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Abstract. We present an algorithm for computing equations of canonically embedded Riemann surfaces

with automorphisms. A variant of this algorithm with many heuristic improvements is used to produce

equations of Riemann surfaces X with large automorphism groups (that is, |Aut(X)| > 4(gX −1)) for genus
4 ≤ gX ≤ 7. The main tools are the Eichler trace formula for the character of the action of Aut(X) on

holomorphic differentials, algorithms for producing matrix generators of a representation of a finite group

with a specified irreducible character, and Gröbner basis techniques for computing flattening stratifications.

Riemann surfaces (or algebraic curves) with automorphisms have been important objects of study in
complex analysis, algebraic geometry, number theory, and theoretical physics for over a century, as their
symmetries often permit us to do calculations that would otherwise be intractable.

Such Riemann surfaces are special in the sense that a general Riemann surface of genus g ≥ 3 has no
nontrivial automorphisms. Moreover, the group of automorphisms of a Riemann surface of genus g ≥ 2 is
finite.

Breuer and Conder performed computer searches that for each genus g list the Riemann surfaces of genus
g with large automorphism groups (that is, |Aut(X)| > 4(gX − 1)). Specifically, they list sets of surface
kernel generators (see Definition 1.2 below), which describe these Riemann surfaces as branched covers of
P1. Breuer’s list extends to genus g = 48, and Conder’s list extends to genus g = 101 [3, 6]. Even for small
values of g, these lists are extremely large, as a surface X may appear several times for various subgroups
of its full automorphism group. In [19], Magaard, Shaska, Shpectorov, and Völklein refined Breuer’s list
by determining which surface kernel generators correspond to the full automorphism group of the Riemann
surface.

To my knowledge, at this time there is no general algorithm published in the literature for producing
equations of these Riemann surfaces under any embedding from this data. Here, I present an algorithm to
compute canonical equations of nonhyperelliptic Riemann surfaces with automorphisms. The main tools are
the Eichler trace formula for the character of the action of Aut(X) on holomorphic differentials, algorithms
for producing matrix generators of a representation of a finite group with a specified irreducible character,
and Gröbner basis techniques for computing flattening stratifications. A variant of this algorithm with many
heuristic improvements is used to produce equations of the nonhyperelliptic Riemann surfaces with genus
4 ≤ gX ≤ 7 satisfying |Aut(X)| > 4(gX − 1).

Here is an outline of the paper. In Section 1, I describe the main algorithm. In Section 2, I describe
several heuristics that simplify or speed up the main algorithm. In Section 3, I describe one example in detail,
a genus 7 Riemann surface with 64 automorphisms. In Section 4, I give equations of selected canonically
embedded Riemann surfaces with 4 ≤ gX ≤ 7 along with matrix surface kernel generators.
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Online material. My webpage for this project is [28]. This page contains links to the latest version of my
Magma code, files detailing the calculations for specific examples, and many equations that are omitted in
the tables in Section 4.

In future work, Jennifer Paulhus and I plan to include much of the data described in this paper and on
the website [28] in the L-Functions and Modular Forms Database at lmfdb.org.

1. The main algorithm

We begin by stating the main algorithm. Then, in the following subsections, we discuss each step in more
detail, including precise definitions and references for terms and facts that are not commonly known.

Algorithm 1.1.
Inputs:

(1) A finite group G;
(2) an integer g ≥ 2;
(3) a set of surface kernel generators (a1, . . . , ag0 ; b1, . . . , bg0 ; g1, . . . , gr) determining a family of nonhy-

perelliptic Riemann surfaces X of genus g with G ⊂ Aut(X)

Output: A locally closed set B ⊂ An and a family of smooth curves X ⊂ Pg−1×B such that for each closed
point b ∈ B, the fiber Xb is a smooth genus g canonically embedded curve with G ⊂ Aut(Xb).

Step 1. Compute the conjugacy classes and character table of G.
Step 2. Use the Eichler trace formula to compute the character of the action on differentials and on cubics

in the canonical ideal.
Step 3. Obtain matrix generators for the action on holomorphic differentials.
Step 4. Use the projection formula to obtain candidate cubics.
Step 5. Compute a flattening stratification and select the locus yielding smooth algebraic curves with degree

2g − 2 and genus g.

1.1. Step 1: conjugacy classes and character table of G. This step is purely for bookkeeping. It is
customary to list the conjugacy classes of G in increasing order, and to list the rows in a character table
by increasing degree. However, there is no canonical order to either the conjugacy classes or the irreducible
characters. Given two different descriptions of a finite group G, modern software such as Magma may order
the classes or the irreducible characters of G differently. Hence, we compute and fix these at the beginning
of the calculation.

1.2. Step 2: Counting fixed points and the Eichler trace formula. Here we define surface kernel
generators for the automorphism group of a Riemann surface. These generators determine the Riemann
surface as a branched cover of P1 and are used in a key formula (see Theorem 1.3 below) for counting the
number of fixed points of an automorphism.

Definition 1.2 (cf. [3] Theorem 3.2, Theorem 3.14). A signature is a list of integers (g0; e1, . . . , er) with
g0 ≥ 0, r ≥ 0, and ei ≥ 2.

A set of surface kernel generators for a finite group G and signature (g0; e1, . . . , er) is a sequence of
elements a1, . . . , ag0 , b1, . . . , bg0 , g1, . . . , gr ∈ G such that

(1) 〈a1, . . . , ag0 , b1, . . . , bg0 , g1, . . . , gr〉 = G;
(2) Order(gi) = ei; and
(3)

∏g0
j=1[aj , bj ]

∏r
i=1 gi = IdG.

Surface kernel generators have many other names in other papers; they are called ramification types in
[19] and generating vectors in [23].

As explained in [3, Section 3.11], surface kernel generators describe the quotient morphism X → X/G as
a branched cover. Here X is a Riemann surface of genus g, G is a subgroup of Aut(X), the quotient X/G
has genus g0, the quotient morphism branches over r points, and the integers ei describe the ramification
over the branch points.
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In the sequel we will be primarily interested in large automorphism groups, that is, |Aut(X)| > 4(gX−1).
In this case, the Riemann-Hurwitz formula implies that g0 = 0 and 3 ≤ r ≤ 4.

Surface kernel generators are used in the following formula for the number of fixed points of an automor-
phism:

Theorem 1.3 ([3, Lemma 11.5]). Let σ be an automorphism of order h > 1 of a Riemann surface X of
genus g ≥ 2. Let (g1, . . . , gr) be part of a set of surface kernel generators for X, and let (m1, . . . ,mr) be the
orders of these elements. Let FixX,u(σ) be the set of fixed points of X where σ acts on a neighborhood of the
fixed point by z 7→ exp(2πiu/h)z. Then

|FixX,u(σ)| = |CG(σ)|
∑
gi s.t.
h|mi

σ∼gmiu/h

i

1

mi

Here CG(σ) is the centralizer of σ in G, and ∼ denotes conjugacy.

Next we recall the Eichler Trace Formula. For a Riemann surface X, let ΩX be the holomorphic cotangent
bundle, and let ωX =

∧
ΩX be the sheaf of holomorphic differentials. The Eichler Trace Formula gives the

character of the action of Aut(X) on Γ(ω⊗dX ).

Theorem 1.4 (Eichler Trace Formula [10, Theorem V.2.9]). Suppose gX ≥ 2, and let σ be a nontrivial

automorphism of X of order h. Write χd for the character of the representation of Aut(X) on Γ(ω⊗dX ).
Then

χd(σ) =



1 +
∑

1≤u<h
(u,h)=1

|FixX,u(σ)| ζuh
1− ζuh

if d = 1

∑
1≤u<h
(u,h)=1

|FixX,u(σ)|
ζ
u(d%h)
h

1− ζuh
if d ≥ 2

Together, the previous two results give a group-theoretic method for computing the character of the
Aut(X) action on Γ(ω⊗dX ) starting from a set of surface kernel generators.

We can use the character of Aut(X) on Γ(ω⊗dX ) to obtain the character of Aut(X) on quadric and cubics
in the canonical ideal as follows. Let S be the coordinate ring of Pg−1, let I ⊂ S be the canonical ideal, and
let Sd and Id denote the degree d subspaces of S and I.

By Noether’s Theorem, the sequence

0→ Id → Sd → Γ(ω⊗dX )→ 0

is exact for each d ≥ 2, and by Petri’s Theorem, the canonical ideal is generated either by quadrics or by
quadrics and cubics. Thus, beginning with the character of the action on Γ(ωX) ∼= S1, we may compute the
characters of the actions on S2 = Sym2 S1 and S3 = Sym3 S1 and Γ(ω⊗2X ) and Γ(ω⊗3X ), and then obtain the
characters of the actions on I2 and I3.

1.3. Step 3: matrix generators for a specified irreducible character. From Step 2 we have the
character of the action on Γ(ωX). We seek matrix generators for this action. It suffices to find matrix
generators for each irreducible G-module appearing in Γ(ωX).

Given a finite group G and an irreducible character χ of G, software such as GAP [12] and Magma contain
commands for producing matrix generators of a representation V of G with character χ. Finding efficient
algorithms to produce matrix generators with good properties (for instance, sparse matrices, or matrices
whose entries have small height, or matrices whose entries belong to a low degree extension of Q) is a subject
of ongoing research [7, 8]. It seems that computer algebra systems implement several different algorithms
that cover many special cases.

I do not know a reference for a general algorithm. Hence, I briefly present an algorithm that was suggested
to me by Valery Alexeev and James McKernan. This algorithm is not expected to perform efficiently; it is
included merely to establish that Step 3 in Algorithm 1.1 can be performed algorithmically.

Algorithm 1.5.
Inputs:
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(1) a finite group G with generators g1, . . . , gr;
(2) an irreducible character χ : G→ C of degree n.

Output: matrices M1, . . . ,Mr ∈ GL(n,C) such that the homomorphism gi 7→ Mi is a representation with
character χ

Step 1. Compute matrix generators for the regular representation V of G. These matrices are permutation
matrices, and hence their entries are in {0, 1}.

Step 2. Use the projection formula (see Theorem 1.6 below) to compute matrix generators ρW (g) for a rep-
resentation W with character nχ. Let K be the smallest field containing {χ(g) : g ∈ G}. Note that
Q ⊆ K ⊆ Q[ζ|G|]. Then the matrix generators ρW (g) lie in GL(n2,K).

Step 3. Let x1, . . . , xn2 be indeterminates. Let M be the |G| × n2 matrix over K whose rows are given by

the vectors ρW (g).(x1, . . . , xn2). Let X ⊂ Pn
2−1
K be the determinantal variety rankM ≤ n. Since

representations of finite groups are completely reducible in characteristic zero, the representation W
is isomorphic over K to the direct sum V ⊕nχ , and therefore X(K) is non-empty.

Step 4. Intersect X with generic hyperplanes with coefficients in K to obtain a zero-dimensional variety Y .
Step 5. If necessary, pass to a finite field extension L of K to obtain a reduced closed point y ∈ Y (L).
Step 6. The point y (regarded as a vector in W ⊗ L) generates the desired representation.

An example where this algorithm is used to produce matrix generators for the degree two irreducible
representation of the symmetric group S3 is available at my webpage [28].

Finally, we note that in [27], Streit describes a method for producing matrix generators for the action of

Aut(X) on Γ(ωX) for some Bely̆i curves.

1.4. Step 4: the projection formula. Recall the projection formula for representations of finite groups.
(See for instance [11] formula (2.31)).

Theorem 1.6 (Projection formula). Let V be a finite-dimensional representation of a finite group G over

C. Let V1, . . . , Vk be the irreducible representations of G, let χi be their characters, and let V ∼=
⊕k

i=1 V
⊕mi
i .

Let π : V → V ⊕mi
i be the projection onto the ith isotypical component of V . Then

πi =
dim(Vi)

|G|
∑
g∈G

χi(g)g.

From Step 3, we have matrix generators for the G action on Γ(ωX) = S1. Thus, we can compute matrix
generators for the actions on S2 and S3, and use the projection formula to compute the isotypical subspace
Sd,p of degree d polynomials on which G acts with character χp. In some a few examples, we have Id,p = Sd,p,
but more commonly, we have strict containment Id,p ⊂ Sd,p. In this case we write elements of Id,p as generic
linear combinations of the basis elements of Sd,p and then seek coefficients that yield a smooth algebraic
curve with the correct degree and genus.

The coefficients used to form these generic linear combinations form the base space An of the family X
produced by the main algorithm.

1.5. Step 5: Flattening stratifications.

Theorem 1.7 ([21, Lecture 8]). Let f : X → S be a projective morphism with S a reduced Noetherian
scheme. Then there exist locally closed subsets S1, . . . , Sn such that S = tni=1Si and f |f−1(Si) is flat.

The stratification S = tni=1Si is called a flattening stratification for the map f . Since S is reduced, flatness
implies that over each stratum, the Hilbert polynomial of the fibers is constant. We find the stratum with
Hilbert polynomial P (t) = (2g − 2)t− g + 1, then intersect this stratum with the locus where the fibers are
smooth. This completes the algorithm.

Flattening stratifications have been an important tool in theoretical algebraic geometry for over 50 years.
There exist Gröbner basis techniques for computing flattening stratifications; in the computational literature,
these are typically called comprehensive or parametric Gröbner bases, or Gröbner systems. The foundational
work on this problem was begun by Weispfenning, and many authors, including Manubens and Montes,
Suzuki and Sato, Nabeshima, and Kapur, Sun, and Wang, have made important improvements on the
original algorithm [14,22,29].
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The size of a Gröbner basis can grow very quickly with the number of variables and generators of an ideal,
and unfortunately, even the most recent software cannot compute flattening stratifications for the examples
we consider. Thus, in section 2.2 below, we discuss a strategy for circumventing this obstacle.

2. Heuristic improvements

Many steps of Algorithm 1.1 can be run using a computer algebra system, but even for modest examples,
the flattening stratification required in the final step is intractable. Therefore we discuss various heuristics
that can be employed to speed the computation.

2.1. Tests for gonality and reduction to quadrics. Given a set of surface kernel generators, it is useful
to discover as early as possible whether the corresponding Riemann surface is hyperelliptic, trigonal, a plane
quintic, or none of these. We discuss these properties in turn.

Hyperelliptic Riemann surfaces. Algorithm 1.1 supposes that one begins with surface kernel generators
corresponding to a nonhyperelliptic curve. However, we can easily test for hyperellipticity if this property
is not known in advance. A Riemann surface X is hyperelliptic if and only if Aut(X) contains a central
involution with 2gX + 2 fixed points. Thus, given a set of surface kernel generators, we can search for a
central involution and count its fixed points using Theorem 1.3 (or even better, using [3, Lemma 10.4]).

In [25], Shaska gives equations of the form y2 = f(x) for hyperelliptic curves with automorphisms.
Additionally, we can use the algorithm described in [26] to get the equations of C under a linear series such
as the transcanonical embedding or bicanonical embedding.

So suppose the Riemann surface is not hyperelliptic. By Petri’s Theorem, the canonical ideal is generated
by quadrics if X is not hyperelliptic, not trigonal, and not a plane quintic. Thus, ruling out these possibilities
allows us to work with quadrics instead of cubics, which significantly speeds up the algorithm. This leads us
to consider trigonal Riemann surfaces and plane quintics.

Trigonal Riemann surfaces. Trigonal Riemann surfaces may be divided into two types: cyclic trigonal and
general trigonal [5]. Cyclic trigonal curves can be detected by searching for degree three elements fixing g+2
points. Their automorphism groups have been classified [4, Theorem 2.1], and one may hope for a paper
treating equations of cyclic trigonal Riemann surfaces as the paper [25] treats equations of hyperelliptic
Riemann surfaces.

Less is known about general trigonal curves. We have Arakawa’s bounds [2, Remark 5] and a few additional
necessary conditions [5, Prop. 4 and Lemma 5]. We will not say more about general trigonal Riemann surfaces
here because after studying the Riemann surfaces with large automorphism groups with genus 4 ≤ g ≤ 7,
we learn a posteriori that very few of them are general trigonal.

Plane quintics. Plane quintics only occur in genus 6, and the canonical model of a plane quintic lies on the
Veronese surface in P5. Thus, we have a necessary condition: X is a plane quintic only if Γ(ωX) ∼= Sym2 V
for some (possibly reducible) three-dimensional representation V of G. In practice, it is generally quite fast
to discover whether a nonhyperelliptic non-cyclic trigonal genus 6 Riemann surface is a plane quintic.

2.2. Partial flattening stratifications. In this section we use several notions from the theory of Gröbner
bases. We will not recall all the definitions here, and instead refer to [9, Chapter 15] for the details.

The algorithms for comprehensive Gröbner bases described in Section 1.5 all begin with the same obser-
vation. Let S = K[x0, . . . , xm] be a polynomial ring over a field. Let � be a multiplicative term order on S.
Then a theorem of Macaulay states that the Hilbert function of I is the same as the Hilbert function of its
initial ideal with respect to this term order (see [9, Theorem 15.26]).

Therefore, whenever two ideals in S have Gröbner bases with the same leading monomials with respect
to some term order, they will have the same initial ideal for that term order, hence they must have the
same Hilbert function and Hilbert polynomial, and therefore they will lie in the same stratum of a flattening
stratification. To reach a different stratum of the flattening stratification, it is necessary to alter the leading
terms of the Gröbner basis — for instance, by restricting to the locus where that coefficient vanishes.

Here is a brief example to illustrate this idea. Let A2 have coordinates c1, c2, and let P3 have coordinates
x0,x1,x2,x3. The ideal

I = 〈c1x0x2 − c2x21, c1x0x3 − c2x1x2, c1x1x3 − c2x22〉
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defines a 2-parameter family of subschemes of P3. A Gröbner basis for I in C[c1, c2][x0, x1, x2, x3] with
respect to the lexicographic term order is

c1x0x2 − c2x21, c1x0x3 − c2x1x2, c1x1x3 − c2x22,
(c1c2 − c22)x1x

2
2, c2x

2
1x3 − c2x1x22, (c1c2 − c22)x21x2, c2x0x

2
2 − c2x21x2,

(c1c
2
2 − c32)x41, (c1c

2
2 − c32)x42, c

2
2x1x

2
2x3 − c22x42, c22x0x21x2 − c22x41.

Over the locus where c1, c2, and c1 − c2 are invertible, the initial ideal is
〈x0x2, x0x3, x1x3, x1x22, x21x2, x41, x42〉 with Hilbert polynomial P (t) = 8. On the other hand, when c1 = 0,
or c2 = 0, or c1 − c2 = 0, we get a different initial ideal and Hilbert polynomial. For example, the locus
c1 = c2 6= 0 yields the twisted cubic with P (t) = 3t+ 1.

Note that to discover this locus, it is not necessary to compute the entire Gröbner basis; it would suffice
for instance to compute the S-pair reduction for the first two generators, which yields (c1c2 − c22)x1x

2
2.

Modern software packages by Nabeshima, Montes, and Kapur, Sun, and Wang can completely analyze this
example. However, these packages did not yield answers on the problems that arose in this work. Therefore,
I used the strategy outlined above. I partially computed a Gröbner basis in Macaulay2 [17], and set some
coefficients to zero. Remarkably, this was sufficient to obtain the equations of the genus 4 ≤ g ≤ 7 Riemann
surfaces with large automorphism groups. Some of the families analyzed in this manner had as many as six
coefficients c1, . . . , c6.

3. Example: a genus 7 Riemann surface with 64 automorphisms

Magaard, Shaska, Shpectorov, and Völklein’s tables show that there exists a smooth, compact genus 7
Riemann surface with automorphism group G given by the group labeled (64, 41) in the GAP library of
small finite groups. It has X/G ∼= P1. The quotient morphism is branched over 3 points of P1, and the
ramification indices over these points are 2, 4, and 16.

A naive search for a set of surface kernel generators in this group yields elements g1 and g2 with orders 2
and 4 such that (g1g2)−1 has order 16. There are four relations among these generators:

g21 , g
4
2 , (g−12 g1)2g22g1g2g1g

−1
2 , (g2g1)2g−12 (g1g2)2g1g

−1
2 (g1g2)2g1

Step 1. We use Magma to compute the conjugacy classes and character table of G. There are 16 conjugacy
classes. For convenience, write g3 = g−11 g−12 g1g2. Then a list of representatives of the conjugacy classes is

Id, g43 , g
2
2 , g1, g

2
3 , g

2
2g

2
3 , g

3
2 , g2,

g1g
2
2 , g3g

2
2g

4
3 , g3g

2
2 , g3, g2g1, g2g1g

2
2g

2
3 , g2g1g

2
3 , g2g1g

2
2

Next we compute the character table. The irreducible characters are given below by their values on the
sixteen conjugacy classes.

χ1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

χ2 = (1, 1, 1,−1, 1, 1,−1,−1,−1, 1, 1, 1, 1, 1, 1, 1)

χ3 = (1, 1, 1, 1, 1, 1,−1,−1, 1, 1, 1, 1,−1,−1,−1,−1)

χ4 = (1, 1, 1,−1, 1, 1, 1, 1,−1, 1, 1, 1,−1,−1,−1,−1)

χ5 = (1, 1,−1, 1, 1,−1,−i, i,−1,−1,−1, 1, i,−i, i,−i)
χ6 = (1, 1,−1, 1, 1,−1, i,−i,−1,−1,−1, 1,−i, i,−i, i)
χ7 = (1, 1,−1,−1, 1,−1, i,−i, 1,−1,−1, 1, i,−i, i,−i)
χ8 = (1, 1,−1,−1, 1,−1,−i, i, 1,−1,−1, 1,−i, i,−i, i)
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χ9 = (2, 2,−2, 0, 2,−2, 0, 0, 0, 2, 2,−2, 0, 0, 0, 0)

χ10 = (2, 2, 2, 0, 2, 2, 0, 0, 0,−2,−2,−2, 0, 0, 0, 0)

χ11 = (2, 2, 2, 0,−2,−2, 0, 0, 0, 0, 0, 0,−
√

2,
√

2,
√

2,−
√

2)

χ12 = (2, 2,−2, 0,−2, 2, 0, 0, 0, 0, 0, 0,
√

2i,
√

2i,−
√

2i,−
√

2i)

χ13 = (2, 2, 2, 0,−2,−2, 0, 0, 0, 0, 0, 0,
√

2,−
√

2,−
√

2,
√

2)

χ14 = (2, 2,−2, 0,−2, 2, 0, 0, 0, 0, 0, 0,−
√

2i,−
√

2i,
√

2i,
√

2i)

χ15 = (4,−4, 0, 0, 0, 0, 0, 0, 0,−
√

8i,
√

8i, 0, 0, 0, 0, 0)

χ16 = (4,−4, 0, 0, 0, 0, 0, 0, 0,
√

8i,−
√

8i, 0, 0, 0, 0, 0)

Step 2. Let Vi be the irreducible G-module with character χi given by the table above. For any G-module
V , let V ∼=

⊕r
i=1 V

⊕mi
i be its decomposition into irreducible G-modules.

We use the Eichler trace formula in Magma to compute these multiplicities mi for several relevant G-
modules. Let S = C[x0, x1, x2, x3, x4, x5, x6], and let Sd denote polynomials of degree d. Let Id be the kernel
defined by

0→ Id → Sd → Γ(ω⊗dX )→ 0.

Then we have

S1
∼= Γ(ωX) ∼= V8 ⊕ V14 ⊕ V15

I2 ∼= V3 ⊕ V5 ⊕ V10 ⊕ V11 ⊕ V16
S2
∼= V ⊕23 ⊕ V5 ⊕ V6 ⊕ V ⊕210 ⊕ V

⊕2
11 ⊕ V13 ⊕ V14 ⊕ V15 ⊕ V

⊕2
16

Γ(ω⊗2X ) ∼= V3 ⊕ V6 ⊕ V10 ⊕ V11 ⊕ V13 ⊕ V14 ⊕ V15 ⊕ V16

We use GAP to obtain matrix representatives of a G action with character equal to the character of the G
action on S1. Such a representation is obtained by mapping the generators g1 and g2 to the matrices below.

−1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0


,



ζ28 0 0 0 0 0 0
0 0 −ζ8 0 0 0 0
0 −ζ38 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 −ζ8 0
0 0 0 0 −ζ38 0 0
0 0 0 1 0 0 0


The decomposition of S1 as a sum of three irreducible G-modules gives rise to the block diagonal form of
these matrices.

Step 4. We use the projection formula in Magma to decompose the G-module of quadrics S2 into its
isotypical components. When an isotypical component has multiplicity greater than 1, we (noncanonically)
choose ordered bases so that the G action is given by the same matrices on each ordered basis.

S2,3
∼= V ⊕23 = 〈x20〉 ⊕ 〈x1x2〉

S2,5
∼= V5 = 〈x3x4 − ζ8x5x6〉

S2,10
∼= V ⊕210 = 〈x21, x22〉 ⊕ 〈x3x6 + ix4x5, ix3x6 + x4x5〉

S2,11
∼= V ⊕211 = 〈x0x1, x0x2〉 ⊕ 〈x23 + ζ38x

2
5,−x24 − ζ38x26〉

S2,16
∼= V ⊕216 = 〈x0x3, x0x4, x0x5, x0x6〉 ⊕ 〈−ζ8x2x6, ζ8x1x5,−x2x4, x1x3〉

The first isotypical subspace yields a polynomial of the form c1x
2
0 + c2x1x2. We may assume that c1 and

c2 are nonzero, scale x0 to make c1 = c2, and then divide by c1 to obtain the polynomial x20 + x1x2.
The second isotypical subspace yields the polynomial x3x4 − ζ8x5x6.
The third isotypical subspace yields polynomials of the form c3x0x1+c4(x23+ζ38x

2
5) and c3x0x2+c4(−x24−

ζ38x
2
6). We assume that c3 and c4 are nonzero, scale x1, x2 to make c3 = c4, then divide by c3 and c4.

In the remaining isotypical subspaces no further scaling is possible, and hence we are left with two
undetermined coefficients c6 and c8.
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Thus, a Riemann surface in this family has an ideal of the form

x20 + x1x2
x3x4 − ζ8x5x6
x21 + x3x6 + ix4x5
x22 + ix3x6 + x4x5
x0x1 + c6(x23 + ζ38x

2
5)

x0x2 + c6(−x24 − ζ38x26)
x0x3 + c8(−ζ8x2x6)
x0x4 + c8(ζ8x1x5)
x0x5 + c8(−x2x4)
x0x6 + c8(x1x3)

Step 5. To find values of the coefficients c6, c6 that yield a smooth curve, we partially compute a flattening
stratification. Begin Buchberger’s algorithm. We compute the S-pair reductions between the generators and
find that

S(f1, f6)→ (c6c8 + ζ−18 )x1x4x5 + · · ·
S(f1, f9)→ (c28 − ζ−18 )x1x2x5 + · · ·

Therefore, in Buchberger’s algorithm, these polynomials will be added to the Gröbner basis. This suggests
that we study the locus given by the equations c28 − ζ−18 = 0 and c6c8 + ζ−18 = 0 as an interesting stratum
in the flattening stratification.

We check in Magma that the values c6 = ζ716 and c8 = ζ−116 yield a smooth genus 7 curve in P6 with the
desired automorphism group.

From these equations, we can compute the Betti table of this ideal:

1
10 16 3

3 16 10
1

Schreyer has classified Betti tables of genus 7 canonical curves in [24]. This Betti table implies that the
curve is tetragonal (there exists a degree 4 morphism C → P1) but not trigonal or hyperelliptic, and it has
no degree 6 morphism C → P2.

4. Results

This project had two goals. The first goal was to establish that the heuristics described in Section 2 allow
us to run a variant of the main algorithm to completion for genus 4 ≤ g ≤ 7 Riemann surfaces with large
automorphism groups. To this end, for each Riemann surface from Table 4 of [19], the website [28] contains
a link to a calculation where a variant of the main algorithm is used to produce equations.

The surface kernel generators needed to begin the algorithm were generally obtained by a naive search
through the triples or quadruples in the groups listed in Table 4 of [19]. However, my Magma code also
includes functions allowing the user to input surface kernel generators from any type of group, or to put in
matrix surface kernel generators with the desired representation on Γ(ωX). We note that Breuer’s data has
been recently extended and republished by Paulhus [23], and Conder’s data is available online [6], so these
sources could be used instead.

The equations obtained depend strongly on the matrix generators of the representation Aut(X) on Γ(ωX).
I generally obtained these matrices from Magma, GAP, the papers [15, 16], or [3, Appendix B], and thus had
little control over this step. Indeed, in a few cases, the resulting equations are almost comically bad; for an
example of this, compare my equations at [28] for the genus 7 curve with 504 automorphisms to Macbeath’s
equations for this curve. Given this, it is perhaps surprising that in most cases, the algorithm produces
reasonable equations (i.e., polynomials supported on a small number of monomials with small coefficients).

The second goal of this project was to create a reference that would contain the most useful information
about the equations and automorphisms of these curves. Thus, in this section, I print the best equations
and automorphisms that I know, whether these were found in the literature or by the main algorithm. Many
of the equations for genus 4 ≤ g ≤ 6 are classical, and references are given whenever possible. However, the
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matrix surface kernel generators are not always equally easy to find. The equations for the genus 7 curves
are almost all new, as are most of the 1-parameter families on the website [28].

4.1. Description of the tables. In the following tables I give equations for the Riemann surfaces of genus
4 ≤ g ≤ 7 with large automorphism groups that are unique in moduli (δ = 0 in the notation of Table 4 of
[19]). The 1-parameter families (δ = 1) are not printed here but can be found on the website [28]. I order
the examples the same way they appear in [19].

For hyperelliptic Riemann surfaces, I give an equation of the form y2 = f(x). Many of these are classically
known, and all of them can be found in [25].

For plane quintics in genus 6, we give the plane quintic and surface kernel generators in GL(3,C). The
canonical ideal and G action can be easily computed from this data.

For nonhyperelliptic curves that are not plane quintics, we print equations of the canonical ideals and
surface kernel generators as elements of GL(g,C). Whenever such a matrix M ∈ GL(g,C) is sufficiently
sparse, I frequently write the product M [x0, . . . , xg−1]t to save space.

For the cyclic trigonal equations, I also print a cyclic trigonal equation, that is, one of the form y3 =∏d1
i=1(x − αi)

∏d2
i=1(x − βi), following the notation of [1, Section 2.5] (where cyclic trigonal curves are also

called trielliptic).
Throughout the tables below, canonical ideals are shown in the polynomial ring C[x0, . . . , xg−1]. The

symbol ζn denotes e2πi/n, and we write i for ζ4.

4.2. Genus 4. In genus 4, every Riemann surface is either hyperelliptic or trigonal. Of the nine entries in
Table 4 of [19], four are hyperelliptic, four are cyclic trigonal, and one is general trigonal.

Note: the Riemann surface with automorphism group (120, 34) = S5 is known as Bring’s curve. Its

best-known embedding is in P5, with equations
∑4
i=0 xi,

∑4
i=0 x

2
i ,
∑4
i=0 x

3
i .

Genus 4, Locus 1: Group (120,34) = S5, signature (2,4,5), general trigonal
Ideal: x20 + x0x1 + x21 − x1x2 + x22 − x2x3 + x23,

x20x1 + x0x
2
1 + x21x2 − x1x22 + x22x3 − x2x23

Maps: (x0, x1, x2, x3) 7→ (−x0,−x1,−x2,−x2 + x3),
(x0, x1, x2, x3) 7→ (x0 + x1,−x0 − x2,−x0 − x3,−x3)

Genus 4, Locus 2: Group (72,42), signature (2,3,12), cyclic trigonal
Trigonal equation: y3 = x(x4 − 1)

Ideal: x1x3 − x22,
x30 − x21x2 + x2x

2
3

Maps:


−1 0 0 0

0 0 0 −i
0 0 −1 0
0 i 0 0

,


−ζ6 0 0 0

0 − 1
2ζ12

1
2ζ3

1
2ζ12

0 ζ12 0 ζ12
0 − 1

2ζ12 − 1
2ζ3

1
2ζ12

,

Genus 4, Locus 3: Group (72,40), signature (2,6,12), cyclic trigonal
Trigonal equation: y3 = (x3 − 1)2(x3 + 1)

Ideal: x0x3 − x1x2,
x31 − x30 − x33 − x32

Maps: (x0, x1, x2, x3) 7→ (−x0, x2, x1,−x3)
(x0, x1, x2, x3) 7→ (−x2, ζ26x0, ζ6x3, x1)

Genus 4, Locus 4: Group (40,8), signature (2,4,10), hyperelliptic
y2 = x10 − 1

Genus 4, Locus 5: Group (36,12), signature (2,6,6), cyclic trigonal
Trigonal equation: y3 = (x3 − 1)(x3 + 1)

Ideal: x1x3 − x22,
x30 − x33 + x31

Maps: (x0, x1, x2, x3) 7→ (−x0, ζ3x3,−x2,−ζ6x1)
(x0, x1, x2, x3) 7→ (ζ3x0,−ζ3x3, ζ6x2,−x1)
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Genus 4, Locus 6: Group (32,19), signature (2,4,16), hyperelliptic
y2 = x9 − x

Genus 4, Locus 7: Group (24,3), signature (3,4,6), hyperelliptic

y2 = x(x4 − 1)(x4 + 2i
√

3 + 1)

Genus 4, Locus 8: Group (18,2), signature (2,9,18), hyperelliptic
y2 = x9 − 1

Genus 4, Locus 9: Group (15,1), signature (3,5,15), cyclic trigonal
Trigonal equation: y3 = x5 − 1

Ideal: x1x3 − x22,
x30 − x21x2 + x33

Maps: (x0, x1, x2, x3) 7→ (ζ23x0, ζ3x1, ζ3x2, ζ3x3)
(x0, x1, x2, x3) 7→ (ζ5x0, ζ

3
5x1, ζ

2
5x2, ζ5x3)

4.3. Genus 5. Of the ten entries in Table 4 of [19], five are hyperelliptic, and one is cyclic trigonal. The
remaining four are general, hence their canonical models are complete intersections of three quadrics.
Genus 5, Locus 1: Group (192,181), signature (2,3,8)
Ideal: Wiman, [30]:

x20 + x23 + x24,
x21 + x23 − x24
x22 + x3x4

Maps:


0 0 1

2 (i+ 1) 0 0
0 −1 0 0 0

1− i 0 0 0 0
0 0 0 − 1√

2
− i√

2

0 0 0 i√
2

1√
2

,


0 ζ−18 0 0 0
0 0 − 1√

2
0 0

−1− i 0 0 0 0
0 0 0 1

2 (i− 1) − 1
2 (i+ 1)

0 0 0 − 1
2 (i− 1) − 1

2 (i+ 1)


Genus 5, Locus 2: Group (160,234), signature (2,4,5)
Ideal: Wiman, [30]:

x20 + x21 + x22 + x23 + x24,
x20 + ζ5x

2
1 + ζ25x

2
2 + ζ35x

2
3 + ζ45x

2
4,

ζ45x
2
0 + ζ35x

2
1 + ζ25x

2
2 + ζ5x

2
3 + x24

Maps: (x0, x1, x2, x3, x4) 7→ (−x3, x2, x1,−x0,−x4),
(x0, x1, x2, x3, x4) 7→ (−x0, x4,−x3, x2,−x1)

Genus 5, Locus 3: Group (120,35), signature (2,3,10), hyperelliptic
y2 = x11 + 11x6 − x

Genus 5, Locus 4: Group (96,195), signature (2,4,6)
Ideal: Wiman, [30]:

x20 + x23 + x24,
x21 + ζ3x

2
3 + ζ23x

2
4,

x22 + ζ23x
2
3 + ζ3x

2
4

Maps: (x0, x1, x2, x3, x4) 7→ (−x2,−x1,−x0, ζ23x4, ζ3x3),
(x0, x1, x2, x3, x4) 7→ (−x0, x2,−x1,−x4, x3)
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Genus 5, Locus 5: Group (64,32), signature (2,4,8)
Ideal: Wiman, [30]:

x20 + x21 + x22 + x23 + x24,
x20 + ix21 − x22 − ix23,
x20 − x21 + x22 − x23

Maps: (x0, x1, x2, x3, x4) 7→ (−x0, x1,−x2,−x3,−x4),
(x0, x1, x2, x3, x4) 7→ (ix1,−ix2, ix3,−ix0, ix4)

Genus 5, Locus 6: Group (48,14), signature (2,4,12), hyperelliptic
y2 = x12 − 1

Genus 5, Locus 7: Group (48,30), signature (3,4,4), hyperelliptic
y2 = x12 − 33x8 − 33x4 + 1

Genus 5, Locus 8: Group (40,5), signature (2,4,20), hyperelliptic
y2 = x11 − x

Genus 5, Locus 9: Group (30,2), signature (2,6,15), cyclic trigonal
Trigonal equation: y3 = (x5 − 1)x2

Ideal: x0x3 − x1x2, x0x4 − x1x3, x2x4 − x23,
x20x1 − x3x24 + x32,
x0x

2
1 − x34 + x22x3

Maps: (x0, x1, x2, x3, x4) 7→ (ζ5x1, ζ
4
5x0,−ζ25x4,−x3,−ζ35x2),

(x0, x1, x2, x3, x4) 7→ (ζ1415x1, ζ
11
15x0,−ζ1315x4,−ζ1015x3,−ζ715x2)

Genus 5, Locus 10: Group (22,2), signature (2,11,22), hyperelliptic
y2 = x11 − 1

4.4. Genus 6. Table 4 in [19] contains eleven entries for genus 6 Riemann surfaces with large automorphism
groups and no moduli (δ = 0). Of these, four are hyperelliptic, three are cyclic trigonal, and three are plane
quintics; only one is general.

For the plane quintics, we give the plane quintic equation in the variables y0, y1, y2, and surface kernel
generators acting on the plane. The canonical model of a plane quintic lies on the Veronese surface, and the
multiples of the quintic by y0, y1, y2 may be encoded as cubics in x0, . . . , x5.

Genus 6, Locus 1: Group (150,5), signature (2,3,10), plane quintic
Plane quintic equation: y50 + y51 + y52
Maps: (y0, y1, y2) 7→ (−ζ35y1,−ζ25y0,−y2),

(y0, y1, y2) 7→ (−ζ35y1,−ζ25y0,−y2)

Genus 6, Locus 2: Group (120, 34) = S5, signature (2,4,6)
Ideal: Inoue and Kato,[13]:

−x0x2 + x1x2 − x0x3 + x1x4,
−x0x1 + x1x2 − x0x3 + x2x5,
−x0x1 − x0x2 − 2x0x3 − x3x4 − x3x5,
−x0x1 − x0x2 − x0x3 − x1x4 − x3x4 − x4x5,
−x0x1 − x0x2 − x0x3 − x2x5 − x3x5 − x4x5,

2(
∑6
i=1 x

2
i ) + x0x1 + x0x2 + x1x2 + 2x1x3 + 2x2x3

+ 2x0x4 + 2x2x4 + x3x4 + 2x0x5 + 2x1x5 + x3x5 + x2x5

Maps:


0 0 0 0 −1 0
0 −1 1 0 −1 1
−1 0 0 0 0 1
−1 0 1 −1 0 1
−1 0 0 0 0 0

0 0 1 0 −1 0

,


0 0 1 0 −1 0
−1 0 1 −1 0 1
−1 0 0 0 0 0
−1 0 0 0 0 1

0 0 0 0 −1 0
0 −1 1 0 −1 0


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Genus 6, Locus 3: Group (72,15), signature (2,4,9), cyclic trigonal

Trigonal equation: y3 = (x4 − 2
√

3ix2 + 1)(x4 + 2
√

3ix2 + 1)2

Ideal: x0x2 − x21, x0x4 − x1x3, x0x5 − x1x4,
x1x4 − x2x3, x1x5 − x2x4, x3x5 − x24,
x30 + (4ζ6 − 2)x20x2 + x0x

2
2 + x33 + (−4ζ6 + 2)x23x5 + x3x

2
5

x20x1 + (4ζ6 − 2)x0x1x2 + x1x
2
2 + x23x4 + (−4ζ6 + 2)x3x4x5 + x4x

2
5,

x20x2 + (4ζ6 − 2)x0x
2
2 + x32 + x23x5 + (−4ζ6 + 2)x3x

2
5 + x35

Maps:


0 0 0 − 1

2ζ9
1
2ζ

13
36

1
2ζ9

0 0 0 −ζ1336 0 −ζ1336
0 0 0 1

2ζ9
1
2ζ

13
36 − 1

2ζ9
1
2ζ

14
36

1
2ζ

5
36 − 1

2ζ
14
36 0 0 0

−ζ536 0 −ζ536 0 0 0
− 1

2ζ
14
36

1
2ζ

5
36

1
2ζ

14
36 0 0 0

 ,
(x0, . . . , x5) 7→ (ζ12x3, ζ3x4,−ζ12x5, ζ512x0, ζ23x1,−ζ512x2)

Genus 6, Locus 4: Group (56,7), signature (2,4,14), hyperelliptic
y2 = x14 − 1

Genus 6, Locus 5: Group (48,6), signature (2,4,24), hyperelliptic
y2 = x13 − x

Genus 6, Locus 6: Group (48,29), signature (2,6,8), hyperelliptic
y2 = x(x4 − 1)(x8 + 14x4 + 1)

Genus 6, Locus 7: Group (48,15), signature (2,6,8), cyclic trigonal
Trigonal equation: y3 = (x4 − 1)2(x4 + 1)

Ideal: x0x2 − x21, x0x4 − x1x3, x0x5 − x1x4,
x1x4 − x2x3, x1x5 − x2x4, x3x5 − x24,
x0x

2
1 − x32 − x3x24 − x35,

x20x1 − x1x22 − x23x4 − x4x25,
x30 − x21x2 − x33 − x24x5

Maps: (x0, . . . , x5) 7→ (ζ38x5,−ix4, ζ8x3,−ζ38x2, ix1,−ζ8x0),
(x0, . . . , x5) 7→ (−ζ6x2, ζ6x1,−ζ6x0,−ζ3x5, ζ3x4,−ζ3x3)

Genus 6, Locus 8: Group (39,1), signature (3,3,13), plane quintic
Plane quintic equation: y40y1 + y41y2 + y42y0
Maps: (y0, y1, y2) 7→ (ζ413y1, ζ

10
13y2, ζ

12
13y0),

(y0, y1, y2) 7→ (ζ813y2, ζ
7
13y0, ζ

11
13y1)

Genus 6, Locus 9: Group (30,1), signature (2,10,15), plane quintic
Plane quintic equation: y50 + y41y2 + 2ζ5y

3
1y

2
2 + 2ζ25y

2
1y

3
2 + ζ35y1y

4
2

Maps: (y0, y1, y2) 7→ (y0, ζ5y2, ζ
4
5y1),

(y0, y1, y2) 7→ (ζ35y0,−ζ5y1 − ζ25y2, ζ5)

Genus 6, Locus 10: Group (26,2), signature (2,13,26), hyperelliptic
y2 = x13 − 1

Genus 6, Locus 11: Group (21,2), signature (3,7,21), cyclic trigonal
Trigonal equation: y3 = x7 − 1

Ideal: x0x3 − x1x2, x0x4 − x1x3, x0x5 − x1x4,
x2x4 − x23, x2x5 − x3x4, x3x5 − x24,
x30 − x3x25 + x32,
x20x1 − x4x25 + x22x3,
x0x

2
1 − x35 + x22x4

Maps: (x0, . . . , x5) 7→ (x0, ζ7x1, x2, ζ7x3, ζ
2
7x4ζ

3
7x5),

(x0, . . . , x5) 7→ (ζ23x0, ζ
2
3x1, ζ3x2, ζ3x3, ζ3x4, ζ3x5)
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4.5. Genus 7. Of the thirteen entries in Table 4 of [19] for genus 7 curves, three are hyperelliptic and two
are cyclic trigonal. After computing the canonical equations of the nonhyperelliptic Riemann surfaces, we
can compute the Betti tables of these ideals and use the results of [24] to classify the curve as having a g14 ,
g26 , g13 , or none of these.
Genus 7, Locus 1: Group (504, 156), signature (2,3,7)
Ideal: Macbeath,[18]:

x20 + x21 + x22 + x23 + x24 + x25 + x26,
x20 + ζ7x

2
1 + ζ27x

2
2 + ζ37x

2
3 + ζ47x

2
4 + ζ57x

2
5 + ζ67x

2
6,

x20 + ζ−17 x21 + ζ−27 x22 + ζ−37 x23 + ζ−47 x24 + ζ−57 x25 + ζ−67 x26,
(ζ−37 − ζ37 )x0x6 − (ζ−27 − ζ27 )x1x4 + (ζ7 − ζ−17 )x3x5,
(ζ−37 − ζ37 )x1x0 − (ζ−27 − ζ27 )x2x5 + (ζ7 − ζ−17 )x4x6,
(ζ−37 − ζ37 )x2x1 − (ζ−27 − ζ27 )x3x6 + (ζ7 − ζ−17 )x5x0,
(ζ−37 − ζ37 )x3x2 − (ζ−27 − ζ27 )x4x0 + (ζ7 − ζ−17 )x6x1,
(ζ−37 − ζ37 )x4x3 − (ζ−27 − ζ27 )x5x1 + (ζ7 − ζ−17 )x0x2,
(ζ−37 − ζ37 )x5x4 − (ζ−27 − ζ27 )x6x2 + (ζ7 − ζ−17 )x1x3,
(ζ−37 − ζ37 )x6x5 − (ζ−27 − ζ27 )x0x3 + (ζ7 − ζ−17 )x2x4

Maps: (x0, . . . , x6) 7→ (x0,−x1,−x2,−x3, x4, x5,−x6),

0 1
2

1
2 − 1

2 0 − 1
2 0

− 1
2 − 1

2
1
2 0 − 1

2 0 0
1
2 − 1

2 0 − 1
2 0 0 − 1

2
− 1

2 0 − 1
2 0 0 − 1

2 − 1
2

0 1
2 0 0 − 1

2
1
2 − 1

2
1
2 0 0 1

2 − 1
2 − 1

2 0
0 0 1

2
1
2

1
2 0 − 1

2


Genus 7, Locus 2: Group (144, 127), signature (2,3,12). Has g26
Ideal: x20 + x3x4 − ζ6x3x5 − ζ6x5x6,

2ix21 + x3x4 + ζ6x3x5 + 2x4x6 − ζ6x5x6,
2ix1x2 + (−2ζ6 + 1)x3x4 + ζ6x3x5 − 2ζ6x4x6 + ζ6x5x6,
2ix22 − x3x4 + (−ζ6 + 2)x3x5 + (2ζ6 − 2)x4x6 + (−ζ6 + 2)x5x6,
x1x3 − ζ6x2x6 + ζ12x

2
4 + (ζ312 − 2ζ12)x4x5 + ζ12x

2
5,

x1x4 − ζ3x2x5 − x3x6 − x26,
x1x5 − x2x5 + x23 + (−ζ6 + 2)x3x6,
x1x6 + x2x6 − ζ12x24 + ζ12x4x5 − ζ12x25,
x2x3 − ζ6x2x6 + ζ12x

2
4,

x2x4 + (−ζ6 − 1)x2x5 + ζ6x
2
3 + 2ζ6x3x6 + ζ6x

2
6

Maps:



−1 0 0 0 0 0 0
0 ζ−112 −ζ12 0 0 0 0
0 −ζ12 −ζ−112 0 0 0 0
0 0 0 0 ζ6 ζ6 0
0 0 0 −ζ3 0 0 ζ3
0 0 0 0 0 0 −ζ3
0 0 0 0 0 ζ6 0


,



ζ3 0 0 0 0 0 0
0 −1 ζ3 0 0 0 0
0 ζ6 0 0 0 0 0
0 0 0 ζ3 0 0 1
0 0 0 0 ζ3 0 0
0 0 0 0 −ζ3 −ζ6 0
0 0 0 0 0 0 1


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Genus 7, Locus 3: Group (64, 41), signature (2,3,16), tetragonal
Ideal: x20 + x1x2,

x3x4 − ζ8x5x6,
x21 + x3x6 + ix4x5,
x22 + ix3x6 + x4x5,
x0x1 + ζ716x

2
3 − ζ516x25,

x0x2 − ζ716x24 + ζ516x
2
6,

x0x3 − ζ16x2x6,
x0x4 + ζ16x1x5,
x0x5 + ζ716x2x4,
x0x6 − ζ716x1x3

Maps: (x0, . . . , x6) 7→ (−x0, x2, x1, x4, x3, x6, x5),
(x0, . . . , x6) 7→ (ix0,−ζ38x2,−ζ8x1, x6,−ζ38x5,−ζ8x4, x3)

Genus 7, Locus 4: Group (64, 38), signature (2,4,16), hyperelliptic
y2 = x16 − 1

Genus 7, Locus 5: Group (56, 4), signature (2,4,28), hyperelliptic
y2 = x15 − x

Genus 7, Locus 6: Group (54, 6), signature (2,6,9)
Ideal: x1x6 + x2x4 + x3x5,

x20 − x1x6 + ζ6x2x4 − ζ3x3x5,
x1x4 + ζ3x2x5 − ζ6x3x6,
x1x5 + ζ3x2x6 − ζ6x3x4,
x0x1 − ζ6x25 − x4x6,
x0x2 + x26 − ζ3x4x5,
x0x3 + ζ3x

2
4 + ζ6x5x6,

x0x4 − x21 + ζ3x2x3,
x0x5 − ζ3x22 − ζ6x1x3,
x0x6 + ζ6x

2
3 + x1x2

Maps: (x0, . . . , x6) 7→ (−x0, ζ59x6, ζ89x4, ζ29x5, ζ9x2, ζ79x3, ζ49x1),
(x0, . . . , x6) 7→ (ζ6x0, ζ

2
3x4, ζ

2
3x5, ζ

2
3x6, ζ3x3, ζ3x1, ζ3x2)

Genus 7, Locus 7: Group (54, 6), signature (2,6,9)
Complex conjugate of the previous curve

Genus 7, Locus 8: Group (54, 3), signature (2,6,9) cyclic trigonal
Trigonal equation: y3 = x9 − 1

Ideal: 2× 2 minors of

[
x0 x2 x3 x4 x5
x1 x3 x4 x5 x6

]
, and

x30 − x26 + x32,
x20x1 − x26x4 + x22x3,
x0x

2
1 − x26x5 + x22x4,

x31 − x36 + x22x5
Maps: (x0, . . . , x6) 7→ (x1, x0,−x6,−x5,−x4,−x3,−x2),

(x0, . . . , x6) 7→ (ζ9x1, ζ
2
9x0,−ζ9x6,−ζ29x5,−ζ39x4,−ζ49x3,−ζ59x2)
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Genus 7, Locus 9: Group (48, 32), signature (3,4,6). Has g26
Ideal:
x20 + x3x5 + ζ6x3x6 − ζ3x4x6,√

3i(x1x3 − x2x4 + x1x5)− x1x6 + x2x5 − x2x6,√
3i(2x1x4 − x2x5 + x2x6) + x1x5 − x1x6,√
3i(2x2x3 + x1x6 − x2x5) + 3x1x5 + x2x6,

−3(x21 + x3x5 − x3x6) +
√

3i(x4x5 − x4x6) + 2x25 + 2(ζ6 − 1)x5x6 − 2ζ6x
2
6,

−3(x1x2 − x4x5) +
√

3i(x3x5 − x3x6 + x4x6 − x25) + 2ζ6x5x6 − x26,
−3(x22 − x3x5 − x4x6) +

√
3i(x3x6 − 3x4x5) + 2(ζ6 + 1)x5x6 + 2(ζ6 − 1)x26,

−3(2x24 − x3x5 + x3x6) +
√

3i(−x4x5 + x4x6) + 2x25 + 2(ζ6 − 1)x5x6 − 2ζ6x
2
6,

−3(−2x3x4 + x4x5) +
√

3i(−x3x5 + x3x6 − x4x6 − x25) + 2ζ6x5x6 − x26,
−3(2x23 + x3x5 + x4x6) +

√
3i(−x3x6 + 3x4x5) + 2(ζ6 + 1)x5x6 + 2(ζ6 − 1)x26

Maps:
(x0, . . . , x6) 7→ (ζ3x0,−ζ6x2,−ζ3x1 − x2,−x3 + ζ3x4, ζ6x3, ζ3x5,−ζ6x5 + x6),
(x0, . . . , x6) 7→ (−x0,−x2, x1, x4,−x− 3, ζ3x5 − ζ6x6,−ζ6x5 − ζ3x6)

Genus 7, Locus 10: Group (42, 4), signature (2,6,21) cyclic trigonal
Trigonal equation: y3 = x8 − x

Ideal: 2× 2 minors of

[
x0 x2 x3 x4 x5
x1 x3 x4 x5 x6

]
, and

x30 − x26x2 + x22x3
x20x1 − x26x3 + x22x4,
x0x

2
1 − x26x4 + x22x5,

x31 − x26x5 + x22x6
Maps:
(x0, . . . , x6) 7→ (ζ7x1, ζ

6
7x0,−ζ47x6,−ζ27x5,−x4,−ζ57x3,−ζ37x2),

(x0, . . . , x6) 7→ (ζ−221 x1, ζ
−5
21 x0,−ζ

−1
21 x6,−ζ

−4
21 x5, (ζ3 + 1)x4,−ζ1121x3,−ζ821x2)

Genus 7, Group 11: Group (32, 11), signature (4,4,8). Has g26
Ideal: x3x5 + x4x6,

x20 + x1x5 + ix2x6,
x1x4 + ix2x3 + x5x6,
x1x2 + x3x4,
x1x6 + ζ38x4x5,
x2x5 + ζ8x3x6,
x21 − ix23 − ζ38x25,
x22 + ix24 + ζ38x

2
6,

−ix2x4 + ζ38x
2
3,

x1x3 − ζ38x24
Maps: (x0, . . . , x6) 7→ (−x0,−x2, x1,−ix4,−ix3, ix6, ix5),

(x0, . . . , x6) 7→ (ix0, x1, ix2,−x3,−ix4,−x5, ix6)

Genus 7, Locus 12: Group (32, 10), signature (4,4,8)
Ideal: x1x6 + ζ616x2x5 + x3x4,

x1x2 + x5x6,
x20 + x1x6 − ζ616x2x5,
x3x6 − ζ416x4x5,
x21 − ζ716x24 − ζ616x25,
x22 + ζ316x

2
3 − ζ1016x26,

−ζ216x2x6 + (ζ1616 + ζ816)x24 − ζ716x25,
x1x5 + (−ζ1216 − ζ416)x23 − ζ1116x26,
x1x3 + ζ716x4x6,
x2x4 + ζ16x3x5

Maps: (x0, . . . , x6) 7→ (−x0,−x2, x1,−ζ216x4,−ζ616x3,−ζ616x6,−ζ216x5),
(x0, . . . , x6) 7→ (ix0,−ζ616x2,−ζ216x1,−ix4, ix3,−ix6,−ix5)

Genus 7, Locus 13: Group (30, 4), signature (2,15,30), hyperelliptic, y2 = x15 − 1
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