the
solution to the Simplified Problem to construct the solution to the original problem.

1.1. Outline of the paper. In Section [2] we use the identification of the vertices of the Chow polytope
with coherent triangulations to translate the problem of finding the worst 1-PS into an explicit convex
optimisation problem. In Section [B] we recall the KKT conditions in convex optimisation and apply them
to describe how the stationary points on each face of the cone W vary with the embedding dimension V.
In Section @ we describe the behavior of the stationary points when all the corners are at or below the
conductor. In Section B} we describe the behavior of the stationary points when there is at least one corner
above the conductor. In Section [6] we prove the main theorem. Finally, in Section [7l we present several
examples.

To keep the main body of the paper short, we moved some technical proofs to two appendices. Appendix
A gives a detailed proof of Lemmas and BIIl Appendix B gives a detailed proof of Propositon [.4]
describing the worst 1-PS for cusps.

Acknowledgements. Our collaboration grew out of a conversation between the authors, Jarod Alper,
Daniel Halpern-Leistner, and Frances Kirwan following the February 2021 AIM workshop “Moduli problems
beyond geometric invariant theory”. The authors met again at the February 2023 AIM workshop “Devel-
opments in moduli problems.” We are grateful to AIM and the workshop organizers. We also thank Trevor
Jones for discussing his preprint [16] with us.

Software. We used several mathematical software packages for experimentation related to this project,
including GAP, gfan, Macaulay2, MATLAB, Octave, QEPCAD, and SageMath [4[5,[20/2T27,128][30]. This experi-
mentation was essential to the project in that it led us to conjecture the main result, though ultimately, the
proof of the main result is a “pencil-and-paper” proof that does not rely on any computer calculations. The
examples listed in Table[Ilwere computed using software. We have posted our code and some demonstrations
for the interested reader on our website: see [15].

2. THE WORST 1-PS FOR CHOW POINTS OF TORIC CURVES AS A CONVEX OPTIMISATION PROBLEM

In this section, we translate the problem of finding the worst 1-PS for Chow points of certain toric curves
into an explicit convex optimisation problem. See Theorem 2.1§
First, we recall Kempf’s description of the worst 1-PS. We follow the conventions of [9, Ch. 4A] and [17].



THE WORST 1-PS FOR TORIC RATIONAL CURVES WITH ONE UNIBRANCH SINGULARITY 3

2.1. The worst 1-PS. Let G be a connected reductive algebraic group over a field k, and let W be a
finite-dimensional k-vector space. Suppose that G acts on X C P(W) by a representation G — GL(W).
Let A : G,,, = G be a l-parameter subgroup. Write W; for the weight ¢ subspace, and write Sy (W) for
the set of weights {7 : W; # 0}. Then
w= P w

1€S\ (W)
Definition 2.1. The Hilbert-Mumford function u(x,\) is given by
u(x, A) = min{i | x; # 0}
Definition 2.2. We call A* a worst 1-PS for x if
(@, A") (@, A)

SIS EY
A priori it is not clear that this supremum is finite, or that it is achieved, but Mumford showed that both
statements are true. Kempf proved that when z is unstable, the supremum is achieved on a unique parabolic
conjugacy class of 1-PS.

Theorem 2.3 ([24, Prop. 2.17], [I7, Theorem 3.4)). Suppose that x € X is unstable for the action of G.
Then there exists a worst 1-PS for x.

In the following subsections, we recall the definitions of Chow points, with the goal of understanding their
worst one-parameter subgroups.

2.2. Chow forms and Chow polytopes. Given a curve C € PV of degree d, there is a corresponding
point [C] in the Chow variety Chowy(PY). We briefly recall the relevant definitions; see [6] Chapters 3 and
4 for more details.

Let X C P"~! be an irreducible subscheme of dimension k — 1 and degree d. A generic (n — k — 1)-
dimensional projective subspace L C P*~! will miss X. Let

Z(X)={L|dim(L) =n—k—1,X N L # 0}

Theorem 2.4. [6] Ch. 3,Prop. 2.1 and 2.2]
(1) Z(X) is an irreducible hypersurface of degree d in Gr(n — k,n).
(2) Up to a scalar, Z(X) is defined by a polynomial Rx called the Chow form of X.

Thus, X C P"~! corresponds to the point [Rx] € P(Sym? A" % k™). We will write [X] for [Rx].
The closure of the set of points of the form [X] has the structure of an algebraic variety called the Chow
variety.

2.3. Numerical semigroups and monomial curves. We seek the worst 1-PS for the Chow points of
curves [C] € Chow,4(PY). In general, this is difficult, so in this work we only consider the special case where
C is a toric rational curve with a single unibranch singularity at p € C. One can associate to such a curve
its semigroup of values.

Definition 2.5. The semigroup of values of C' is the numerical semigroup
Ic:={neN|3f € Oc,p with vp,(f) =n} CN
where v, is the valuation at the singular point p € C.

Example 2.6. The simplest example is a cuspidal curve, that analytically looks like y?> = x® and has
semigroup of values I' = (2,3) = {0,2,3,4,...}. More generally we may consider higher order cusps y? =
22 and get T' = (2,2r +1) = {0,2,4,...,2r,2r +1,2r +2,...}

For each numerical semigroup T', there exists a positive integer cond(I") called the conductor of T' such
that N>conqry € I'. Thus one has | N\ T' [< oo, and the size of that set, i.e. the number of gaps, is equal to
the arithmetic genus of the curve C' (or equivalently, the d-invariant of the singularity). We list the elements
of I" as 40,71, 72, - - - with 79 = 0, and write c.i.(T") for the index of the conductor. That is, v ;.(ry = cond(T’).

Conversely, given a numerical semigroup I' C N, we can write down a curve Cpr C PV of degree d that
has semigroup of values I
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Definition 2.7. Let I' C N, and let d > cond(I"). The monomial curve Cr is the closure of the image of
the parametrisation

t—s (1,070,002, ..t

where ; are the elements of I'<q.

2.4. The G,,-action on Cr. Let I' be a numerical semigroup, and let N > c.i.(I'). Let Cr C PV be the
monomial curve as in Definition 2771 Our goal is to find the worst 1-PS for this action of GLy11 on the
Chow point [Cr].

Hyeon and Park have shown that for an unstable point « in a GIT problem, a generic maximal torus will
not contain a destabilizing 1-PS [14]. Fortunately, we have a clue where to look for the worst 1-PS: Cr has a
G,,-automorphism scaling the coordinate ¢, and it acts with distinct weights on PV. This allows us to apply
the Kempf-Morrison Lemma [22] Prop. 4.7] and conclude that if Cr is unstable for the GLy 1, then a worst
1-PS will appear in the maximal torus diagonalizing the G,,-action. (Note: the statement in the cited work
is for a finite automorphism group, but the proof works for G,, as well.)

Cr is a non-normal toric variety. Its associated polytope is just the interval [0, d]. Because the variety is
not normal, some of the interior lattice points of the polytope are missing—these are exactly the gaps in the
semigroup.

This observation is useful because the Chow polytope of a toric variety has a second description due to
Kapranov, Sturmfels, and Zelevinsky: it is the secondary polytope of the polytope of X ([6, Ch. 8, Thm. 3.1]).
In the next section, we briefly review part of this theory.

2.5. The Hilbert-Mumford function for Chow points of toric varieties. Consider a polytope @ =
conv(A), where A = {Ay,..., A,} C R¥!is a finite set of vectors.

Definition 2.8. The secondary polytope L(A) of @ is the convex hull of the vectors ¢ as T runs over all
triangulations of Q.

Let R4 be the set of functions A — R. Given a triangulation 7" of @, one can associate a vector ¢p € R4,
whose ith entry is the real number
¢r(i)= > Vol(o)
o:a;€Vert(o)
where Vol is a translation-invariant volume form and the sum is over all maximal simplices of T" for which
A; is a vertex. If A; is not a vertex of any maximal simplex of T, the entry is zero.

The vertices of the secondary polytope are those vectors ¢ corresponding to coherent triangulations of
(Q, A) [6]Ch. 7, Thm. 1.7 (We omit the definition of coherence, because we won’t need it: in dimension one,
all triangulations are coherent.)

The following definitions and lemma are adapted from [0, Ch. 7 Lem. 1.9(c)]. (The cited result gives a
formula for the maximum, but the minimum appears in our GIT calculations.)

Definition 2.9. Given a function f € R4, let H ¢ be the convex hull of the vertical half-lines

{(z,9) |y 2 f(z),x € A,y eR}.
Let the lower convex hull of f, denoted Ich(f) : @ — R, be the piecewise linear function

leh(f)(z) = min{y | (z,y) € Hy}.
Lemma 2.10. [6, Ch. 7 Lem. 1.9(c)] Given a polytope Q = conv(A) and a vector w € R"1 we have

min (w, ¢) :k/Qlch(fw)(:v)d:v,

PEX(A)
where fy, : A — R is the function f,(A;) = w;.

In summary: to compute the miminal pairing of a vertex of the secondary polytope with a vector w € R**+1,
we first take the lower convex hull, and then integrate it over the polytope.

The formula in Lemma 210 leads to the following expression for Hilbert-Mumford function. To our
knowledge, this has not appeared in the literature before.
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Proposition 2.11. The value of the Hilbert-Mumford function for the point [X] € Chowa(PV) at a 1-PS
A Gy, = T with weight vector w is

pOVX]) = [ ()
Q

2.6. Chow polytopes of monomial curves Cr. Now we apply these results to monomial curves.

Let T' be a numerical semigroup, and let N > c.i.T', and let Cr C PY be the corresponding a monomial
curve

Its corresponding polytope is @ = conv(A4) = [0,d], where A = (y0,...,vn). The Chow polytope of Cr
is the same as the secondary polytope X(A), and hence its vertices correspond to triangulations of (@, A).
A 1-dimensional triangulation is just a decomposition into intervals, and it determined by the placement of
the vertices; hence, such triangulations are in bijection with subsets of the finite set A\ {0,vn}.

Example 2.12. Consider a cuspidal cubic X?Z — Y3 C P2. The secondary polytope/Chow polytope has
one vertex for each integral subdivision of [0, 3], where we are not allowed to place a vertex at 1, because
that value is missing from the semigroup of values. Thus there are only two possible sudivisions: [0, 2, 3] and
[0, 3], i.e. we either place a vertex at 2 or not. These two subdivisions correspond to the two vertices of the
weight polytope, and hence to the two possible initial ideals: one is X2Z and the other is Y3.

Thus for curves, Proposition B.11] says that the value of the Hilbert-Mumford function is the area under
the graph of the lower convex hull of the piecewise linear function determined by the weight vector w.

Definition 2.13. We call a weight vector convez if it is equal to its lower convex hull.

Equivalently, a weight vector is convex if and only if the slopes of the corresponding piecewise linear
function are increasing.

Lemma 2.14. Let w* be the weight vector of the worst 1-PS for Cr. Then w* is nonnegative and convex.

Proof. First, suppose that w has at least one negative coordinate. The vertices of the secondary polytope
all lie in the positive orthant, and the Chow polytope coincides with the secondary polytope. Let w’ be
defined by w; = max{0,w;}. Then (w',¢) > (w, ¢) for all ¢ € £(A). Hence u([Cr],w") > u([Cr],w). Also
||| < ||w||. Thus

p(Cr],w') _ pw(Cr], w)
Jw'|l = ]

Thus, w* is nonnegative.

Now suppose w satisfies w; # 0 for all ¢, and for at least one index ¢, we have w; > Ich(f,)(A;). Then
define w’ by lowering the i*" coordinate to the lower convex hull. We have pu([Cr],w’) = u([Cr],w) since
they have the same lower convex hull, but ||w’|| < ||w||. Thus

p(Cr],w')  w(Cr], w)
fw'fl = flwl

Thus, w* is convex. ]

2.7. The optimisation problem. In this section we present an explicit optimisation problem whose solu-
tion is a worst 1-PS for [Cr]. We need to introduce a little more notation first.

2.7.1. The cone W. By Lemma 214l in finding the worst 1-PS we are justified in restricting our attention
to one-parameter subgroups whose weight vectors w are convex.
Definition 2.15. Let W C RV*1! be the set of convex weight vectors.

Since a weight vector is convex if and only if the slopes of the corresponding piecewise linear function are
increasing, W is a polyhedral cone generated by the inequalaties that the slope of the ith line less than or
equal to the slope of the (i 4+ 1)th line. For more details about W, see Section .11l below.
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2.7.2. The vector a.

Lemma 2.16. Let Cr be a monomial curve, let A = (y0,...,7n), @ = conv(A), and suppose that w is
nonnegative and convex. Then

2 /Q leh(fy)(z)dx = a - w

where
a;=4q vi—%Yi-2 f2<i<N
1 ifi=N+1
(Note: in this formula, we have indexed w = (wo, ..., wn) and A = (yo,...,vn) starting at 0, and indexed
a=(a1,...,an+1) starting at 1. This is because in the sequel, a will appear in a matriz equation where we

index the rows beginning at 1.)

Proof. Since w is convex, we have lch(f,,)(v;) = w;. Since w is nonnegative, the integral 2 f,zil leh(fy)(2)dx
is twice the area of the trapezium with heights w;—; and w; and width (y; — v;—1). Then

YN N-1
2/ leh(fu)dz =Y (w1 +w;)(vi — Yi1)
0 i=1
o(y1 —0) + Z wi—1 (Vi = Yi—2) + wn (YN —YN-1)

=wo(y1) + Zwi—l(% —Yi-2) + wn (D).
i=2

Here the last line follows because 79 = 0 and (yy — yy—1) = 1, since N > c.i.(T).
O

Remark 2.17. Once we are above the index of the conductor, all gaps between consecutive semigroup
elements are 1, and hence, if the degree of the curve is large enough, the tail of a looks like (2,2,...,2,1).
We can think of increasing the degree as merely adding an extra 2. This gives the moral reason why we might
expect to see persistent optima, and motivates the Simplified Problem, discussed in the next subsection.

We are now ready for the main result of this section.

Theorem 2.18. Let W and a be the cone and vector defined above for the monomial curve Cr.
Let prox(a, W) be the nearest point on the cone W to the vector a outside it.
Then prox(a, W) is the weight vector of a worst 1-PS for [Cr].

Proof. By definition, the worst 1-PS satisfies
p(z, A*) (@, A)
ETEITEE = sup
[[A=]] » A
By applying Lemma 2.T4] then Proposition 2.11] and then Lemma .16, we have
C * C
pl(Crlw) (O] w)

(Kl wew  |w]]

2 [ leh(fw)(z)dz
= max
wew [lwl]
a-w

= max ———
weWw ||’UJH
= ma o] cos(6(a, w))

Since prox(a, W) minimizes 6(a,w), the result follows.



THE WORST 1-PS FOR TORIC RATIONAL CURVES WITH ONE UNIBRANCH SINGULARITY 7

2.7.3. The Simplified Problem. In the sequel, it will be convenient to solve the optimisation problem for the
vector a whose last coordinate is 2 rather than 1. We call this the Simplified Problem. We then use the
solution to the Simplified Problem to construct a solution to the original problem, which we henceforth refer
to as the Unsimplified Problem.
We illustrate an example in Figure[Il Let T' = (2, 3), and consider the Simplified Problem when N = 10.
Then we have a = (2,3,2,2,2,2,2,2,2,2,2), and the worst 1-PS has weights
33 157 153 149 29 141

w = (ﬁ, T T0 0 o 147 W=272=272’2)' We plot the points (v, a;) in green, and plot a blue line graph

through the points (y;, w;).

| |
T T

2 4 6 8 10 12

FIGURE 1. The vector a and the optimal weights w for the Simplified Problem for T = (2, 3)
and N =10

3. THE KKT MATRIX EQUATION AND ITS SOLUTIONS

To solve the optimisation problem described in the previous section, we will use the Karush-Kuhn-Tucker
(KKT) conditions in nonlinear optimisation to study the closest point on the span of each face of W to the
vector a.

Recall that we write cond(I") for the conductor of I', and c.i.(T") for its index. That is, v .(r) = cond(T").
When we say there is a corner above the conductor, we mean that the set of corner indices I contains an
element ¢ greater than c.i.(I'), so that the point (v¢,wy) is to the right of the line z = cond(T").

3.1. The KKT conditions for convex optimisation. The KKT conditions are necessary conditions
satisfied by an optimal point for a broad class of nonlinear optimisation problems. See for instance [2, Section
5.5.3]. In many cases, including the problem considered here, they are also sufficient.
Suppose we want to minimize a function f(w) subject to the constraints g;(w) < 0 and h;(w) = 0. The

KKT conditions for the optimal point w* are as follows.

(1) Stationarity: V f(w*) 4+ > AjVh;(w*) + > ;i Vgi(w*) =0

(2) Primal feasibility: g;(w*) < 0 and h;(w*) =0 for all ¢, j

(3) Dual feasibility: u; > 0 for all ¢

(4) Complementary slackness: p;g;(w*) =0 for all ¢

In our case (computing the nearest point on a polyhedron to a point outside it), the objective function
is a strongly convex quadratic function, and the constraints are given by affine inequalities. Therefore, the
KKT conditions are also sufficient for obtaining an optimal w* (see for instance [2, Section 5.5.3]). Finally,
the optimal w* is unique, since the objective function is strongly convex.

3.1.1. The polyhedral cone W associated to v. For any -, the cone W is defined by the conditions that the
slopes of the line segments connecting the points (v;,w;) are increasing. This yields N — 1 halfspaces in
RN*1 The polyhedral cone W therefore has a two-dimensional lineality space. The faces of W are easy to
describe. A vector w lies on the facet m; = m;4 if and only there is no corner in the graph at (v;, w;).
The inequality
Wi — Wi—1 < Wit1 — Wy

Yi —Yi—1  Yi+1 — Vi

rearranges to
—(Yir1 = v)wi—1 + (Vixr — vi—)wi — (v — Yi—1)wip1 < 0.



8 JOSHUA JACKSON AND DAVID SWINARSKI

The following piecewise linear functions are useful when working with W.
Definition 3.1.
Fr(x) := max{—x + k,0}
Lyy(@)i=9nv —x
Li(z) :=
For a vector v, we abuse notation and write Fi(vy) to denote the vector with coordinates Fj(v;) for all i.
(We do this also for L, () and Li(z).)

—_

Proposition 3.2. (1) Any piecewise linear function F(zx) on [O,’yN] with corners lying over integers

0 <n <dis a linear combination of the functions {Fy(x):1 <k <, —1}, Ly (), and L (x).

(2) The lineality space of W is spanned by L. () and Li(7).

(3) For each 1 <i< N —1, the vector F., () spans a ray of W.

(4) Let F(x) be a piecewise linear function on [0,yn] with corners lying over integers n € . Suppose
that the slopes of the line segments in the graph of F are negative and increasing, and F(x) > 0.
Then F(x) is a nonnegative linear combination of the rays spanned by {F,,(v) : 1 <i < N —1} and
Loy () and Ly (y).

3.2. The KKT matrix equation.

Definition 3.3. We define the KKT matriz equation for face,r) as follows.

First, we define an (N 4 1) x (N + 1) matrix A as follows. For 1 < j < N — 1, if j € I, then column j
of A is given by 2F, (). If j € I, then column j of A is given by the coefficient vector of the inequalities
gj(w) < 0. The last two columns are given by 2L, (v) and 2L;(7).

Next, we define a vector € RV*1! as follows. For 1 <43 < N —1,if i € I, then x; is one of the parameters
t; used to parametrize Spanface, ). If i ¢ I, then xz; is one of the KKT multipliers ;. The last two
coordinates zy and x 1 are the parameters used for the lineality space.

Then the KKT matrix equation for face, (s is

Az = 2a.

We have two versions of the vector a: one for the Simplified Problem, and one for the Unsimplified
Problem. Most of our discussion will be dedicated to the Simplified Problem. Then, at the end, we will
show how the result for the Simplified Problem implies the result for the Unsimplified Problem.

The matrices A, x, and a all depend on N, I', and I. However, since I' and I are typically clear from
context, we do not show them in our notation.

We record explicit formulas for the matrix A and the vector a.

Proposition 3.4. The entries of A are given by the following formula.

Vi~ Vi1 ifj<N-1,j¢1 andi=j

Vi1 =1 fJSN—=1,7¢I, andi=j+1

Yi-1 = fj<N-1,j7¢1I andi=j+2
Aij=9q 20y —v-1) #i<N-1,j€l, andi<j

2(yv —vi-1) ifj=N

P ifj=N+1

0 otherwise

The vector a on the right hand side of the KKT matrixz equation is given by the following formula.

- ifi=1
) vi—vi2 f2<i<N
Y= 2 if i =N +1 (Simplified Problem)
1 if it = N + 1 (Unsimplified Problem)

The application to our problem is as follows.

Proposition 3.5. Let x be the solution of the KKT matriz equation for face,(ry. If x; >0 for all 1 <i <
N —1, then w(ty, ..., tg+2) is the closest point on W to a.
Moreover, if x; > 0 for all i € I, then face, sy is the smallest face of W containing this point.
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3.3. Persistence. We begin with the following simple observation.

Lemma 3.6. Fiz I', I, and N. Suppose that x is a solution to the KKT matriz equation for the Simplified
Problem with xny =0 and xy11 = 2. Define 2’ by

=40, i=N+1
2, i=N+2

Then x' is a solution to the KKT matriz equation for T' and I with embedding dimension N + 1.
This motivates the following definition.

Definition 3.7. We call x a persistent solution to the Simplified Problem for the face associated to I if
zy =0 and zy41 = 2.

We aim to prove the following result.

Theorem (Persistence of the global optimum for the Simplified Problem). Let I" be a numerical semigroup.
There exists an integer NOlmlD and a set of corner indices I5™P (both depending on T') such that for all

N > N3"™ the global optimum for the Simplified Problem for T is the persistent solution for the face of W
corresponding to ISP,

For small values of N, there can be non-persistent optima. However, our strategy is to show that such
non-persistent optima obey bounds on N. Thus, for large N, the only remaining possibility is that there is
a persistent optimum.

3.4. How the stationary points vary with N. Let I be a set of corners. For each N, let z(N) be the
solution to the KKT matrix equation for the corresponding face of W.
By Cramer’s Rule, we have a formula for each coordinate in the solution (V) in terms of determinants.

(V) = d(eltA(N,j)'
et A(N)
The last three coordinates xny_1, zn, and x4 play a special role in the discussion, and so we have
special notation for their numerators.
Recall that under our notation conventions, xny and x4 are parameters. xy11 = wy is the y-value of
the last point on the graph of w, and —zy is the slope of the last line segment in the graph of w. Neither of

these two quantities is required to be nonnegative—they parametrize the lineality space of the polyhedron
wW.

Definition 3.8. Define functions

Q(N) = (=1)"*!det A(N)
Pi(N) = (=1)N* det A(N, j)
X(N) = (=1)V*tdet A(N,N — 1)
$(N) = (=N det AN, N)
W(N) = (=1)N*det A(N,N +1)

(This notation is chosen as a mnemonic device. Recall that in the Greek alphabet, the last three letters

in order are x, ¥, and w.)
Then we have

L
TN-1
TN

TN+1

det A(N, 7) B (=1)N*+1det A(N, j)
det A N Ag—l)NH det A
det AON,N—1)  (=1)N*1det A(N,N — 1)
det A —1)N+1det A
det A(N, N) B (—=1)N+ldet A(N, N)
det A Ag—l)NJrl det A
det AN, N+1) (=1)N*1det A(N,N +1)
det A (—1)N+ldet A

Qe OleOlx Q|3
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Finally, for j < N, we define A’(V, j) as the matrix obtained by replacing column j in A(N) by 2a — 2.
Since the last column of A(N,j) is 2, the matrices A(N,j) and A’(N,j) are column equivalent, and thus
det A(N,j) = det A'(N, j).

Lemma 3.9. Suppose N > max{c.i.(T") + 2, max(I) + 2}.
(1) The functions Q(N), x(N), ¥(N), and w(N) are polynomials with the following degree bounds.
(a) deg@ =14
(b) degx <3
(c) degy <2
(d) degw = 4.
(2) If N > max{c.i.(T') + 2, max(I) + 2} and N > j + 1, the function P;(N) is a polynomial of degree
at most 4.
We give a full proof in Appendix A. Here we only sketch the proof. As N grows, the matrices A(N) and
A’(N,j) grow in a way that is easy to describe. We can write recurrences for the matrices, then show that
the appropriate difference equations vanish to establish that each of these functions is a polynomial in N

with the degree bounds claimed. (This is a paper-and-pencil proof checked by computer—the proof does not
rely on computer calculations.)

Corollary 3.10. Let x be the solution of the KKT matriz equation for face I. Then each coordinate of x is
a rational function in N.

Fix a positive integer k. We use the following notation for the Taylor expansions of these polynomials
centered at k.

X(N) = x3(N = k)>+ x2(N — k)% + x1(N — k) + xo
$(N) = a(N —k)* + 1 (N = k) + 1o

When £k is sufficiently large, we have explicit formulas for these coefficients in terms of minors of the
matrices A’.

Lemma 3.11. Suppose that k > max{c.i.(T') + 2, max(T) + 2}.

(1)
X3 = %(—1)’“+1 (25,’:;,’;1}/1’@, k— 1)+ 20070 A (k& — 1))
X2 = (1S (480 (b ke — 1)+ 265 A k- 1))
X1 = %(—1)k+1 (_145’,;’,31},4/@, k—1) = 805N L A (ke k — 1) — 6671 A (k + 1, k))
xo = (1)1 det A’ (k, k — 1).
(2)

o = ()M (ST A (k, k) + 65T A (k, k)
1 = (=) (361 A (K k) + oy TP A (K, k)
Yo = (=1)F det A’ (k, k).

We give a full proof in Appendix A. Here we only sketch the proof. We can get the leading coefficients x3
and 1 using difference equations via a procedure similar to the proof of We can solve for the remaining
coeflicients by interpolating these polynomials using their values when N =k, N =k+1, N =k + 2.

Next, we give a formula for x;.

Lemma 3.12. For each j satisfying j > max{c.i.(T') + 2,1 4+ 2} and j < N, we have

. . 1 1 .
zj=(N—-j(N—-j+1) (Ele + g(N —j— l)xN)
Hence, after clearing the common denominator Q, we have

(31) Py = (V= ¥ = 1) (et 3 = =10



THE WORST 1-PS FOR TORIC RATIONAL CURVES WITH ONE UNIBRANCH SINGULARITY 11

Proof. For sufficiently large N, the lower right portion of the KKT matrix is

—
—

—_
—_
—_
—
e el
OM%@OOOMH;@OO
VN (VR IV (VR VR VN (VR VL V) V)

—
—

—

coocococol vl
Ju

coococol vl o
coocol vl oo
Ju
cool vl ococo

—
colvl cooco
—
—

olv]locoocococo

vl cococooco

—

0
Recursively row reducing from the last row upward yields

(=)
(=)
(=)
(=)
(=)

vy 5P~ e + G f)ewen =207+ )
We rearrange this equation, reindex, and substitute zy_1 = 2xny11 — 4 to prove the claim. g
This leads to an identity between the coefficients of the polynomials x and .
Lemma 3.13. %X3 = —%1/12.

Proof. For each j with j > max{c.i.(I') + 2,1 + 2} and j < N, the polynomial P; has degree at most 4.
Thus the degree 5 coefficient in the expression ([B.I]) must vanish. O

We will also use the following lemma.

Lemma 3.14. Suppose that the graph of w crosses the line y = 2 after the conductor of I'. Then w is not
globally optimal for the Simplified Problem.

Proof. If wy < 2, then the graph of w can only cross the line y = 2 once. Such a w is not globally optimal
because the line y = 2 performs better. In pictures:

is not as good as

If wg > 2, the graph of w can cross the line y = 2 one or two times.
If the first crossing occurs after the conductor, w is not globally optimal because we do better by inserting
a corner near the crossing and replacing the graph to the right by a horizontal line at height 2. In pictures:

is not as good as ¢

If the first crossing occurs before the conductor, and the second crossing after the conductor, w is not
globally optimal because we do better by inserting a corner near the first crossing and replacing the graph
to the right by a horizontal line at height 2. In pictures:

is not as good as
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4. TF ALL THE CORNERS ARE AT OR BELOW THE CONDUCTOR

By Lemma B9 the polynomial y has degree at most 3. From a computer search of numerical semigroups
of genus 1 < g < 14, we see that in general, x has degree 3, but we also found examples where the degree
drops. The next lemma describes what happens when the degree of x drops.

Lemma 4.1. Suppose that max(I) < c.i(T'). Suppose k > ¢.i.(T') + 2, and consider the Taylor expansions
of x and Y centered at k.

(1) If x3 =0, then o =0, and x2 = —1.

(2) If x3 = x2 =0, then x1 =0, and 3 = 1 = ¢y = 0.

Proof. Proof of Part (1): By LemmaB.13] we have ¢ = —% x3. For the second equation, we use the formulas
from Lemma 311l Since x3 = 0, we have

5,’;;,’;1}/1/@, k—1)= _5’,;flf,1+1A/(k, k—1),

and hence
X2 = (~1)FH250 A (kK — 1),
Since 12 = 0, we have
Syt A (k k) = =67t A (K, k),
and hence
1= (=) (=2)8 A (R B).
Expanding dZHA' (k, k) along its bottom row yields
SFTEA (e, k) = oy VAT A (e, k)
and the minors d* 7 Y T A/ (k, k) and dFF LA/ (k, k — 1) are the same.
k,k+1 ko k1
Hence, we obtain xs = —1)1.
Proof of Part (2): By Part (1), we have 19 = 1)1 = 0. First, we prove that ¢y = 0.

Similarly, from the formulas for 2 and 1, given above, we see that when both 12 and v, vanish, we must
have

Sy A (k k) =0
SEHLA! (K, k) = 0.
By expanding 5,’:+1A’(k, k) along its bottom row, we obtain
(4.1) Syt THA (K, k) = 0.
Now we study A’(k+ 1,k 4+ 1). By expanding along its bottom row, we obtain
(4.2) det A'(k+ 1,k +1) = =65 0 A (k+ 1,k + 1) + 2555 A" (k + 1,k + 1).
Expanding 5’,§+2A'(k + 1,k + 1) along its bottom row yields
oA (k+1,k+1) =6 5 A (k+1,k+1)
Expanding this along its bottom row yields
Sonis Ak + 1,k +1) =0 Wi A (b + 1,k + 1)
But we have

k—1,k,k Lk
Dk,ki—l,kig’q/(k +1Lk+1)= Dk7kil+1A'(k, k)

and by (@I]), we have 5:;1’]1““14’(1{, k) = 0. Thus, the first term on the right hand side of equation (€.2])
vanishes.
Now consider the second term in equation ([{.2). Expanding along its bottom row, we have

SEA (k+ L k+1) = =6 1 3 A (k+ 1Lk +1) — 26050 LA (k+ 1,k +1)
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Both of these terms vanish. Indeed,
SR RA (e + Lk +1) = 6p A2 A (ke + 1,k +1)
= st Ak K)
=0,
and

S Ak + 1,k + 1) = 55T A (K )
=0.

This completes the proof that 1y = 0.
Finally, we prove that x; = 0. From the formulas for x3 and 2 given in Part (1) above, we see that when
both x3 and x2 vanish, we must have

St Ak k—1) =0

St Ak — 1) = 0.

These are the first two terms in the formula for x; from Lemma 311l The remaining term is a multiple of
5:1;:‘1/@ + 1,k). But we have

Dyt A'(k+1,k) = A(N,N)
and det A'(N, N) = 0, since g = 0. This shows that x; = 0.

O

Remark: A computer search shows that for all numerical semigroups of genus g < 14, if x3 = x2 = 0,
then yo = 0, too, so that x(IN) =0 and ¢(NN) = 0. However, we do not know whether this always holds.

Definition 4.2. We write v(I', I) for the smallest positive integer that is greater than the real roots of the
polynomials x and (x + 2(N — c.i.(T') — 2)v), and greater than c.i.(T') + 2 and max(/) + 2. We abbreviate
this as ¥ when I' and I are clear from context.

Proposition 4.3. Suppose that max(l) < c.i.(I'). If N > v, then the global optimum for the Simplified
Problem does not lie on face I.

Proof. We will break into cases according to the degree of x(N). We have deg x(N) < 3. In the general
case, when deg x(N) = 3, we will show that for sufficiently large N, the last line segment in the graph
corresponding to the stationary point on face I crosses the line y = 2 past the conductor; hence, by Lemma
BI4 it will not be the global optimum. We will treat the cases where deg x(N) < 3 separately.

Write ¢ = max(I). Consider the last line segment L in the graph. It connects the points (y¢,w¢) and
(vwv,wn). Let k = c.i.(T') + 2. Since £ < ¢.1.(T'), the point (v, ws) lies on the line segment L. We will show
that if deg x(IN) > 2, the leading terms of 2 — wjy, and 2 — wx have opposite signs.

We have

2—’LUN=2—£L'N+1

1
= —§IN—1
X
=50
By our notation conventions, this line segment has slope —zy and goes through the point (yy,wy). Hence,
it has equation y — xn+1 = —axn(z — yn). We have wy, — xy11 = —2n (7% — Y~ ). Since k and N are both

larger than c.i.(T"), we have v — ynv = k — N. Thus wy, = zn41 — xn(k — N). Then
2—wk:2—$N+1—(N—k)ZEN
1
= _§$N—1 — (N — k)i[:N
1
= —5(@n1 +2(N = k)zy)

(x +2(N = k)Y)
2Q '
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Choose k as the center for the Taylor expansions of x and . Then we have

((x3 4 202) (N — k)3 4 (x2 + 2¢1) (N — k)* + (x1 + 2¢0)(N — k) + x0)

2—wk:—

2Q
We now split into cases according to the degree of x(N).
Case 1: degx = 3. Thus, x3 # 0. Then by Lemma BI3, we have 1)y = —3y3. Thus, the leading
coefficient of the numerator of 2 — wy, is x3 + 21p2 = —2x3, while he leading coeflicient of the numerator of

2 —wp is x3. When N > v, the signs of these polynomials are determined by the signs of their leading
coefficients. Hence, for all N > v, the line segment L crosses the line y = 2 after the conductor of I'. By
Lemma [3.14]it follows that the stationary point on face I will not be the global optimum for the Simplified
Problem for N in this range.

Case 2: degx = 2. Thus, x3 =0, but x2 # 0. By Lemma [T, we have 1) = 0 and x2 = —1.

The leading coefficient of the numerator of 2 —wy is x2. The leading coefficient of the numerator of 2 —wy,
is x2 4+ 211 = —x2. Since these have opposite signs, we may argue as we did in Case 1. When N > v, the
signs of these polynomials are determined by the signs of their leading coefficients. Hence, for all N > v, the
line segment L crosses the line y = 2 after the conductor of I'. By Lemma 314 it follows that the stationary
point on face I will not be the global optimum for the Simplified Problem for N in this range.

Case 3: degxy = 1. By Lemma [4.1] this does not occur.

Case 4: degx = 0, but xg # 0.

By Lemma [£1] we have ¢(N) = 0, and x(N) = xo.

Sum the KKT equations starting in row ¢ + 2, where £ = max I. We omit xy, since zy = 0. We obtain

(Yer2 — yer1)wer1 +2(N — L) zn1 = 4(N — )

Thus
(Yer2 — Yer1)Ter1 = (N — £)(4 — 2xn41)
— (N —6)(—(17]\[,1)
(N = 0O)(=x0)

Thus, this stationary point cannot be the global optimum for any N, since one of the KKT multipliers
Tyy1 Or TN—_1 IS negative.

Case 5: x(N)=0.

We will study rows c.i.+1,..., N — 1 of the KKT matrix equation, and eventually split into four further
cases.

Since x =0 and ¥ = 0, we have zy_1 = zxy = 0. The last row of the KKT matrix equation is 2zy4+1 = 4,
SO TN4+1 = 2.

The penultimate row of the KKT matrix equation is —xy_o +2xny-1 4+ 22y +2xn41 = 4. With ay_1 =
zy =0 and zy4+1 = 2, we have xy_9 = 0.

By induction, using rows c.i.+2,..., N + 1 of the KKT matrix equation, we may show that x; = 0 for
c.i. <i < N — 1. In all these rows, the right hand side is 4.

In row c.i.+1, on the right hand side, we have 2ac; +1 = 2(Yci. 41 — Yei. —1). This is because ¢ +1 —
Yei -1 = (Yedo 41 = Yeui.) + (Ve 41 = Yed. —1), and Yei. 41 — Yei. = 1 while e — 7c.i. —1 > 1 by the definition
of the conductor.

We split into cases that determine the left hand side of row c.i. 41 of the KKT matrix equation.

Case 5a: x(N)=0and ¢ < c.i.—1.

Then row c.i.+1 says

(Yei. =2 = Yei. —1)Tei. —1 + 4 = 2aci. 41.

Since (Ve —2 — Yei. —1) < 0 and 2ac;. 41 > 4, this implies z. ;. —1 < 0. Thus, this stationary point cannot be
the global optimum for any N.

Case 5b: x(N) =0 and £ = c.i. —1. In this case, row c.i.+1 says 4 = 2a. ;. +1 > 4, a contradiction.

Case 5c: x(N) =0, =c.i.,, and £ —1 ¢ I. This case is similar to Case 5a. In this case, row c.i.+1 says

(Yei. =2 = Yei. —1)Tei. —1 + 4 = 2aci. 41.
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Since (Ve —2 — Yei. —1) < 0 and 2ac;. 41 > 4, this implies z. ;. —1 < 0. Thus, this stationary point cannot be
the global optimum for any N.

Case 5d: x(N) =0, ¢ =c.i., and £ — 1 € I. This case is imilar to Case 5b. In this case, row c.i. +1 says
4 = 2a¢;. +1 > 4, a contradiction. O

Corollary 4.4. Let N1 = maXr.max(r)<c.i()1V(I, I)}. If N > Ny, then the global optimum for the Simplified
Problem has at least one corner above the conductor.

5. IF THERE IS AT LEAST ONE CORNER ABOVE THE CONDUCTOR

In this section, we consider the case where there is at least one corner above the conductor.

Let ¢ = max(l). We must have N > ¢+ 1. We will split into two cases: N = ¢+ 1, and N > ¢+ 1. There
are two reasons for this case split. First, the behavior of the stationary points is different in these two cases.
Second, Lemmas [3.9] and B.1T] require N > £ + 2.

51. f N =/¢+1.

Proposition 5.1. Let N’ be an integer with N’ > c.i.(T') + 1. Suppose that the global optimum for the
Simplified Problem for N = N’ occurs on a face I with c.i.(T') < £ = N’ —1, where { = max(I). Then either
the stationary point on face I is persistent, or the stationary point on face I' = T U {€ + 1} is persistent.

Proof. Consider the KKT matrix equation when N = N’. The last row corresponds to the equation 2x 11 =
4, so we have 1 = 2. If this solution also has xx = 0, then it is persistent.

So suppose that 2x # 0. Let I’ = TU{f+ 1}, and consider the KKT matrix equation when N = N'4+1 =
£+ 2. The last two rows correspond to the equations 2z + 2zy4+1 = 4 and 2zy41 = 4. Hence zxy = 0 and
TN+1 = 2, so we have a persistent solution. [l

Definition 5.2. We say that a set of corners I heralds persistence if the stationary point on face I is not
persistent, but the stationary point on face I' = I U {¢ + 1} is persistent, where ¢/ = max I.

5.2. If N > ¢+ 1. When there is at least one corner above the conductor, and N > ¢+ 1, we will show that
the polynomials x and v factor in a specific form, and their signs are determined by their leading coefficients.
It is thus easier to relate optimality and persistence in this case than it is when all the corners are below the
conductor.

Lemma 5.3. Write { = maxI. Suppose £ > c.i.(T'), and N > £+ 1. Then

2

X = —g(N—f—l)iﬂ-

Proof. Sum the KKT equations starting in row £+1, where £ = max I. For each j satisfying /+2 < j < N—-2,
the sum in column j is 0. Furthermore, since £ > c.1i., in column ¢ 4+ 1 we have the entries —1,2, —1 in rows
00+1,0+2.

We obtain
N—£—1
Toy1 + < Z 22) TN + 2(N —£)$N+1 = 4(N — f)
i=0
Rearranging and substituting —zy_1 =4 — 2z N4 yields
(5.1) Tpp1 = (N —O)(—xn_1— (N —L—1)zyN)
By Lemma we also have
1 1
(52) To41 :(N—é—l)(N—g) (§IN1+§(N—€—2)ZEN)
Combining equations (5.1) and (5.2) yields
1 1
(N —f)(—,TN_l — (N —{— 1)1‘]\]) = (N —{— 1)(N - f) (§$N—l + g(N —0— 2)$N)

Cancelling the factor (N — £) on both sides yields

1 1
—IN—-1— (N—f— 1)$N = (N—f— 1) (51']\]_1 + g(N—€—2)LL'N> .
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This rearranges to
2
IN—-1 = —g(N —f— I)IN.

Cancelling the common denominator () yields the desired result.
O

Lemma 5.4. A polynomial co(x — € — 1) + c1(x — € — 1) + ¢o factors as ca(x — £)(x — £ + 1) if and only if
co = 2¢o and ¢1 = 3cs.

Proof. Left to the reader. O

Proposition 5.5. Write { = maxI. Suppose £ > c.i.(T'), and N > £+ 1. Then the polynomials x and
factor as follows.

X = (N—-=1V—-O(N—L+1)xs
Y o= (N-ON—L+1)2

Proof. First, we prove the claim for the polynomial .
Lemma [B.17] gives formulas for the Taylor expansion of ¢ with center k = ¢ 4+ 1. We have:

Y =1a(N =€ —1)* +po(N — £ — 1) + 1o
where
Yo = (—1)T2 (S0 A (C+ 1,0+ 1)+ 5, 7A (€ +1,0+ 1))
1= (—1)2 (36 10A/ (0 + 1,0+ 1) + 6, TTA (€ + 1,0+ 1)) ¥o = (=D)AL +1,0+1).

By Lemma [5.4] to achieve the desired result, it is enough to check that ¢y = 219 and 1y = 3s.
The bottom row of the matrix A’(¢+1,£41) is 0, except in the last column, where it is 2. Thus expanding
along the bottom row yields

det A'(0+1,0+1) =6, f5A (€ +1,0+1).

Also, 551%/1’(6 +1,£+ 1) = 0 because this bottom row of this minor is 0.
We have 1y = 215 and 17 = 312, and hence the polynomial 1 factors as claimed.
To prove the desired claim for x, first we apply Lemma [5.3] to get

2 2
—g(N —L—1)9= —gwg(N —L—1)(N=O)(N—£+1).

X =
Next, by Lemma B.13] we have y3 = —%’Q/Jg. This yields the desired result.
O

Proposition 5.6. Write £ = maxI. Suppose £ > c.i.(T"). If the global optimum for the Simplified Problem
lies on face I for at least one N, then either this solution is persistent, or it heralds persistence.

Proof. If N = £+ 1, then Proposition [5.1] gives the desired result.

So suppose N > ¢ + 1, and suppose that the global optimum lies on face I for this N. We split into two
cases according to whether 5 is 0.

Case 1. Suppose that 19 # 0. We argue as we did in the proof of Proposition [£.3 Consider the last line
segment L in the graph. It connects the points (y¢, w¢) and (v, wn).

We will show that the leading terms of 2 — w,; and 2 — wy have opposite signs. Computing as we did in
the proof of Proposition .3 we have

and
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By Lemma
2
X+2(N -0y = —g(N—€—1)¢+2(N—£)¢
4 2
= (N —v¢ z
4 1
=z (N -L+3)0
4 1
= gwg(N — 0+ 5)(1\7 —O(N—£+1).
Thus
—2pa(N =L+ (N —O)(N—£+1)
2 — Wy =
2Q
Since x3 = —%1&2, this implies that 2 — wy; and 2 — wy have opposite signs. By Lemma [B.14] it follows

that the stationary point on face I will not be the global optimum for the Simplified Problem for N. This
contradicts the hypothesis that I carries the global optimum for this V.
Case 2. Suppose that 13 = 0. Then by Lemma and Lemma [3.13] we have ¢ = 0 and x = 0, hence
the solution is persistent.
O

6. PERSISTENCE FOR THE SIMPLIFIED PROBLEM AND THE WORST 1-PS
6.1. Persistence for the Simplified Problem.

Theorem 6.1 (Persistence of the global optimum for the Simplified Problem). Let T be a numerical semi-
group. There exists an integer NSimp and a set of corner indices IS"™P (both depending on T') such that for
all N > Ngimp, the global optimum for the Simplified Problem for I' is the persistent solution for the face of
W corresponding to IS"™P.

Proof. Let N1 = maxpmax(n<c.i()i¥(I', 1)} as in Corollary B4l Consider the global optimum for the
Simplified Problem when N = N; + 1. By the corollary, this solution has at least one corner above the
conductor. By Proposition 0.6 it is either persistent, or it heralds a persistent solution.

Thus, the global optimum for the Simplified Problem when N = N; + 2 must be persistent. Take
Ny'™P = Nj + 2 to complete the proof. O

6.2. Persistence for the worst 1-PS.

Lemma 6.2. Consider the set of points {(0,0),...,(N — ¢ —1,0),(N — ¢,—1)}. Then the least squares
regression line for this set of points has slope m and y-intercept b’ given by the following formulas.

6
TT NI+ )N —(+2)
, 2N — £ —1)

(N—L+1)(N-(+2)
Theorem 6.3 (Persistence of the worst 1-PS). Let I be a numerical semigroup.

(1) There exists an integer Ny and a set of corner indices I (both depending on T') such that for all
N > Ny, the global optimum for the Unsimplified Problem for I lies on the face of W corresponding
to I, and on no smaller face.

(2) Write { = maxI. For all N > Ny, the coordinates wg, ..., w;_, are constant with respect to N, and
the coordinates wy, ..., wy are given by the formula

wy =mi+b

where
_— —6
(N —(l+1)(N—1+2)
b—2 4 2(N+20-1)

(N—(+D)(N—(+2)
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Proof. We modify the solution to the Simplified Problem to obtain a solution to the Unsimplified Problem.

Choose Ny > N ™P. Let IS'™P be the set of corner indices giving the persistent solution to the Simplified
Problem. Let ¢ = max(I$"™P). We take I = I*'™P U {/ — 1}. (Note: £ — 1 may already be in I*™P_ in which
case I = I*"™P.) By Corollary 4] we have ¢ > c.i.(T).

Let x be the solution to the KKT matrix equation for the Simplified Problem on face I. If I = IS"™P it is
the global optimum to the Simplified Problem. If I # I*'™P  the only difference is that we added an unused
corner at index ¢ — 1. So the solution = gives the global optimum to the Simplified Problem, but with the
parameter o1 = 0.

We will define a vector £ and then show that it is the solution to the KKT matrix equation for the
Unsimplified Problem.

For the first £ — 2 coordinates of Z, we use the solution z.

Set Zy and & 41 to give the least squares regression line through the points {(v¢, 2), ..., (vyv-1,2), (yn, 1)}
(We can translate the least squares regression line described in Lemma by (ve¢,2) to obtain the desired
line.) Recursively solve rows £+ 1,..., N + 1 of the KKT matrix for the Unsimplified Problem to obtain
Tot1y- e, TN_1-

Finally, we modify z,_; and z, to account for the changes in the slopes of the last two line segments.

Explicitly, we have

i) 1<i<(—2
To_1 + U, i—0—1
(6.1) ~ xg+m—b, i=20
. Ty = 2(i—£€+1)(i—0) (N —1) )
NN 0 (T1sisN-1
—m, 1 =N

m(N —€0)+2+0b, i=N+1
Here m and b’ are the quantities given in Lemma

To finish the proof of the first statement, we need to show that for N sufficiently large, the following three
conditions are satisfied.

(i). Z satisfies the KKT matrix equation for the Unsimplified Problem

(ii). & >0foriel

(iii). Z; >0fori g T andi < N —1.

Proof of ().

The KKT matrix equations for the Simplified Problem and Unsimplified Problem are the same except for
the last coordinate of the right hand side. Thus, when i < N, the equation AZ = 2a in row i is equivalent
to A(Z — ) =0 in row 1.

First, consider rows 1 through ¢ of the KKT matrix equation. These rows are zero in columns /41, ..., N —
1. Furthermore, (Z — z); = 0 in coordinates 1 <i < ¢ — 2. So it’s enough to show that

A1 (Zom1 —xem1) + Aio(Te —20) + Ain(@N —2N) + Aivt1 (N1 — 2N41) = 0.

When ¢ < ¢ — 1, substituting the formulas for A4, ; from Proposition B4 and the formulas for Z from (G.1))
yields

2(ve—1 = 7i-1)(V) + 2(ve — yi—1)(m = V') + 2(yn — yi—1)(=m) + 2(m(N =€) + V') = 0.
This rearranges to
[Ye—1 = ve + 1(2V) + [(ve — 7w + N — £](2m) = 0.
But we have v — v¢—1 = 1 and vy — v, = N — £ because £ > c.1.(I"). This gives the desired result.
A similar calculation yields the desired result when i = /.
For rows ¢ + 1 through N + 1, we need to verify the following equations.
For row ¢ + 1:
—Zpp1 +2(N = Oy +22n41 = 4.
For row ¢ + 2:
2%p41 — Tpp2 +2(N — 0 — 1):51\[ +2Tn41 =4.
For/+3<i< N —1:
—Tj0+ 281 — T +2(N — i+ 1)@]\[ +2Tn41 = 4.
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For row N:
—IN—2+2EN_1+ 22N + 2ZNn41 = 4.
For row N + 1:
—IN-1+2TN41 = 2.

We substitute the formulas for #; given in (6I]) and verify these identities of rational functions.

Proof of (ii). Let i € 1.

If i < ¢—2, then we have z; > 0, since &; = x; in this range, and z is the global optimum for the Simplified
Problem.

Ifi=4—1, we have Zy_1 = x4_1 + b > 0, since z,_1 > 0 and b’ > 0.

If « = £, we explain how to choose Ny sufficiently large to ensure that z, > 0.

We have Ty = 2y + m — b'. We want to choose N sufficiently large that

zo+m—"b >0.
Substituting the formulas for m and b’ yields

o+ —6 B 2(N—-¢-1) >0
CTINSIrD)(N=(+2) (N—(+1)(N—t(+2)
Clearing denominators, we have

2N =+ 1)(N—0+2)—6—2(N—(—1)>0.

This rearranges to

(6.2) 2o(N — €)% + (3xp — 2)(N — £) + 220 — 4 > 0.

The roots of this quadratic polynomial are

—(3we — 2) £ /(3w — 2)2 — day (220 — 4)
21y

N /(=

The square root simplifies as follows.

V(Bxp —2)2 — day (2w — 4) = xp + 2.

Thus, the roots of the quadratic polynomial in (6.2)) are _2;;;4 and _Qg’-’. Since xy > 0, the larger root is
given by —2x, + 4.
Thus, to ensure x, > 0, it suffices to take
-2 4
N—-{> LﬂL.
2Ig
This rearranges to
2
N>l+— -1

Ty

Proof of (ii). Since x; > 0 for all ¢, it follows that & > 0 for i = 1,...,¢ — 2. We already checked in Part
(ii) that Zy—1 >0 and Zy > 0. For £+ 1 <4 < N + 1 it is clear from the formulas that > 0.

To complete the proof of the first statement, take No = max{N3™", |£ + %J}

For the second statement: by our parametrization of the cone W (see Definition B.3)), a solution Z to the
KKT matrix equation corresponds to the point w € W given by

(6.3) w = <Z i, Fy, (7)) + &N Loy (v) + Eng1 L1 (7).

iel
If k > ¢, then the k™" coordinate of F, () is 0 for all i € I, so
Wi = [TN Loy (V) + En+1L1(7)]k
=In(yN — V) +ENng1 - 1
=-m(N—k)+m(N -0 +2+V
=mk+ (—ml+2+1)
=mk +b.
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If k = ¢ — 1, then the the k*" coordinate of F., () is 0 for all i € I except i = £, so

we—1 = [TeLy, (V) + EnLoyy (7) + Tng1L1(7)]e-1
=Zo(ve —ye—1) +m{l — 1)+ (—ml+ 2+ b’)
=z, + 2.

Then wy_; is constant with respect to N, since x; is constant with respect to V.
If £ < ¢ —2, then

wi = (Z o m> +ENLyy (1) + En
L \zel k

= | D #@F() | + &Py () + 8, (V) + En Ly (1) + En1 La (7)
L iSZ%£2 &

The sum

Y #F, ()
icl
i<0-2

is constant with respect to N, since &; = x; in this range, and both x; and F,, (y) are constant with respect
to N.
It remains to show that the sum of the last four terms is also constant with respect to N. We have

[Toe—1Fy,_, (7) + e Fy, (V) + ZN Ly (7) + TNt L1 (7)]k
= (Te—1 + ") (ye—1 — W) + (@ +m =) (e — W) —m(yn — ) + m(N —£) + 2+’
=xp—1(Ye—1 — k) + ze(ve — i)

Since g, v, xe—1, and zp are constant with respect to N, this expression is constant with respect to N.
This completes the proof of the second statement. 0

Remark. Tt is possible to give a more conceptual proof of the second statement in Theorem [6.3] When the
corner set ends in two consecutive corners {¢ — 1, £}, to minimize ||w — al|?, we may minimize Zf:é(wi —a;)?
and Zij\;é(wi — a;)? separately. Then the first sum is independent of N, and is the same for the Simplified

and Unsimplified Problems; and the least squares regression line minimizes the second sum.

7. EXAMPLES

In Table [ for five different numerical semigroups, we describe the corner set I giving the worst 1-PS for
each N. Here is how we generated this table.

(1) For each N starting at c.i.(T') + 2, we compute the face IS'™P(N) giving the optimal solution to the
Simplified Problem. We increase N by one until we find the persistent solution to the Simplified
Problem.

(2) We use Theorem [6.3] to compute the persistent solution to the Unsimplified Problem.

(3) For each N in [c.i.(T') +2, Ny, we compute the face I(N) giving the optimal solution to the Unsim-
plified Problem.
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TABLE 1. The worst 1-PS for five singularities

Simple cusp

Rhamphoid cusp

(2,3)

(2,5)

(4,9)

(5,7)

(8,13)

I

0

{4}
{4,5}
{5}
{5,6}
I

)

{5}

{5,6}

{6}

{6,7}

I

)

{7}

{7,8}

{7,8,10}

(7,10}
{7,10,14}
{7,10,14, 15}
{7,10,15}
{7,8,10,15,16}
I

{9}

{6,9}

{9}

{9,15}
{9,15,16}
{9,16}
{9,16,17}

I

{6,11,19,26}
{6,11,26}
{6,11, 26,37}
{6,11, 26, 38}
{6,11,26,38,47}
{6,11,26,38,47, 48}
{6,11,26,38, 48}
{6, 11,26, 38,48, 49}
{6, 11,26, 38,49}
{6, 11,26, 38,49, 50}

Definition 7.1. For any integer r > 1, we define the polynomial
flriz) == (4r — 2)a + (6r — 6)a? — (1203 + 612 + 4r + 4)z — (301> 4 1872).

(7.1)

N
4<N<I15
16 < N <28
29<N<L<T4
75 <N <145
146 < N

N

4< N1
12< N <18
19 <N <69
70 <N <117
118 < N

N
4<N<I13
14 <N <18
N =19

N =20

N =21
22<N <23
24 < N <27
28< N <45
46 < N

N

13<N <15
N =16
17< N <23
24<N< 34
35 <N <83
84 < N <127
128< N

N

43 <N <55
56 < N <58
59 < N <60
61 <N <63
64 < N <67
68 <N <70
7T1<N <8
86 < N <112
113 < N <139
140 < N

2r+1

21

of order 7.

Lemma 7.2. For any fized value of r > 1, the polynomial f(r,x) has exactly one positive real root.

Proof. We can check this directly for r = 1. When r > 1, the first two coefficients are positive and the last
two coefficients are negative, so by Descartes’ Rule of Signs, f(r, z) has at most one positive real root. Since
f(r,0) < 0 and lim,_,o f(r, ) > 0, the polynomial f(r,x) has exactly one positive real root.

Definition 7.3. We define a(r) to be the positive real root of f(r,z).

O



22 JOSHUA JACKSON AND DAVID SWINARSKI

Proposition 7.4. Let r be a positive integer. Let j = [a(r)], and let
G+ 453 + (612 +6r +5)52 + (12r2 + 12r + 2)j — 3r* — 6r° + 3r2 + 6
(=2r +1)53 +3rj2 + (6r3 +3r2 +2r — 1)j + 913 + 672 — 3r
Then for all N > Ny, the weights of the worst 1-PS for a cusp of order r lies on the face of W corresponding
to I ={4,7+ 1}, and on no smaller face.

No=j+

For a full proof, see Appendix B.
The values of j and Ny for some small values of r are given in the Table

TABLE 2. j and Ny versus r

T j NO
1 5 146
2 6 118
3 7 30
4 9 53
5 11 174
6 12 37
7 14 95
8 16 107
9 18 8369
10 19 58
11 21 88
1223 200
13 24 61
14 26 82
15 28 131

The value Ny = 8369 for r = 9 appears surprisingly large compared to the other values in the table. For
the semigroup (2, 19), the Simplified Problem has persistent solution I5™ = {1819} for all N > N5™ = 19.
By the proof of Theorem [6.3] Ny is the smallest integer strictly larger than ¢ + w—i — 1. We have x19 =
when N = 19, and this small denominator leads to the large Ny observed in the table.

We can nearly give a closed formula for [a(r)], in the sense that we can identify this quantity as one of
two consecutive integers.

_1
4175

Proposition 7.5. For every positive integer r, we have
3+1 3+1
[a(rﬂeH\/&Jer W,{\/ﬁrJer —‘-i-l}

Experimentally, it seems that [a(r)] is almost always the smaller of these two possible values. This is
true for all 0 < r < 108 except r = 0,1, 9.

8. FUTURE WORK

We conclude by briefly discussing a few possibilities for future work. Perhaps the most natural question is
whether one can prove similar persistence results for the worst 1-PS’s of other curves: in particular those with
more complicated singularities, and those of higher geometric genus. In the latter case, when the singularities
are attached to an otherwise stable curve, it seems reasonable to expect that the worst 1-PS will depend only
on the singularities, in some appropriate sense. One could also ask about toric surface singularities. This
question has yet to be investigated properly, but the preliminary evidence of a few example computations
suggests that surfaces will not exhibit persistence in the same way as curves.

Another direction is the interpretation of the results of this paper: what does the persistent worst 1-PS
mean? We have explanations for why they are as they are, and for the time to persistence, but so far only
from a constrained optimisation point of view. An interesting question is whether there is some explanation
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purely in terms of algebraic geometry. In particular, is there some combinatorial algorithm that computes
the persistent worst 1-PS purely from the singularity data?

Finally, as mentioned in the introduction, we intend in future work to combine our results here with tools
from Non-reductive GIT, to construct new moduli spaces of singular curves.

APPENDIX A. PROOF OF LEMMA B.TT]
A.1. Beginning the proof. In this appendix we give a proof of the following result.

Proposition A.1. Suppose N > max{c.i.(T') + 2, max(I) 4+ 2}. Let x be the solution of the KKT matriz
equation for face I. Then each coordinate of x is a rational function in N.

We also obtain explicit formulas for the coefficients of two polynomials x and v that figure prominently
in the proof. Together, these results prove Lemma 3111
Proposition [Ad] follows from the following lemma.

Lemma A.2. Suppose N > max{c.i.(T") + 2, max(I) + 2}.

(1) The functions Q(N), x(N), ¥(N), and w(N) are polynomials with the following degree bounds.
(a) deg@ =4
(b) degx <3
(c) degy <2
(d) degw = 4.

(2) If N > max{c.i.(T') + 2, max(I) + 2} and N > j + 1, the function P;(N) is a polynomial of degree
at most 4.

A full proof is given in the following sections. However, we follow the same outline to prove each part,
and we describe this outline now. As N grows, the matrices A(N) and A’(N, j) grow in a way that is easy
to describe. We can write recurrences for the matrices, then show that the appropriate difference equations
vanish to establish that each of these functions is a polynomial in N with the degree bounds claimed. Then,
we use a second difference equation to obtain the leading coeflicients.

A.2. @ and P; are polynomials.

Definition A.3. For each n > 3, define
@, : Maty, xp — Mat(n-{-l)x(n-i—l)

as follows.
Columns 1 through (n —2) in ®,,(M) are the same as in M, extended by 0 at the bottom.
Column n — 1 in ®,(M) is 0 except the last three entries, which are —1,2, —1.
Column n in ®,,(M) is the sum of columns n — 1 and n in M, extended by 0 at the bottom.
Column n + 1 in ®,,(M) is column n from M, extended by 2 at the bottom.

We write ® for the collection of maps {®,}. We refer to ® as a recurrence, and frequently omit the
subscript.

The application to our problem is as follows.

Lemma A.4. Suppose N > max{c.i.(I') + 2, max(I) + 2}.
(1) The matrices A(N) satisfy the recurrence ®. That is, A(N +1) = ®(A(N)).
(2) Fiz j and suppose N > j + 1. Then the matrices A'(N,j) satisfy the recurrence ®. That is,
AN +1,7) = ©(A' (N, j)).
Lemma A.5. Let {M(N)} be a sequence of N x N matrices for N > Ny such that M(N 4+ 1) = ®(M(N))
for all N > Ny. Then h(N) = (—=1)N*ldet M (N + 1) is given by a polynomial of degree at most 4.

We need a little more notation for the proof.

Definition A.6. Let I and J be subsets of the row and column indices of a matrix M, respectively.

We write D7 M for the matrix obtained by deleting the rows whose indices belong to I, and deleting the
columns whose indices belong to J.

When D{ M is a square matrix, we write 6 M = det D{ M.
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Definition A.7. Let M(N) be an N x N matrix.
We write aug(c, M(N)) for the matrix obtained by adding ¢ times column N to column N — 1.
We write red M (N) for the matrix obtained by subtracting column N from column N — 1.

Proof of Lemmal[A5. We show that the following fifth-order difference equation vanishes for any integer
k > No.

(A1) h(k+5) — 5h(k +4) + 10h(k + 3) — 10h(k + 2) + 5h(k+ 1) — h(k) = 0.
We define
As :=h(k+5) —5h(k+4) + 10h(k + 3) — 10h(k +2) + 5h(k + 1) — h(k)

Then our goal is to show that Ay = 0.
Substituting A(N) = (—=1)N*+1det M (N + 1) yields the following expression.
(A.2)
(=1)*A5 = det M (k+6)+5det M (k+5)+ 10 det M (k+4) +10det M (k+3) +5 det M (k+2) +det M (k+1)

Next, we find identities that will allow us to write each det M (k + ¢) in terms of the determinants of
M (k 4 6) and its minors.
We start by relating det M (k4 5) and det M (k+6). Expanding det M (k + 6) along its bottom row yields

det M (k + 6) = =0, g M (k + 6) + 20,70 M (k + 6).
But
DyfaM(k+6) = aug(l, M (k +5))
so we obtain
det M (k + 6) = — det M (k + 5) + 26, TS M (k + 6).
which rearranges to
(A.3) det M (k + 5) = — det M (k + 6) + 26,79 M (k + 6).
Next, we relate det M (k + 4) and det M (k + 6). Expanding aug(1, M (k 4+ 5)) along its bottom row yields
det(aug(1, M (k +5))) = =6y 12 aug(1, M (k + 5)) — 26, F5 aug(1, M (k + 5)) + 20,72 aug(1, M (k + 5)).
But
Dytdaug(1, M(k+5)) = M(k+4)
Dt aug(1, M(k +5)) = Dy 3o M (k + 6)

k+5,k+6
D2 aug(1, M(k+5)) = Do to M (k +6)
Combining these identities and rearranging yields
(A.4) det M(k +4)) = —det M (k +5) — 285, 3k FoM (ke + 6) + 28,3 ToM (5 + 6).

In a similar fashion, we obtain the following identities.

(A5) det M(k+3) = —det M(k +4) — 405 T3 oo M (k + 6) + 207 F 7t S o M (k + 6)

k+2,k+3,k-+4,k k42, k43,k-+4,k
(A-6) det M(k+2) = —det M(k +3) — 65,5335 kLo M (K + 6) + 200 L5 7576 M (K + 6)

k+1,k+2,k+3,k+4,k+5 k+1,k+2,k+3,k+4,k+6
(A7) det M (k) = —det M (k +2) — 86,15 15 hta kts iie Mk +6) + 28, L w i s minis i M (k +6).

Substituting the identities (A3), (A4), (AF), (AS), and (A7) into the expression ([A2) for (—1)¥As

yields

EA Kt 1,k+2,k+3, k44, k+5 k1, k42, k43, k+4,k+6
(=1)"As = =40 o7k g a ks k6 M (B +6)) 48 Lok ia ki Uys ke M (k +6)

k+2,k+3,k+4,k+5 k+2,k+3,k+4,k+6 k43, k+4,k4+5
=128, s s e M (K + 6) 4+ 403 57 a5 e M (K +6) — 126, 7 57 6 M (k4 6)

ke+3,k+4,k+6 k+4,k+5 k+4,k+6 k

(A.8) + 60,y his prg M (k+6) — 46,50 Lo M (k + 6) + 46, 5 Lo M (k + 6) + 6, L¢ M (k + 6))
Note that this expression only involves the determinant of one matrix, M (k + 6), and its minors.
Next, we successively expand the terms with fewer than five deletions.
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We begin with the term with one deletion. Expanding D,’i_tg Mk + 6) along tis bottom row yields
k+6 k+3,k+6 k+4,k+6 k+5,k+6
SpiaM(k+6) = =6, i e M (k+6) — 20, 5 7o M (k + 6) + 26,75 Lo M(k +6).
We substitute this into the previous expression for (—1)*Aj5 and simplify to obtain

Ea Kt 1,k+2, k43, k44, k+5 k1, k42, k43, k+4,k+6
(—1)"As = =40 o7k g raks k6 M (B +6)) 40 Lok ia ki Uys ke M (k +6)

k+2,k+3,k+4,k+5 k+2,k+3,k+4,k+6 k43, k4, k+5
= 1260 5 ks ke M (K +6) + 40,37 s ke M (K +6) — 126, 7y L5 g M (K + 6)

k+3,k+4,k+6 k-+4,k+5 k+4,k+6
+ 60, Ly s o M (k + 6) — 46,50 T M (k + 6) + 26, {5 Lo M (k + 6)
k+3,k+6 k+5,k+6
(A.9) — Optare M (k4 6) + 26, 2 e M (k +6).
Next, we expand the terms with two deletions along their bottom rows.

5k+4,k+5M(k +6) = _5k+2,k+4,k+5M(k +6)— 25k+3,k+4,k+5M(k 16+ 25k+4,k+5,k+6M(k +6)

k+5,k+6 k+4,k+5.k+6 k+4,k+5.k+6 k+4,k+5.k+6

k-4, k+6 k4 2,kt4, k46 k43, k-+4,k+6 k4, k+5,k46
Oy 6 Mk +6) = =0, 3 s re M (k4 6) = 20500 5 6 M (E +6) + 40,15 ks g M (K + 6)

k43, k+6 L h42,k43,k46 ki3, k44, k+6 k43, k-+5,k+6
OprshreM(k+6)=—0, ks nreM(k+6)+ 0, 5o M(k+6)+40, y TeieM(k+6)

We substitute these identities into the previous expression for As and simplify to obtain

kA gkl E+2,k43 k+4,k+5 k1, k+2,k+3,k+4,k+6
(=1)"As = =46, 5kt 3ot d et 56 M (4 6)) + 03 ok 3 kv a k5 k46 M (K + 6)

-2, k3, k-4, k45 k-2, k43, k-4, k46 k+2,k+3,k+6
= 1200337 ks ko M (B +6) + 40, 30 ks kg M (K4 6) = 6 3k 5 g6 M (K 4 6)

" 45k+2,k+4,k+5M(k 16)— 25k+2>k+4>k+6M(k +6) — 45k+3’k+4’k+5M(k +6)

k+4,k+5,k+6 k+4,k+5,k+6 k+4,k+5,k+6
k+3,k+4,k+6 k+3,k+5,k+6 k+4,k+5,k+6
(A.lO) + 5k+4,k+5,k+6M(k + 6) - 46k+4,k+5,k+6M(k + 6) - 25k+4,k+5,k+6M(k + 6)'

Next, we expand the terms with three deletions along their bottom rows.

k+2,k+3,k+6 . k+1,k+2,k+3,k+6 k+2,k+3,k+5,k+6
Optakts oo Mk +6) = =6 L3 a5 ke M (k4 6) + 60,375 i ks o6 M (K + 6)

k42, k+4,k+5 k1 42,k 4, k45 k42, k+3,k-+4,k+5
Ot torshro Mk +6) = =0, s a5 oo M (K +6) + 045 0 ks oo M (k + 6)

k-2, k44, k+5,k-+6
+ 20,15 v a ket ko M (E +6)

k+2,k+4,k+6 _ ck+1,k+2,k+4,k+6 k+2,k+3,k+4,k+6
6k+4,k+5,k+6M(k +6) = _5k+3,k+4,k+5,k+6M(k +6) + 5k+3,k+4,k+5,k+6M(k +6)

k+3,k+4,k+5 skt 1,k+3,k+4,k+5 k+2,k+3,k+4,k+5
6k+4,k+5,k+6M(k +6) = =053kt 4 kt5k16 M (K + 6) — 20313 k1 4. k45016 M (K + 6)

k+3,k+4,k+5,k+6
+ 26k+3,k+4,k+5,k+6M(k +6)

k+3,k+4,k+6 skt 1,k+3,k+4,k+6 k+2,k+3,k+4,k+6
6k+4,k+5,k+6M(k +6) = =053kt 4 kt5h16 M (K + 6) — 20313 k1 4.k 5016 M (K + 6)

k+3,k+4,k+5,k+6
+ 66k+3,k+4,k+5,k+6M(k +6)

k+4,k+5,k+6 _ k+3,k+4,k+5,k+6
OprabishreM(k+6) =200 30 Ty s kieM(k+6)

k+3,k+5,k+6 _ o .
Also, we have 0,y o'y ¢ M (k 4 6) = 0 because this minor contains a column of zeroes.

We substitute these identities into the previous expression for (—1)*A5 and simplify to obtain

k _ k+1,k+2,k+3,k+4,k+5 k+1,k+2,k+3,k+4,k+6
(_1) As = _46k+2,k+3,k+4,k+5,k+6M(k + 6)) + 5k+2,k+3,k+4,k+5,k+6M(k + 6)

k+1,k42,k+3,k+6 k+1,k+2,k+4,k+5 k+1,k+2,k+4,k+6
- 6k+3,k+4,k+5,k+6M(k +6) - 45k+3,k+4,k+5,k+6M(k +6) + 20313 k1 4. k15016 M (K + 6)

k+1,k+3,k+4,k+5 k+1,k+3,k+4,k+6 k+2,k+3,k+5,k+6
+ 46k+3,k+4,k+5,k+6M(k +6) - 6k+3,k+4,k+5,k+6M(k +6) + 60y 5 k4 k45 k6 M (K + 6)

k+2,k+4,k+5,k+6
(A.11) + 80, 3 it a e oM (k +6).

Next, we analyze the terms with four deletions.

25
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The following minors each have a column of zeroes, hence their determinants are zero.

k+1,k+2,k+3,k+6 _
Opt 3 htd kishie M (k+6) =0
k+6

LS akrs koM (k +6) =0
Oivaiiaiiontod (k+6) =0
k+6)=0
k+6)=0

k+2,k+3,k+5,k+6
5k+3,k+4,k+5,k+6M

k+2,k+4,k+5,k+6
5k+3,k+4,k+5,k+6M

~ o~ o~ o~

We expand the following terms along their bottom rows.

k+1,k+3,k+4,k+5 _ ckk+1,k+3,k+4,k45 k+1,k+2,k+3,k+4,k+5
Ot 3 k44 k45 k467 M(k +6)) = Ok v k3 ki krshieM (K + 6) + 5k+2,k+3,k+4,k+5,k+6M(k +6)

k+1,k+3,k+4,k+5,k+6
+ 205 0kt 3 k4 ks k6 M (K +6)

k+1,k+3,k+4,k+6 _ k,k+1,k+3,k+4,k+6 k+1,k+2,k+3,k+4,k+6
5k+3,k+4,k+5,k+6M(k +6) = _5k+2,k+3,k+4,k+5,k+6M(k +6) + 5k+2,k+3,k+4,k+5,k+6M(k +6)

k+1,k+3,k+4,k+5,k+6
+ 80 o k13 btd ks kteM (k+6)
We substitute these identities into the previous expression for As and simplify to obtain
k _ k,k+1,k+3,k+4,k+5 k,k+1,k+3,k+4,k+6
(A.12) (=) A5 = =46, 1 s wranes hee Mk +6) + 6,00 15 v wvs M (K +6).
Each of these minors on the right hand side of this equation has a column of zeroes, hence their determi-
nants are zero. Thus, As = 0. O

Lemma A.8. The coefficient of the degree four term is
1

(A.13) hy = g(—1)’f(5,’jj;’,jj\4(k)

for any k > Ny.
Proof. When h is a polynomial of degree at most four, we have
h(l) —4h(l+ 1)+ 6h(1+2) —4h(l+3) + h(l +4) = 24hy

where h4 is the coefficient of the degree four term.
It is convenient to take [ = k + 1, as this allows us to use many of the identities established in the proof
of the previous lemma.

h(k +1) — 4h(k 4+ 2) + 6h(k + 3) — 4h(k +4) + h(k + 5) = 24hy
Substituting A(N) = (=1)V LM (N + 1) yields
(A14)  det M(k +2) +4det M(k +3) + 6det M(k +4) + 4det M (k +5) + det M (k + 6) = (—1)*24hy

We apply the identities established in the proof of the previous lemma to the left hand side of (A14]) and
obtain
det M (k+2) +4det M(k+3)+6 det M (k+4) + 4 det M (k+5) +det M (k+6) = 86,15 i 20 M (k+6).
Expanding along the last four columns shows that 6:13:1{1:1?:12 M((k+6) = (5ZjZM (k).
We have
(—1)"24hs = 86 L M ().
which yields the desired result. O

Lemma A.9. deg@Q = 4.

Proof. By the previous lemma, the coefficient of the degree four term in @ is %(—1)’“65:%::%1@ —1). The

matrix D::}’EA(IC — 1) is the KKT matrix for finding the closest point on the cone W N {zxy = znx41 = 0}
to the vector a outside it. This problem has a unique solution, so this determinant cannot be zero. O
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A.3. x is a polynomial.
Definition A.10. For each n > 4, define

X, Mat, xn — Mat(n+1)x(n+1)
as follows.
e Columns 1 through (n — 3) in X(M) are the same as in M, extended by 0 at the bottom.
The last four entries in column n — 2 in X(M) are —1,2, —1,0, and this column is 0 otherwise.
Column n — 1 in X(M) is column n — 2 in M, extended by 0 at the bottom.
Column n in X(M) is the sum of columns n — 1 and n in M, extended by 0 at the bottom.
Column n + 1 in X(M) is column n from M, extended by 2 at the bottom.
We write X for the collection of maps {X,}. We refer to X as a recurrence, and frequently omit the
subscript.

The application to our problem is as follows.

Lemma A.11. Suppose N > max{c.i.(T') + 2, max(I) + 2}. Then the matrices A'(N, N — 1) satisfy the
recurrence X. That is, A’ (N +1,N) = X(4'(N,N —1)).

Lemma A.12. Let {M(N)} be a sequence of N x N matrices for N > Ny such that M(N +1) = X(M(N))
for all N > No. Then x(N) = (—=1)N*ldet M(N + 1) is given by a polynomial of degree at most 3 for all
N > Ng+ 1.
Proof. We show that the following fourth-order difference equation vanishes for any integer k > Nj.
(A.15) x(k) —4x(k+1) +6x(k+2) —4x(k+3)+ x(k+4)=0.

We define

Ay:i=x(k)—dx(k+1)+6x(k+2) —4x(k+3)+x(k+4)

Thus, our goal is to prove that Ay = 0.

Substituting the definition of the function x(N) = (—1)N*1 det M (N + 1) yields the following expression.

(A.16)  (=1)F'A, = det M(k + 1) + 4 det M (k + 2) + 6 det M (k + 3) + 4 det M (k + 4) + det M (k + 5).

Next, we find identities that will allow us to write each det M (k + ¢) in terms of the determinants of
M (k 4 5) and its minors.
To begin, expanding det M (k + 5) along its bottom row yields

(A.17) det M (k + 5) = 26512 M (k + 5)

Next, we relate det M (k 4+ 4) and determinants of minors of M (k + 5). Expanding det aug(1, M (k + 4))
along its bottom row yields

detaug(1, M (k +4)) = —251,512 aug(l, M(k +4)) + 251,512 aug(1l, M (k + 4)).
But
Dyt aug(L, M(k +4)) = D3y s M(k +5)
Dyt ang(L, M(k +4)) = D3y 3 M(k +5)

so we obtain

(A.18) det M (k +4) = =200 T3S M (k + 5) + 205 L3 M (K + 5)
In a similar fashion, we obtain the following identities.
(A.19) det M (k +3) = =40} Lyt i M (k +5) + 207 3 i T2 M (k + 5)
(A.20) det M (k +2) = =60, i ot s M (k + 5)) + 200 ol et s M (k + 5)
(A.21) det M(k+1) = =80 ol ol E e s M (k 4+ 5) + 208 Tl el i s M (k + 5)

We substitute the identity (AI7) for det M(k + 5) into the expression (AI6) for (—1)**1Ay to obtain
the following.

(A.22) (—1)F"'Ay =det M(k+1) +4det M(k +2) + 6det M (k + 3) + 4det M (k + 4) + 26, T2 M (k + 5).
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We expand the term with one deletion. Expanding Dl,zigM (k4 5) along tis bottom row yields

SELEM (K +5) = =86, PRI M (K +5) + 20, T i F M (K + 5).

We substitute this into the expression ([(A22) for (—1)k¥T1A, and simplify.
(—1)F Ay =det M(k+ 1) +4det M(k +2) + 6det M (k +3) +4det M(k +4)

(A.23) — 20, T M (k + 5) + A0, L M (K + 5).

Next, we substitute the identity (AI])) for det M (k + 4) and simplify.

(=)A= det M(k + 1) + 4det M (k + 2) + 6 det M (k + 3)
k+2,k k+2,k ,

(A.24) — 80, TN + 6O LTI M (K + 5) + 40, L e M (K + 5).

Next, we expand the terms with two deletions along their bottom rows.

St s M (k +5) = =0y Ly i i b ra M (k +5) + 20, 5w T e M (k + 5)

k+3,k+4,k+5
k+2,k+5 _ ck+1,k+2,k+5 k+2,k+4,k+5

5k+4,k+5M(k +5) = _5k+3,k+4,k+5M(k +5)+ 45k+3,k+4,k+5M(k +5)
k+4,k+5 _ ck+1,k+4.k+5 k+2,k+4,k+5

5k+4,k+5M(k +5) = _5k+3,k+4,k+5M(k +5) — 25k+3,k+4,k+5M(k +5)

We substitute these identities into the expression (A24]) for (—1)**1A, and simplify.
(=) A, = det M(k + 1) + 4 det M(k + 2) + 6 det M (k + 3)
ket 1,k+2,k+4 ket 1,k+2,k k1, k4,
(A.25) — 88 Ly tanis M (k +5)) = 68, Ly i S M (k +5) — 46ki§,ki§,l§igM(k +5).
We substitute the identity (A9) for det M (k + 3) and simplify:

(=D TA, = det M (k + 1) + 4det M (k + 2) — 1667 LR P20 () 4 5))

k+3,k44,k+5
(A.26) o+ 60 L Lk s M (k + 5) — 46, Ty Ta i TS M (k + 5).
Next, we expand the terms with three deletions along their bottom rows.
Oktsmtahrs Mk +5)) = =0Tyl Mk +5) + 20 T 5 M (k + 5)
Oktontahs Mk +5) = =0 ol s M (b 4 5) + 60, Lo 5 ks M (K +5)
Oktotahis Mk +5) = =0 Elll s M (b4 5) + Gy Lo Lo Lkt s M (k +5).

We substitute these identities into the expression (A.28]) for (—1)**1A, and simplify.

(1)1 Ay = det M(k+ 1) + ddet M (k + 2) + 165, 5w F 0 s M (k +5)

ko ket 1,k+2,k+5 Kokt 1,k+4,k+5
(A.27) = 60430 ks e ks M (K +5) + 46,00 ks wra ks M (E +5).

We substitute the identity (A20) for det M (k + 2) and simplify.

(—DF A, = det M(k+1) — 85,§f;;f;,§f;,§+5M(k +5)

ko kt1,k+2,k+5 ko k+1,k+4,k+5
(A.28) + 200 0 ks kra ks M(E +5) + 4000 gk gy s M (K A+ 5).

We expand the terms with four deletions along their bottom rows.
ko k+1,k42,k+4 _ k—1,k,k+1,k+2,k+4 ko k+1,k42,k+4,k+5
OpvonsabrantsM(k+5) = (=10 ko ks prakesM (K +5) + 20000 00k Vg v s M (K +5)

Kok 1,k+2,k+5 k1 ko kL kt2,k45 fe k1,42, k-4, k+5
o ks ranhesM(E+5) = =0, 1o ks wha s Mk +5) + 86,20 1 o ks kv s M (k +5)

Note that D],zf; ;f; :sz 4+5M(k +5) has a column of zeroes, hence this minor has determinant 0.
We substitute these identities into the expression (A28) for (—1)**1A, and simplify.

(1) Ay = det M (k+1) + 80} iy i mE o s M(k + 5)

k—1,k, k+1,k-+2,k+5
(A.29) =204 1 kv kradera nesM (K +5).

Substituting the identity (AI8)) for det M (k + 1) yields Ay = 0.
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Lemma A.13. The coefficient of the degree three term is

2
(A.30) xo = 5 (=DM (ST MG+ 1)+ oL M (k4 1)
for any k > Ny.

Proof. When x is a polynomial of degree at most three, we have
(A.31) X(1) = 3x(1+ 1) +3x(L +2) — x(I +3) = —6xs

where x3 is the coeflicient of the degree three term.
It is convenient to take [ = k + 1, as this allows us to use many of the identities established in the proof
of the previous lemma.

(A.32) x(k+1)—=3x(k+2)+3x(k+3)— x(k+4) = —6x3
Substituting x(N) = (=1)NT'M (N + 1) yields
(A.33) det M (k 4 2) + 3det M (k + 3) + 3det M (k + 4) + det M (k + 5) = (—1)* 163

We apply the identities established in the proof of the previous lemma to the left hand side of (A.33]) and
obtain

det M (k +2) + 3det M (k + 3) + 3det M (k + 4) + det M (k + 5)

o k—1,k+1,k+2,k+4,k+5 kk+1,k+2,k+4,k+5
(A'34) - _46k+1,k+2,k+3,k+4,k+5M(k + 5) - 45k+1,k+2,k+3,k+4,k+5M(k + 5)

We examine each of the terms on the right hand side of (A34).
Expanding D;:: Zié:jg:ﬁj:]ﬁM (k +5) along column k yields

k—1,k+1,k+2,k+4,k+5 ck—1,k k4 1,k 42, k44,k+5
Ot kt2 ks bidhisM(k+5) =06 ko s kranis M(k+5)

and

k—1,k,k+1,k+2,k+4,k+5 . k,k+1
Dy ei 1 ks2b+3 brabss Mk +5) = Dypriy M(k +1).

Thus we have
(A.35) S e e M (k + 5) = del(k, k + 1, k, k + 1, M(k + 1)).
Expanding Dfo,if;if;iij%M(k + 5) along column k — 1 yields

ko k1, k42, k+4,k+5 _ ch—1,kk+1,k+2,k+4,k+5 K1,k k1, k42, k4, k45
Ot ko ks bianes Mk +5) = =0 0 ko i kra s Mk +5) = 200 3 0 okt s b kgs M (K +5)

But
k—1,k,k+1,k+2,k+4,k+5 k,k+1
Dy it ire s pranes M(k+5) =Dy M(k+1)
k—1,k,k+1,k+2,k+4,k+5 _ pkk+1
Dy ki1 kv2kts bra ks Mk +5) = Dy M(k+1)
Thus we have
Kok 1,k+2,k+4,k+5 ko k+1 ko k+1
(A.36) Sutmiania wrtnasM(k+5) = =670 M(k+1) — 26,70 M (k +1).
We combine equations (A:33), (A34), (A.35), and (A36).
(=1) " 6x3 = det M (k + 2) + 3det M (k + 3) + 3det M (k + 4) + det M (k + 5)
E—1,k+1,k+2,k+4,k+5 ko k41,k+2,k+4,k+5
= =40k 1 kg o g ha s MK+ 5) = 460 00 s kv ks M (K 4 5)
k,k k.k
=40 M (K + 1) + 46 T M (k + 1).
This gives the desired result:

2
Z(—1)Mt? (5,’§f{;+1M(k +1) + O M (k + 1)) :

X3:3

O

Fix a positive integer k. We use the following notation for the Taylor expansions of this polynomial
centered at k.

X(N) = x3(N = k)* + x2(N — k)* + x1(N — k) + xo
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Lemma A.14. The coefficient of the degree two term in this Taylor expansion is
xo = (1P (2055 MOk 4 1) + 485 M (k1))
Proof. Evaluating the Taylor expansion for N =k, N =k+ 1, and N = k 4 2 yields
x(k) = xo
x(k+1) =x3+x2+ X1+ Xo
Xx(k+2) = 8x3 + 4x2 + 2x1 + Xo-
Solving this system for 2 yields
2x2 = x(k +2) = 2x(k + 1) + x(k) — 6x3.
Substituting x(N) = (=1)N M (N + 1) yields
(A.37) 2x2 = (=11 (det M (k4 3) + 2det M (k +2) + M(k + 1)) — 6xs.
We use the identities established in the two previous proofs as well as one additional identity.

k- 1,k+2,k+4,k+5 k= 1,k+1,k+2,k+4,k45 Ek41,k+2,k+4,k+5
Okt ki 3ikraots M (E+5) = =0 1k Do krs ikt akds M (K +5) = 20,20 00008 ks os M (K +5).

This allows us to write
(A.38) det M (k +3) +2det M(k +2) + M(k+1) = 86" 1 M (k +1) + 1205 T M (k + 1).
Substituting (A38) and the expression (A30) previously found for y3 into (A37) yields
2x2 = (=) (det M(k +3) + 2det M(k +2) + M(k+1)) — 6x3
= (=1)FTN oML M (ke + 1) + 128, M (k + 1))
2
— 6 (=DM (G M+ 1) + O M (k + 1)
= ()M AP Mk + 1) + 86T M (K + 1)).

Lemma A.15. The coefficient of the degree one term in this Taylor expansion is

1
X1 = g(—l)k+2 (sa,ﬁff,iﬂM(k 1)+ 146 M (k + 1) + 655 T3 M (k + 2)) .

Proof. Evaluating the Taylor expansion for N = k + 1 yields
x(k+1) = x3+x2+x1+ X0

Hence,
x1=x(k+1)—x0—x3—x2
= (=12 det M(k+2) — (—1)*" det M(k+1) — x3 — x2
(A.39) = (—=1)*"2 (det M (k +2) + det M (k + 1)) — x3 — X2.
We prove the following identity:
(A.40) det M (k +2) + det M (k + 1) = ;15 M (k + 2).

We obtain this as follows. Start by expanding red M (k + 2) along its bottom row.

(A.41) detred(M (k +2)) = 26y 15 ved M (k + 2) + 267715 red M (k + 2)
We have

(A.42) detred M (k + 2) = det M (k + 2)

(A.43) Syfored M(k+2) =0, T M(k+2)

Expanding DZIS red M (k + 2) along its bottom row yields

SEtared M(k+2) = =8, 15 red M (k + 2).
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Expanding det M (k + 1) along its bottom row yields
det M (k + 1) = 20,11 M (k + 1),
and we have
Dy v red M(k +2) = DEFIM (K + 1).
Thus
(A.44) 26yt ved M (k +2) = —det M (k + 1).

Substituting (A42)), (A.43), and (A44) into (A4) yields (A4Q).

Substituting (A40) and the formulas for y3 and x» from the previous lemmas yields the result.

O
We summarize the results of this section with the following lemma.
Lemma A.16. Suppose that k > max{c.i.(I') + 2, max(I) + 2}. Then
1
xo = 5 (-1 (25,’;;,’;1}/1/@, k- 1)+ 2005 A (k- 1))
X2 = (=1)F+1 (45’;;’;1}A’(k, k- 1)+ 200 A (k- 1))
1
X1 = g(_1)k+1 (-145’,5;’,31}4@, k—1) =80, 0 A (ke — 1) — 60FT3 A (k + 1, k))
xo = (=1)*tdet A’ (k, k — 1).
Proof. We apply Lemmas [A.13] [A.T4 and [A. 15 with M(k+1) = A'(k,k —1). O

Lemma A.17. degw = 4.

Proof. The last row of the KKT matrix equation says —zy_1 + 2xny4+1 = 4. Clearing denominators yields
—X + 2w = 4Q. Since degw = 4 and deg x < 3, the result follows. O

A.4. 1 is a polynomial.
Definition A.18. For each n > 3, define
W, : Matyxn — Mat(n-{-l)x(n—i-l)

as follows.

Columns 1 through (n — 2) in ¥(M) are the same as in M, extended by 0 at the bottom.
The last three entries in column n — 1 in (M) are —1,2, —1, and this column is 0 otherwise.
Column n in (M) is column n — 1 in M, extended by 0 at the bottom.

Column n + 1 in ¥(M) is column n from M, extended by 2 at the bottom.

We write ¥ for the collection of maps {¥,,}. We refer to ¥ as a recurrence, and frequently omit the
subscript.

The application to our problem is as follows.

Lemma A.19. Suppose N > max{c.i.(I')+2, max(I)+2}. Then the matrices A'(N, N) satisfy the recurrence
U. That is, A'(N + 1, N + 1) = U(4'(N, N)).

Lemma A.20. Let {M(N)} be a sequence of N x N matrices for N > No such that M(N +1) = U(M(N))
for all N > Ng. Then (N) = (—1)N*tdet M (N + 1) is given by a polynomial of degree at most two for all
N > N,.

Proof. We show that the following third-order difference equation vanishes for any integer k > Ny + 1.
(A.45) (k) —=3(k+1)+3(k+2)—w(k+3)=0.
We define
Az :=y(k) =3k + 1)+ 3¢k +2) — (k+ 3).
Thus, our goal is to prove that Az = 0.
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Substituting the definition of the function ¥(N) = (=1)N*1det M (N + 1) yields the following expression
for As.

(A.46) (=D 1Az = det M(k + 1) + 3det M (k 4 2) + 3det M (k + 3) + det M (k +4).

Next, we find identities that will allow us to write each det M (k + 4) in terms of the determinants of
M (k 4 4) and its minors.
To begin, expanding det M (k + 4) along its bottom row yields

det M (k +4) = =0, 7 M (k +4) + 20,7 M (k + 4).
But
DyPAM(k+4) = M(k +3)
so we obtain

(A.47) det M (k + 3) = — det M (k + 4) + 20 Ty M (k + 4).

In a similar fashion, we obtain the following identities.

(A.48) det M (k +2) = — det M (k + 3) + 25,135 Fi M (k + 4).
(A.49) det M(k+1) = —det M (k +2) + 28,1 kL 3w HI M (k + 4)

We substitute the identities (A47), (A.48)), and (A47) into the expression (A48) for (—1)*+* A3 to obtain
the following.
(A.50) ()M Ag = 205 i ST AM (k4 4) + 40, 5 I M (K + 4) + 205 T1M (k + 4).

We expand the term with one deletion. Expanding Dl,jj:llM (k + 4) along its bottom row yields

SETAM (k+4) = =8t 3i FiM (k+4) — 26, T2 F M (ke + 4).
We substitute this into the expression ([(A50) for (—1)¥T'Az and simplify.

k1,k+2,k k1,
(A.51) (~D)* 1 As = 8 s a Mk +4) = 5Ly i M (k + 4).

The minor DESEIEM (k +4) has only one nonzero entry in column k + 2. Expanding along this column

yields
Otz Mk +4) = 05T IM (k + 4).
Thus, (—1)**'A3 = 0. This completes the proof that 1)(N) is a polynomial of degree at most two. O
Lemma A.21. The coefficient of the degree two term is
Yo = ()M (6P M (k+ 1) + 67T M (k + 1))

for any k > Ny.
Proof. When 1) is a polynomial of degree at most two, we have
(A.52) Y(k+1) =20k +2) + (k4 3) =2

where 15 is the coefficient of the degree two term.
Substituting ¢(N) = (=1)N LM (N + 1) yields

(A.53) det M (k4 1) 4+ 2det M (k + 2) + det M (k 4 3) = (—=1)*"1 24,
We can argue as we did in the previous proof to obtain the following identities.

det M (k +2) = —det M (k + 3) + 2073 M (k + 3)

k+3
det M(k +1) = — det M (k + 2) + 28,5 T3 M (k + 3)
SETIM (ke +3) = =80 S0 s M (k +3) — 205 Ly ES M (K + 3).

We use these identities to evaluate the left hand side of (A53]) and obtain

(A54)  det M(k+1)+2det M(k+2) +det M(k+3) = =28, T T3M (k +3) — 26,557 s M(k + 3)
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Expanding the first term on the right in (A54) along its bottom row yields
(A.55) Seta it s Mk +3) = =04 Vi b s M (k + 3) — 200 ol M (ke + 3)

k+2,k+3 k+1,k+2,k+3
Expanding the first term on the right in (A.55) along its bottom row yields
Siiiiaias M (b +3) = 00 Lokt Mk +3)
and
DYV A M (k +3) = 05 iy M (k + 1).
For the second term on the right in (A5H), we have
Dy b s M (k+3) = DM (k +1).
Hence, we obtain
(A.56) Spta s M (k+3) = =00 WV M (k + 1) — 208 T M (k + 1)
Expanding the second term on the right in (A54) along its bottom row yields
(A.57) St b Mk +3) = =) el e M (ke + 3) + 0p T i M (k + 3).
The first term on the right in (A.57) has a column of zeroes, hence its determinant is zero. For the second
term on the right in (A57), we have
DR s Mk +3) = DEFIM (K + 1),
Hence, we obtain
(A.58) St s M(k +3) = oF i M(k +1).
Substituting (A56) and (AES) into (A54) yields
det M (k + 1) + 2det M (k + 2) + det M (k + 3) = 25, [\ M (k+ 1) + 26,71 M (k + 1).
Finally, expanding along the bottom row yields
SFFIM (ke +1)) = 6 T Mk +1).
Thus, we have
(=1)* 129y = det M (k + 1) 4 2det M (k + 2) 4 det M (k + 3)
=200 WV M (K + 1) + 205 T M (K + 1).
=267 M (k + 1)) + 26511 M (k + 1).
This gives the desired result:
Yy = (1) (SFT M (k+ 1) + 05T M (k + 1)) .
O

Fix a positive integer k. We use the following notation for the Taylor expansions of this polynomial
centered at k.

YIN) = (N =k)* + (N = k) + o
Lemma A.22. The coefficient of the degree 1 term in this Taylor expansion is
Y1 = ()P (B6F I M (k + 1) + 65T M (k + 1)) .
Proof. We have
¢ = a(N — k)? + 1 (N — k) + tho.
When N = k, we have ¢¥(k) = ¢, and when N = k + 1 we have

Pk +1) = P2 + Y1 + 2o,
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=)
Y1 =Pk +1) — b2 — 1o
= (—1)*2det M(k+2) — 4o — (—=1)F1 det M(k + 1)
(A.59) = (—1)**2(det M (k 4 2) + det M (k + 1)) — 1a.
Expanding det M (k 4 2) along its bottom row yields
det M (k +2) = —0f oM (k + 2) + 2652 M (k + 2).

But
DF o M(k+2)=M(k+1)

so we obtain

(A.60) det M (k +2) + det M(k + 1) = 26, T3 M (k + 2).
Substituting this and the expression for 1o yields
(A.61) P1 = (—1)F225 2 M (k4 2) — (=) (5 M (k+ 1)) + 6 M (k+ 1)) .

We study the first term on the right in (A.61). Expanding along column k yields
SETSM (k+2) = =8, oM (k +2) — 200152, M (k + 2).

k+2 k+1,k+2
But
DyitsM(k +2) = DET M (k + 1)
k.k
Dt oM (k+2) = DEEIM(k + 1)
SO

SyIAM(k+2) = =6, M(k+1) — 26, M (k+1).
Substituting this into (AL61)) yields
Y1 = (—1)F2(=200 T M (k + 1) — 40T M (k + 1) — (—=1)F (55 M (k + 1)) + 65 M (k + 1)) .
= (=DM Bey M (k+ 1)+ 6, M(k+1))
as desired. |
We summarize the results of this section with the following lemma.
Lemma A.23. Suppose that k > max{c.i.(T') 4+ 2, max(I) 4+ 2}. Then
o = (—1FF (LA, ) + O AR )
r = (—1)FT (365 LA (k, k) + 67T A (K, k)
Yo = (—1)"" det A'(k, k).
Proof. We apply Lemmas [A22]] and with M(k+1) = A'(k, k). O

APPENDIX B. PROOF OF PROPOSITION [7.4]
Here we give a proof of Propositon [7.4] concerning worst 1-PS’s for higher order cusps.
B.1. Statement of the main result for cusps.
Definition B.1. For any integer r > 1, we define the polynomial
(B.1) f(r,x) = (dr — 2)2® + (6r — 6)2® — (12r° + 67° + 4r + 4)z — (30r° + 187%).
Lemma B.2. For any fized value of r > 1, the polynomial f(r,z) has exactly one positive real Toot.

Proof. We can check this directly for » = 1. When r > 1, the first two coefficients are positive and the last
two coefficients are negative, so by Descartes’ Rule of Signs, f(r, z) has at most one positive real root. Since
f(r,0) <0 and lim,_, f(r,z) > 0, the polynomial f(r,x) has exactly one positive real root. O

Definition B.3. We define a(r) to be the positive real root of f(r,x).
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Proposition B.4. Let r be a positive integer. Let j = [a(r)]. Then for all N > j+ 2, the persistent corner
set for a cusp of order r and the simplified problem is ™ = {j, j + 1}.

In the proof, we will exhibit explicit formulas for a nonnegative solution z to the KKT matrix equation
for this face. This will prove the claim.
First, we give a hint about how we obtained these quantities.

B.2. How we obtained some formulas appearing in the proof. When I = {j,j + 1}, the piecewise
linear graph through the points {(v;, w;)} consists of three line segments. Let y = myx + by, be the equations
of these three line segments for k = 1,2, 3.

The KKT matrix equation variables z; and x;; represent parameters of face, (), and we have

(B2) Tj; = —my + mo
(B3) Tjt1 = —M2 + ms.
For the Simplified Problem, we have m3 = 0 and b3 = 2.

The middle line segment joins (v;,w;) and (Vj4+1,w;j+1). Since j > cond(T"), we have vj41 —; =1, and

hence
my = (wjs1 —w;)/ (1 —7;) = (2 —w;)/1 =2 —w.

We can use the equation for the first line segment to compute w;. This yields w; = m1(j +7) + b1, and
hence mg =2 —m1(j + 1) — bs.

Substituting these expressions for mg and mg into (B:2)) and [B.3) yields
(B4) xj:2—m1(j+7"+1)—b1
(B5) Tj41 = —2+m1(j+r) + by.

The simple structure of the corner sets I = {j,j + 1} helps us in another way. Whenever we have two
consecutive corners, the optimisation problem breaks up: we can optimize > 7_(w; — a;)? and Zi\; 1 (w; —

a;)? separately. When there are exactly two corners, as in I = {j,j + 1}, the solutions to each of these
problems is given by least squares regression. We thus obtain formulas for m, and b; as follows.

Lemma B.5. Let ' = (2,7).

(1) Applying least squares linear regression to (Yo, o), - - -, (74, a;j) yields the following formulas.
n=7j+1
Z%‘wi =(r+j)r+i+1)

1
Y=g 2 i)

> wi=2j+2r+1

E 2 _ 3 2 -2 -3 2 - -2 -
ﬁ//l —r _l’_r,'- ] +Tj + _3.] + —r +Tj + _] + _r,'-+ _]

(2) Recall that
_ n Qo yiwi) — () (2 wi)
n(X93) - ()

= () =g (S0)

(3) The denominator of my is
2 1
2 4 .3 2 -2 2 - 4 3 2
n(g 71-) — (E %) = D (] +45° + (6r° 4+ 6r +5)5° 4+ (12r° + 12r + 2)j — 3r® — 6r° 4+ 3r +67°)

We scale this polynomial by 12 so that the j* term is monic, and call this polynomial h. Then
6((=2r +1)j2+j+2r3 +r2+7)
h
20+ (Ar+2)52 + (1272 4+ 6r 4+ 2)52 4 (1202 + 8r + 1)j — 9r* + 612 + 3r)
N h

my =

by
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Substituting the formulas for m; and b, from Lemma [B.5l into the expression (B.4) yields
(BG) Tj = —
where

f(r,g) = (4r —2)53 + (6r — 6)52 + (—=12r3 — 612 — 47 — 4)j — 301> — 18¢2
h(r,7) = j* 4 453 + (67 + 6r 4 5)5% 4+ (12r2 +12r +2)j — 3r* — 613 + 3r% + 67
We also find that _
T - _ f(T7] — 1)
Jj+1 h .
B.3. Proof of the main result for cusps.

Proof of Proposition[B.4} We exhibit explicit formulas for a nonnegative solution x to the KKT matrix
equation for this face. This proves the claim.

We begin by defining the following quantities. See Section for a discussion of how we obtained these
formulas.

(B.7) h(r,7) = j* 4+ 453 + (6% + 6r 4+ 5)5% + (12r2 +12r +2)5 — 3r* — 613 + 31 + 67
f
i —1
(B.9) ryr = 1021
(BIO) mp = —Tj; — Tj+1
(B.11) by = (J+7)(; +7541) + 24 2511

We then define x; for 1 < k < j — 1 in terms of the quantities above.

(k= )k(k 4+ 1)my + $k(k + 1)by — 2k? ifl<k<r-—1
LG-mG-r+D)((G—r—Vaj+ (G —r+2z4) ifk=r

(B.12) =9 G-k -k+1)((G—k—Dzj+ (G —k+2)z41) Hr+1<k<j—1
0 ifj+2<k<N
2 ifk=N+1

To finish the proof, we need to show that the following three conditions are satisfied.

(i). z satisfies the KKT matrix equation for the Simplified Problem
(ii). #; >0foriel
(iii). 2; >0fori g T andi < N —1.
To establish (), we need to verify several identities of rational functions.
Recall the formulas for the KKT matrix equation:

Vi~ Vi1 fj<N-1,j¢I andi=j
Yi4+1 — V-1 1f]§N—1,j¢I,andz:]—|—1
Yi—1 — Yy fj<N—-1,7¢I andi=j+2

Aij=1Q 2(yj—vi-1) Hj<N-1,jel,andi<j
2(yn —7vi—1) ifj=N
2 ifj=N+1
0 otherwise

The vector a on the right hand side of the KKT matrix equation is given by the following formula.
o1 ifi=1
ai =< vi—vi—2 if2<i<N
2 if i = N + 1 (Simplified Problem)
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For the semigroup I" = (2, 2r 4+ 1), we have

(2 ifo<i<r
V=Y i4r ifr+1<i<N

Thus

fi=1
if2<i<r
fi=r+1
ifr+2<i

a; =

N W s N

Now we check each row of the KKT matrix equation.
In row 1, we have Ay, =0 when k ¢ {1,4,7+ 1, N,N + 1}, and znx = 0. Then

Az + Az + A jra%i + AN N+
=(=2)(bi —2)+ 20 +r))z; + (20 + 7+ 1))z + (2)(2)
=4

= 2(11.
In row 2, we have Ay, =0 when k ¢ {1,2,5,5+ 1, N, N + 1}, and znx = 0. Then

As1x1 + Aspxo + Ao jx; + A2 jr1%41 + Ao N41TN11
= (4)(b1 —2) + (=2)(2m1 +3b1 = 8) + (2(j + 7 — 2))x; + (2(j + 7 — 1))zj11 + (2)(2)
=38

= 2@2.

37

Let 3 <i<r—1. Inrow 4, we have A;, =0 when k & {i — 2,9 —1,4,7,7+ 1,N,N + 1}, and zy = 0.

Then

Aii—oxico + Aiic1min + Aiixs + Aijxy + Aijr1%41 + Al NF1TN+1
1 1
— (2= 3)(i =Dl Dm+ 56— 2)(i = b — 2 ~2?)
1 1
+ (@50 = 2)( = Dima + 5 (i = (@b — 2(i = 1)?)

+ (—2)(%(1' —1)i(i +1)mq + %(i)(i +1)by — 24°)
+QRG+r—20—-1)z; + 20 +r+1-2(i— 1))z +(2)(2)
=8

=2ai.
In row r, we have A,y =0 when k & {r —2,r — 1,7, 4,7+ 1,N,N 4+ 1}, and zx = 0. Then

Ar,r—2xr—2 + Ar,r—lxr—l + Ar,rxr + AT,j:I;j + AT,j-l—lxj-l-l + AT,N—i—lxN—i-l

= (—2)(%@ —3)(r —2)(r — 1)my + %(r —2)(r —1)by — 2(r — 2)?)

)G
F D0 =G =+ (G == Day + (= + 2)as))
(20— +2)ay + G -7+ D + )2)

=8

= 2a,.

(r—=2)(r—1rmy + %(7‘ —1)(r)by — 2(r — 1)%)
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Inrow r+ 1, we have A, 41, =0when k & {r —1,7,r+1,5,7+1,N,N + 1}, and 2y = 0. Then

Ariir—1Tr—1 + Ari10r + Apit i 1@rg1 + Arg1 525 + Arp1 j4125401 + Arpt NF1ZN41
1
= (-2 )(g(?“ 2)(r = Lrmy + 5 (r = 1)(r)by — 2(r — 1)%)
1 . .
+(3 )6(3 =) —r+ ) —r =Dz + (G —r+2)z541))

+ (= 1)( =+ -+)+(G - +1) =Dz + G — (r+ 1)+ 2)z)11))
+ (20 - 7“)) zj+ 20 —r+ 1))z + (2)(2)
=6
= 20r41-
In row r + 2, we have A, 40, =0 when k & {r,r+ 1,7+ 2,5,5+ 1, N,N + 1}, and zy = 0. Then

Argorxr + Ariori1Zryp1 + Argorio®rgo + Argo o + Argo jr125401 + Argo N4ITN+1

= (95~ —r+ DG~ 7 = D+ (G =+ 2)z530))

+@GEU-+D))U -+ +D)(G - +1) =Dz + (G = (r+ 1) +2)z541))

1
3
+ (—1)(%(1' —(r+2)0 - +2)+ (G — (r+2) =D+ (G — (r+2) +2)x)41))
40— D)y + (G~ s + ))
—14
= 2G/T+2.
Let r+3 <i<j—1. Inrow i, we have A; , =0 when k ¢ {i —2,i—1,4,5,7+1,N,N + 1}, and zny = 0.
Then
Aji—omi—o + Ajiamicn + Aisxs + Aijay + Aijriier + A NH1TN41
= (GG~ (-2)6~ (=2 + DG~ (= 2) = Dy + (G~ (1~ 2) + 2)a500))
+@)GU-GE-1)NE-6E-D+1)(( -G —1) =Dz + (G — (i — 1) +2)241))

FEDGH -G i+ DG~ i = Day + (= i+ )
FQU T D)y 20— i+ )+ ()(2)
=4
= 2a,.
In row j, we have A;, =0 when k & {j — 2,7 —1,4,7+1,N,N + 1}, and zx = 0. Then
Aji—oxjo+ Ajjami—1 + Ajjx; + Aj iz + Aj Nr1TN+1
= (=1)Q2(; +4zj11)) + (2)(2741) + (2)7; + (D251 + (2)(2)
=4
= 2a;.
In row j+ 1, we have Aj41, =0 when k ¢ {j — 1,7+ 1,N,N + 1}, and zx = 0. Then
Ajp1,j-1%j—1 + Ajp1 jr1Tjp1 + Ajpl NH1TN41
= (=1)(2zj4+1) + (2)(zj+1) + (2)(2)
=4
=2aj41.

Let j+2 <i < N+1. Wehave A; , = 0when k ¢ {i—2,i—1,4,N,N+1}. Butz;_a =21 =x; =2xn =0,
so this row of the KKT matrix equation encodes the equation 4; yj12n41 =2 -2 = 2a;.
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Thus, = is a solution to the KKT matrix equation for the Simplified Problem for this face.

Next, we establish (i4). We have I = {j,j + 1}, so we need to analyze z; = f(r,j)/h and xj41 =
—f(r,5 —1)/h. First, we argue that the denominator is positive. For this, fix » > 0, and consider h(r,j) as
a polynomial in j. We have Z—? > 0 and h(r,r) > 0, so h(r,j) > 0 for all j > r.

Now consider the numerators. The hypothesis that j = [«(r)] is equivalent to the statement that j is the
smallest integer value of x for which f(r,z) is positive. Equivalently, j is the unique positive integer such
that f(r,j —1) < 0and f(r,j) > 0. It follows that z; > 0 and =11 > 0.

Next, we establish (i7i). For r < k < j — 1, the expressions used to define x; are nonnegative linear
combinations of x; and x;41, so x; > 0 when £ is in this range.

To establish the result when k <r — 1, we define an auxiliary sequence (Z) as follows.

Define

_ Tk
LT = m
2
for k <r—1.
Combining these definitions with the formulas in (B12)) yields
_ Dy +by - 2k if1<k<r—1
Tk = 2(r—1) 4r e
Trnl—i—l)l—TJr1 ifk=r
As k increases, the fractions 2(1@3— D and k4—f1 increase. But these terms appear in the formula for T with
negative coefficients (recall that m; < 0). So the sequence Tj decreases as k increases. The denominators
used to define Ty from xj are positive. Since x,. is positive, T, is positive, so T1,...,T,_1 are positive, and
hence x1,...,x,_1 are positive.
]
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