Magaard, Shaska, Shpectorov, and Völklein list smooth Riemann surfaces of genus \( g \leq 10\) with automorphism groups \(G\) satisfying \( \# G > 4(g-1)\). Their list is based on a computer search by Breuer.
They list a pencil of genus 6 curves with automorphism group (60,5) in the GAP library of small groups. This is the alternating group \( A_5\). The quotient of any curve in this pencil by its automorphism group has genus zero, and the quotient morphism is branched over four points with ramification indices (2,2,2,3).
We use Magma to compute equations of one member of this family, and give a conjectural description of this family.
Magma V2.21-4 Thu Sep 3 2015 08:45:39 on ace-math01 [Seed = 1257725750]
Type ? for help. Type -D to quit.
> load "autcv10.txt";
Loading "autcv10.txt"
> MatrixGens,MatrixSKG,Q,C:=RunExample(SmallGroup(60,5),6,[2,2,2,3]);
Set seed to 0.
Character Table of Group G
--------------------------
---------------------------
Class | 1 2 3 4 5
Size | 1 15 20 12 12
Order | 1 2 3 5 5
---------------------------
p = 2 1 1 3 5 4
p = 3 1 2 1 5 4
p = 5 1 2 3 1 1
---------------------------
X.1 + 1 1 1 1 1
X.2 + 3 -1 0 Z1 Z1#2
X.3 + 3 -1 0 Z1#2 Z1
X.4 + 4 0 1 -1 -1
X.5 + 5 1 -1 0 0
Explanation of Character Value Symbols
--------------------------------------
# denotes algebraic conjugation, that is,
#k indicates replacing the root of unity w by w^k
Z1 = (CyclotomicField(5: Sparse := true)) ! [ RationalField() | 0, 0, -1, -1
]
Conjugacy Classes of group G
----------------------------
[1] Order 1 Length 1
Rep Id(G)
[2] Order 2 Length 15
Rep (1, 2)(3, 4)
[3] Order 3 Length 20
Rep (1, 2, 3)
[4] Order 5 Length 12
Rep (1, 2, 3, 4, 5)
[5] Order 5 Length 12
Rep (1, 3, 4, 5, 2)
Surface kernel generators: [
(1, 4)(3, 5),
(1, 3)(2, 4),
(2, 4)(3, 5),
(1, 5, 4)
]
Is hyperelliptic? false
Is cyclic trigonal? false
Multiplicities of irreducibles in relevant G-modules:
I_1 =[ 0, 0, 0, 0, 0 ]
S_1 =[ 0, 1, 1, 0, 0 ]
H^0(C,K) =[ 0, 1, 1, 0, 0 ]
I_2 =[ 1, 0, 0, 0, 1 ]
S_2 =[ 2, 0, 0, 1, 3 ]
H^0(C,2K)=[ 1, 0, 0, 1, 2 ]
I_3 =[ 0, 3, 3, 2, 1 ]
S_3 =[ 0, 5, 5, 4, 2 ]
H^0(C,3K)=[ 0, 2, 2, 2, 1 ]
I2timesS1=[ 0, 3, 3, 2, 2 ]
Is clearly not generated by quadrics? false
Plane quintic obstruction? false
Matrix generators for action on H^0(C,K):
Field K Cyclotomic Field of order 60 and degree 16
[
[1 -1 0 0 0 0]
[0 0 1 0 0 0]
[0 -1 -z^14 + z^6 + z^4 - 1 0 0 0]
[0 0 0 z^14 - z^6 - z^4 0 z^14 - z^6 - z^4]
[0 0 0 -z^14 + z^6 + z^4 0 1]
[0 0 0 0 -1 1],
[0 -1 -z^14 + z^6 + z^4 - 1 0 0 0]
[-z^14 + z^6 + z^4 -1 -1 0 0 0]
[0 z^14 - z^6 - z^4 + 1 1 0 0 0]
[0 0 0 -z^14 + z^6 + z^4 1 0]
[0 0 0 z^14 - z^6 - z^4 - 1 z^14 - z^6 - z^4 -1]
[0 0 0 -1 0 0]
]
Matrix Surface Kernel Generators:
[
[z^14 - z^6 - z^4 0 1 0 0 0]
[0 -1 0 0 0 0]
[z^14 - z^6 - z^4 0 -z^14 + z^6 + z^4 0 0 0]
[0 0 0 -1 0 0]
[0 0 0 0 0 -1]
[0 0 0 0 -1 0],
[0 -1 0 0 0 0]
[-1 0 0 0 0 0]
[1 -1 -1 0 0 0]
[0 0 0 0 1 0]
[0 0 0 1 0 0]
[0 0 0 z^14 - z^6 - z^4 z^14 - z^6 - z^4 -1],
[z^14 - z^6 - z^4 -z^14 + z^6 + z^4 - 1 -z^14 + z^6 + z^4 - 1 0 0 0]
[z^14 - z^6 - z^4 -z^14 + z^6 + z^4 - 1 -z^14 + z^6 + z^4 0 0 0]
[-1 1 0 0 0 0]
[0 0 0 -1 0 z^14 - z^6 - z^4]
[0 0 0 0 -1 1]
[0 0 0 0 0 1],
[1 -1 -1 0 0 0]
[1 0 z^14 - z^6 - z^4 0 0 0]
[-z^14 + z^6 + z^4 -1 -1 0 0 0]
[0 0 0 z^14 - z^6 - z^4 - 1 z^14 - z^6 - z^4 z^14 - z^6 - z^4]
[0 0 0 -z^14 + z^6 + z^4 + 1 1 -z^14 + z^6 + z^4]
[0 0 0 -z^14 + z^6 + z^4 1 -z^14 + z^6 + z^4]
]
Finding quadrics:
I2 contains a 1-dimensional subspace of CharacterRow 1
Dimension 2
Multiplicity 2
[
x_0^2 + x_0*x_1 + (-z^14 + z^6 + z^4)*x_0*x_2 + x_1^2 + (-z^14 + z^6 + z^4 -
1)*x_1*x_2 + x_2^2,
x_3^2 + (z^14 - z^6 - z^4)*x_3*x_4 + (z^14 - z^6 - z^4)*x_3*x_5 + x_4^2 +
x_4*x_5 + x_5^2
]
I2 contains a 5-dimensional subspace of CharacterRow 5
Dimension 15
Multiplicity 3
[
x_0^2 + 1/3*(z^14 - z^6 - z^4 - 2)*x_2^2,
x_0*x_1 + 1/3*x_2^2,
x_0*x_2 + 1/3*(-z^14 + z^6 + z^4 + 1)*x_2^2,
x_0*x_3 + (-z^14 + z^6 + z^4)*x_1*x_5 + (-z^14 + z^6 + z^4 + 1)*x_2*x_5,
x_0*x_4 + x_1*x_5 + (z^14 - z^6 - z^4 + 1)*x_2*x_3 + x_2*x_4 + (-z^14 + z^6
+ z^4)*x_2*x_5,
x_0*x_5 + x_1*x_5 + (-z^14 + z^6 + z^4)*x_2*x_5,
x_1^2 + 1/3*(-z^14 + z^6 + z^4 - 3)*x_2^2,
x_1*x_2 + 1/3*(-z^14 + z^6 + z^4 - 2)*x_2^2,
x_1*x_3 + (z^14 - z^6 - z^4 + 1)*x_1*x_5 + (z^14 - z^6 - z^4 + 1)*x_2*x_4,
x_1*x_4 - x_2*x_4,
x_3^2 + 1/5*(3*z^14 - 3*z^6 - 3*z^4 - 6)*x_5^2,
x_3*x_4 + 1/5*(3*z^14 - 3*z^6 - 3*z^4 - 1)*x_5^2,
x_3*x_5 + 1/5*(3*z^14 - 3*z^6 - 3*z^4 - 1)*x_5^2,
x_4^2 - x_5^2,
x_4*x_5 + 1/5*(2*z^14 - 2*z^6 - 2*z^4 + 1)*x_5^2
]
The output above shows that the ideal contains quadrics from two isotypical subspaces of \(S_2\).
The first isotypical subspace, which corresponds to the character \( \chi_1\) in the character table shown above, yields a polynomial of the form
c_1(x_0^2 + x_0*x_1 + (-z^14 + z^6 + z^4)*x_0*x_2 + x_1^2 + (-z^14 + z^6 + z^4 -1)*x_1*x_2 + x_2^2) + c_2(x_3^2 + (z^14 - z^6 - z^4)*x_3*x_4 + (z^14 - z^6 - z^4)*x_3*x_5 + x_4^2 + x_4*x_5 + x_5^2)
We may assume \(c_1\) and \(c_2\) are nonzero and divide by \(c_1\) to
obtain a candidate polynomial of the form
(x_0^2 + x_0*x_1 + (-z^14 + z^6 + z^4)*x_0*x_2 + x_1^2 + (-z^14 + z^6 + z^4 -1)*x_1*x_2 + x_2^2) + c_1(x_3^2 + (z^14 - z^6 - z^4)*x_3*x_4 + (z^14 - z^6 - z^4)*x_3*x_5 + x_4^2 + x_4*x_5 + x_5^2)
The second isotypical subspace corresponds to the character \( \chi_{5}\) in the character table shown above. Note that the matrix surface kernel generators have a block diagonal form with blocks of size \(3\times 3\) and \(3 \times 3\),. We therefore partition the fifteen polynomials shown in the output into three sets:
> GL6K:=Parent(MatrixGens[1]);
> MatrixG:=sub<GL6K | MatrixGens>;
> FindParallelBases(MatrixG,[Q[2][1],Q[2][2],Q[2][3],Q[2][7],Q[2][8]],[Q[2][4]\
,Q[2][5],Q[2][6],Q[2][9],Q[2][10]]);
[x_0*x_3 + 1/2*(-z^14 + z^6 + z^4 + 1)*x_0*x_5 + 1/2*(-3*z^14 + 3*z^6 + 3*z^4 +
1)*x_1*x_4 + 1/2*(-3*z^14 + 3*z^6 + 3*z^4 + 1)*x_1*x_5 + 1/2*(3*z^14 - 3*z^6
- 3*z^4 - 1)*x_2*x_4 + 1/2*(-4*z^14 + 4*z^6 + 4*z^4 + 3)*x_2*x_5]
[1/2*(2*z^14 - 2*z^6 - 2*z^4 - 3)*x_0*x_3 + 1/4*(-6*z^14 + 6*z^6 + 6*z^4 +
3)*x_0*x_4 + 1/4*(-5*z^14 + 5*z^6 + 5*z^4 + 1)*x_0*x_5 + 1/4*(9*z^14 - 9*z^6
- 9*z^4 - 6)*x_1*x_3 + 1/4*(-4*z^14 + 4*z^6 + 4*z^4 + 3)*x_1*x_4 +
1/4*(-7*z^14 + 7*z^6 + 7*z^4 + 3)*x_1*x_5 + 1/4*(3*z^14 - 3*z^6 - 3*z^4 -
3)*x_2*x_3 + 1/4*(-8*z^14 + 8*z^6 + 8*z^4 + 3)*x_2*x_4 + 1/4*(-z^14 + z^6 +
z^4 + 1)*x_2*x_5]
[1/4*(-z^14 + z^6 + z^4 - 1)*x_0*x_3 + 1/4*(3*z^14 - 3*z^6 - 3*z^4 - 3)*x_0*x_4
+ 1/2*(-z^14 + z^6 + z^4)*x_0*x_5 + 1/4*(z^14 - z^6 - z^4 - 2)*x_1*x_4 +
1/4*(z^14 - z^6 - z^4 - 2)*x_1*x_5 + 1/4*(-3*z^14 + 3*z^6 + 3*z^4)*x_2*x_3 +
1/4*(2*z^14 - 2*z^6 - 2*z^4 - 1)*x_2*x_4 + 1/4*(3*z^14 - 3*z^6 - 3*z^4 -
1)*x_2*x_5]
[1/2*(2*z^14 - 2*z^6 - 2*z^4 + 1)*x_0*x_3 + 1/2*(-3*z^14 + 3*z^6 + 3*z^4 +
1)*x_0*x_5 + 1/2*(-3*z^14 + 3*z^6 + 3*z^4 + 3)*x_1*x_3 + 1/2*(z^14 - z^6 -
z^4 - 1)*x_1*x_4 + 1/2*(z^14 - z^6 - z^4 - 1)*x_1*x_5 + 1/2*(2*z^14 - 2*z^6
- 2*z^4 + 1)*x_2*x_4 + 1/2*(-z^14 + z^6 + z^4 + 2)*x_2*x_5]
[1/4*(-z^14 + z^6 + z^4 + 2)*x_0*x_3 + 1/4*(4*z^14 - 4*z^6 - 4*z^4 - 3)*x_0*x_5
+ 1/4*(-3*z^14 + 3*z^6 + 3*z^4 + 3)*x_1*x_3 + 1/4*(z^14 - z^6 - z^4 +
1)*x_1*x_4 + 1/2*(2*z^14 - 2*z^6 - 2*z^4 - 1)*x_1*x_5 + 1/4*(2*z^14 - 2*z^6
- 2*z^4 - 1)*x_2*x_4 + 1/4*(3*z^14 - 3*z^6 - 3*z^4 - 1)*x_2*x_5]
> FindParallelBases(MatrixG,[Q[2][1],Q[2][2],Q[2][3],Q[2][7],Q[2][8]],[Q[2][11\
],Q[2][12],Q[2][13],Q[2][14],Q[2][15]]);
[x_3^2 + (-z^14 + z^6 + z^4 - 3)*x_3*x_4 + (3*z^14 - 3*z^6 - 3*z^4 + 3)*x_3*x_5
+ 1/2*(-3*z^14 + 3*z^6 + 3*z^4 - 4)*x_4^2 + (-3*z^14 + 3*z^6 + 3*z^4 -
4)*x_4*x_5 + 1/2*(-z^14 + z^6 + z^4)*x_5^2]
[1/4*(z^14 - z^6 - z^4)*x_3^2 + (z^14 - z^6 - z^4 + 2)*x_3*x_4 + 1/2*(-6*z^14 +
6*z^6 + 6*z^4 - 9)*x_3*x_5 + 1/4*(-2*z^14 + 2*z^6 + 2*z^4 - 3)*x_4^2 +
1/2*(-2*z^14 + 2*z^6 + 2*z^4 - 3)*x_4*x_5 + 1/4*(-z^14 + z^6 + z^4 -
2)*x_5^2]
[1/2*(z^14 - z^6 - z^4 + 1)*x_3^2 + 1/2*(3*z^14 - 3*z^6 - 3*z^4 + 5)*x_3*x_4 +
1/2*(-3*z^14 + 3*z^6 + 3*z^4 - 3)*x_3*x_5 + 1/4*(-z^14 + z^6 + z^4 -
1)*x_4^2 + 1/2*(-4*z^14 + 4*z^6 + 4*z^4 - 7)*x_4*x_5 + 1/4*(-3*z^14 + 3*z^6
+ 3*z^4 - 7)*x_5^2]
[1/2*(-4*z^14 + 4*z^6 + 4*z^4 - 5)*x_3^2 + (2*z^14 - 2*z^6 - 2*z^4 + 2)*x_3*x_4
+ (6*z^14 - 6*z^6 - 6*z^4 + 9)*x_3*x_5 + (z^14 - z^6 - z^4 + 2)*x_4^2 +
(2*z^14 - 2*z^6 - 2*z^4 + 4)*x_4*x_5 + 1/2*(5*z^14 - 5*z^6 - 5*z^4 +
8)*x_5^2]
[1/4*(-z^14 + z^6 + z^4 - 1)*x_3^2 + 1/2*(3*z^14 - 3*z^6 - 3*z^4 + 5)*x_3*x_4 +
1/2*(6*z^14 - 6*z^6 - 6*z^4 + 9)*x_3*x_5 + 1/2*(z^14 - z^6 - z^4 + 1)*x_4^2
+ 1/2*(5*z^14 - 5*z^6 - 5*z^4 + 8)*x_4*x_5 + 1/4*(6*z^14 - 6*z^6 - 6*z^4 +
11)*x_5^2]
For convenience, let \( f_1,\ldots,f_5\) be the Magma
polynomials [Q[2][1],Q[2][2],Q[2][3],Q[2][7],Q[2][8]], let
\(f_6,\ldots,f_{10}\) be the output of the first FindParallelBases
command, and let \(f_{11},\ldots, f_{12}\) be the output of the second
FindParallelBases command.
Then the candidate polynomials
from this isotypical space are of the form
\[
\begin{array}{c}
c_3 f_1 + c_4 f_6 + c_5 f_{11}\\
c_3 f_2 + c_4 f_7 + c_5 f_{12}\\
c_3 f_3 + c_4 f_8 + c_5 f_{13}\\
c_3 f_4 + c_4 f_9 + c_5 f_{14}\\
c_3 f_5 + c_4 f_{10} + c_5 f_{15}
\end{array}
\]
We may assume that \(c_3,c_4,c_5\) are all nonzero, then scale
\(x_3,x_4,x_5\) to make \( c_3 = c_4\), then divide by \(c_3\) to
obtain candidate polynomials:
\[
\begin{array}{c}
f_1 + f_6 + c_5 f_{11}\\
f_2 + f_7 + c_5 f_{12}\\
f_3 + f_8 + c_5 f_{13}\\
f_4 + f_9 + c_5 f_{14}\\
f_5 + f_{10} + c_5 f_{15}
\end{array}
\]
We have thus obtained 6 quadrics with two
unknown coefficients as our candidate polynomials. They are shown in
the code below.
For generic values of c_2 and c_5, the intersection of these 6 quadrics in \(\mathbb{P}^5\) is empty. Here is an example showing this:
> K<z_60>:=CyclotomicField(60);
> P5<x_0,x_1,x_2,x_3,x_4,x_5>:=ProjectiveSpace(K,5);
> c_2:=1;
> c_5:=1;
> X:=Scheme(P5,[x_0^2 + x_0*x_1 + (-z_60^14 + z_60^6 + z_60^4)*x_0*x_2 + x_1^2\
+ (-z_60^14 + z_60^6 + z_60^4 - 1)*x_1*x_2 + x_2^2+c_2*(x_3^2 + (z_60^14 - z_\
60^6 - z_60^4)*x_3*x_4 + (z_60^14 - z_60^6 - z_60^4)*x_3*x_5 + x_4^2 + x_4*x_5\
+ x_5^2),
> x_0^2 + 1/3*(z_60^14 - z_60^6 - z_60^4 - 2)*x_2^2 +(x_0*x_3 + 1/2*(-z_60^14 \
+ z_60^6 + z_60^4 + 1)*x_0*x_5 + 1/2*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 + 1)*x_\
1*x_4 + 1/2*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 + 1)*x_1*x_5 + 1/2*(3*z_60^14 - \
3*z_60^6 - 3*z_60^4 - 1)*x_2*x_4 + 1/2*(-4*z_60^14 + 4*z_60^6 + 4*z_60^4 + 3)*\
x_2*x_5) +c_5*(x_3^2 + (-z_60^14 + z_60^6 + z_60^4 - 3)*x_3*x_4 + (3*z_60^14 -\
3*z_60^6 - 3*z_60^4 + 3)*x_3*x_5 + 1/2*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 - 4)\
*x_4^2 + (-3*z_60^14 + 3*z_60^6 + 3*z_60^4 - 4)*x_4*x_5 + 1/2*(-z_60^14 + z_60\
^6 + z_60^4)*x_5^2),
> x_0*x_1 + 1/3*x_2^2 +(1/2*(2*z_60^14 - 2*z_60^6 - 2*z_60^4 - 3)*x_0*x_3 + 1/\
4*(-6*z_60^14 + 6*z_60^6 + 6*z_60^4 + 3)*x_0*x_4 + 1/4*(-5*z_60^14 + 5*z_60^6 \
+ 5*z_60^4 + 1)*x_0*x_5 + 1/4*(9*z_60^14 - 9*z_60^6- 9*z_60^4 - 6)*x_1*x_3 + 1\
/4*(-4*z_60^14 + 4*z_60^6 + 4*z_60^4 + 3)*x_1*x_4 + 1/4*(-7*z_60^14 + 7*z_60^6\
+ 7*z_60^4 + 3)*x_1*x_5 + 1/4*(3*z_60^14 - 3*z_60^6 - 3*z_60^4 - 3)*x_2*x_3 +\
1/4*(-8*z_60^14 + 8*z_60^6 + 8*z_60^4 + 3)*x_2*x_4 + 1/4*(-z_60^14 + z_60^6 +\
z_60^4 + 1)*x_2*x_5) +c_5*(1/4*(z_60^14 - z_60^6 - z_60^4)*x_3^2 + (z_60^14 \
- z_60^6 - z_60^4 + 2)*x_3*x_4 + 1/2*(-6*z_60^14 + 6*z_60^6 + 6*z_60^4 - 9)*x_\
3*x_5 + 1/4*(-2*z_60^14 + 2*z_60^6 + 2*z_60^4 - 3)*x_4^2 + 1/2*(-2*z_60^14 + 2\
*z_60^6 + 2*z_60^4 - 3)*x_4*x_5 + 1/4*(-z_60^14 + z_60^6 + z_60^4 - 2)*x_5^2),
> x_0*x_2 + 1/3*(-z_60^14 + z_60^6 + z_60^4 + 1)*x_2^2 +(1/4*(-z_60^14 + z_60^\
6 + z_60^4 - 1)*x_0*x_3 + 1/4*(3*z_60^14 - 3*z_60^6 - 3*z_60^4 - 3)*x_0*x_4 + \
1/2*(-z_60^14 + z_60^6 + z_60^4)*x_0*x_5 + 1/4*(z_60^14 - z_60^6 - z_60^4 - 2)\
*x_1*x_4 + 1/4*(z_60^14 - z_60^6 - z_60^4 - 2)*x_1*x_5 + 1/4*(-3*z_60^14 + 3*z\
_60^6 + 3*z_60^4)*x_2*x_3 +1/4*(2*z_60^14 - 2*z_60^6 - 2*z_60^4 - 1)*x_2*x_4 +\
1/4*(3*z_60^14 - 3*z_60^6 - 3*z_60^4 - 1)*x_2*x_5) +c_5*(1/2*(z_60^14 - z_60^\
6 - z_60^4 + 1)*x_3^2 + 1/2*(3*z_60^14 - 3*z_60^6 - 3*z_60^4 + 5)*x_3*x_4 + 1/\
2*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 - 3)*x_3*x_5 + 1/4*(-z_60^14 + z_60^6 + z_\
60^4 - 1)*x_4^2 + 1/2*(-4*z_60^14 + 4*z_60^6 + 4*z_60^4 - 7)*x_4*x_5 + 1/4*(-3\
*z_60^14 + 3*z_60^6 + 3*z_60^4 - 7)*x_5^2),
> x_1^2 + 1/3*(-z_60^14 + z_60^6 + z_60^4 - 3)*x_2^2 +(1/2*(2*z_60^14 - 2*z_60\
^6 - 2*z_60^4 + 1)*x_0*x_3 + 1/2*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 + 1)*x_0*x_\
5 + 1/2*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 + 3)*x_1*x_3 + 1/2*(z_60^14 - z_60^6\
- z_60^4 - 1)*x_1*x_4 + 1/2*(z_60^14 - z_60^6 - z_60^4 - 1)*x_1*x_5 + 1/2*(2*\
z_60^14 - 2*z_60^6 - 2*z_60^4 + 1)*x_2*x_4 + 1/2*(-z_60^14 + z_60^6 + z_60^4 +\
2)*x_2*x_5) +c_5*(1/2*(-4*z_60^14 + 4*z_60^6 + 4*z_60^4 - 5)*x_3^2 + (2*z_60^\
14 - 2*z_60^6 - 2*z_60^4 + 2)*x_3*x_4 + (6*z_60^14 - 6*z_60^6 - 6*z_60^4 + 9)*\
x_3*x_5 + (z_60^14 - z_60^6 - z_60^4 + 2)*x_4^2 + (2*z_60^14 - 2*z_60^6 - 2*z_\
60^4 + 4)*x_4*x_5 + 1/2*(5*z_60^14 - 5*z_60^6 - 5*z_60^4 + 8)*x_5^2),
> x_1*x_2 + 1/3*(-z_60^14 + z_60^6 + z_60^4 - 2)*x_2^2 +(1/4*(-z_60^14 + z_60^\
6 + z_60^4 + 2)*x_0*x_3 + 1/4*(4*z_60^14 - 4*z_60^6 - 4*z_60^4 - 3)*x_0*x_5 + \
1/4*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 + 3)*x_1*x_3 + 1/4*(z_60^14 - z_60^6 - z\
_60^4 + 1)*x_1*x_4 + 1/2*(2*z_60^14 - 2*z_60^6 - 2*z_60^4 - 1)*x_1*x_5 + 1/4*(\
2*z_60^14 - 2*z_60^6 - 2*z_60^4 - 1)*x_2*x_4 + 1/4*(3*z_60^14 - 3*z_60^6 - 3*z\
_60^4 - 1)*x_2*x_5) +c_5*(1/4*(-z_60^14 + z_60^6 + z_60^4 - 1)*x_3^2 + 1/2*(3*\
z_60^14 - 3*z_60^6 - 3*z_60^4 + 5)*x_3*x_4 + 1/2*(6*z_60^14 - 6*z_60^6 - 6*z_6\
0^4 + 9)*x_3*x_5 + 1/2*(z_60^14 - z_60^6 - z_60^4 + 1)*x_4^2 + 1/2*(5*z_60^14 \
- 5*z_60^6 - 5*z_60^4 + 8)*x_4*x_5 + 1/4*(6*z_60^14 - 6*z_60^6 - 6*z_60^4 + 11\
)*x_5^2)]);
> Dimension(X);
-1
Therefore, we turn to Macaulay2 to compute part of a
flattening stratification. (The reason we switch
to Macaulay2 is that Magma will not
allow us to compute Gröbner bases in a ring of the form \(K[c_2,c_5][x_0,\ldots,x_5]\).)
Macaulay2, version 1.7
with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases,
PrimaryDecomposition, ReesAlgebra, TangentCone
i1 : loadPackage("Cyclotomic");
i2 : K=cyclotomicField(60);
i3 : z_60=K_0;
i4 : R=K[c_2,c_5,Degrees=>{0,0}];
i5 : S=R[x_0..x_5];
i6 : I=ideal {x_0^2 + x_0*x_1 + (-z_60^14 + z_60^6 + z_60^4)*x_0*x_2 + x_1^2 + (-z_60^14 + z_60^6 + z_60^4 - 1)*x_1*x_2 + x_2^2+c_2*(x_3^2 + (z_60^14 - z_60^6 - z_60^4)*x_3*x_4 + (z_60^14 - z_60^6 - z_60^4)*x_3*x_5 + x_4^2 + x_4*x_5 + x_5^2),
x_0^2 + 1/3*(z_60^14 - z_60^6 - z_60^4 - 2)*x_2^2 +(x_0*x_3 + 1/2*(-z_60^14 + z_60^6 + z_60^4 + 1)*x_0*x_5 + 1/2*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 + 1)*x_1*x_4 + 1/2*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 + 1)*x_1*x_5 + 1/2*(3*z_60^14 - 3*z_60^6 - 3*z_60^4 - 1)*x_2*x_4 + 1/2*(-4*z_60^14 + 4*z_60^6 + 4*z_60^4 + 3)*x_2*x_5) +c_5*(x_3^2 + (-z_60^14 + z_60^6 + z_60^4 - 3)*x_3*x_4 + (3*z_60^14 - 3*z_60^6 - 3*z_60^4 + 3)*x_3*x_5 + 1/2*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 - 4)*x_4^2 + (-3*z_60^14 + 3*z_60^6 + 3*z_60^4 - 4)*x_4*x_5 + 1/2*(-z_60^14 + z_60^6 + z_60^4)*x_5^2),
x_0*x_1 + 1/3*x_2^2 +(1/2*(2*z_60^14 - 2*z_60^6 - 2*z_60^4 - 3)*x_0*x_3 + 1/4*(-6*z_60^14 + 6*z_60^6 + 6*z_60^4 + 3)*x_0*x_4 + 1/4*(-5*z_60^14 + 5*z_60^6 + 5*z_60^4 + 1)*x_0*x_5 + 1/4*(9*z_60^14 - 9*z_60^6- 9*z_60^4 - 6)*x_1*x_3 + 1/4*(-4*z_60^14 + 4*z_60^6 + 4*z_60^4 + 3)*x_1*x_4 + 1/4*(-7*z_60^14 + 7*z_60^6 + 7*z_60^4 + 3)*x_1*x_5 + 1/4*(3*z_60^14 - 3*z_60^6 - 3*z_60^4 - 3)*x_2*x_3 + 1/4*(-8*z_60^14 + 8*z_60^6 + 8*z_60^4 + 3)*x_2*x_4 + 1/4*(-z_60^14 + z_60^6 + z_60^4 + 1)*x_2*x_5) +c_5*(1/4*(z_60^14 - z_60^6 - z_60^4)*x_3^2 + (z_60^14 - z_60^6 - z_60^4 + 2)*x_3*x_4 + 1/2*(-6*z_60^14 + 6*z_60^6 + 6*z_60^4 - 9)*x_3*x_5 + 1/4*(-2*z_60^14 + 2*z_60^6 + 2*z_60^4 - 3)*x_4^2 + 1/2*(-2*z_60^14 + 2*z_60^6 + 2*z_60^4 - 3)*x_4*x_5 + 1/4*(-z_60^14 + z_60^6 + z_60^4 - 2)*x_5^2),
x_0*x_2 + 1/3*(-z_60^14 + z_60^6 + z_60^4 + 1)*x_2^2 +(1/4*(-z_60^14 + z_60^6 + z_60^4 - 1)*x_0*x_3 + 1/4*(3*z_60^14 - 3*z_60^6 - 3*z_60^4 - 3)*x_0*x_4 + 1/2*(-z_60^14 + z_60^6 + z_60^4)*x_0*x_5 + 1/4*(z_60^14 - z_60^6 - z_60^4 - 2)*x_1*x_4 + 1/4*(z_60^14 - z_60^6 - z_60^4 - 2)*x_1*x_5 + 1/4*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4)*x_2*x_3 +1/4*(2*z_60^14 - 2*z_60^6 - 2*z_60^4 - 1)*x_2*x_4 + 1/4*(3*z_60^14 - 3*z_60^6 - 3*z_60^4 - 1)*x_2*x_5) +c_5*(1/2*(z_60^14 - z_60^6 - z_60^4 + 1)*x_3^2 + 1/2*(3*z_60^14 - 3*z_60^6 - 3*z_60^4 + 5)*x_3*x_4 + 1/2*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 - 3)*x_3*x_5 + 1/4*(-z_60^14 + z_60^6 + z_60^4 - 1)*x_4^2 + 1/2*(-4*z_60^14 + 4*z_60^6 + 4*z_60^4 - 7)*x_4*x_5 + 1/4*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 - 7)*x_5^2),
x_1^2 + 1/3*(-z_60^14 + z_60^6 + z_60^4 - 3)*x_2^2 +(1/2*(2*z_60^14 - 2*z_60^6 - 2*z_60^4 + 1)*x_0*x_3 + 1/2*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 + 1)*x_0*x_5 + 1/2*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 + 3)*x_1*x_3 + 1/2*(z_60^14 - z_60^6 - z_60^4 - 1)*x_1*x_4 + 1/2*(z_60^14 - z_60^6 - z_60^4 - 1)*x_1*x_5 + 1/2*(2*z_60^14 - 2*z_60^6 - 2*z_60^4 + 1)*x_2*x_4 + 1/2*(-z_60^14 + z_60^6 + z_60^4 + 2)*x_2*x_5) +c_5*(1/2*(-4*z_60^14 + 4*z_60^6 + 4*z_60^4 - 5)*x_3^2 + (2*z_60^14 - 2*z_60^6 - 2*z_60^4 + 2)*x_3*x_4 + (6*z_60^14 - 6*z_60^6 - 6*z_60^4 + 9)*x_3*x_5 + (z_60^14 - z_60^6 - z_60^4 + 2)*x_4^2 + (2*z_60^14 - 2*z_60^6 - 2*z_60^4 + 4)*x_4*x_5 + 1/2*(5*z_60^14 - 5*z_60^6 - 5*z_60^4 + 8)*x_5^2),
x_1*x_2 + 1/3*(-z_60^14 + z_60^6 + z_60^4 - 2)*x_2^2 +(1/4*(-z_60^14 + z_60^6 + z_60^4 + 2)*x_0*x_3 + 1/4*(4*z_60^14 - 4*z_60^6 - 4*z_60^4 - 3)*x_0*x_5 + 1/4*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 + 3)*x_1*x_3 + 1/4*(z_60^14 - z_60^6 - z_60^4 + 1)*x_1*x_4 + 1/2*(2*z_60^14 - 2*z_60^6 - 2*z_60^4 - 1)*x_1*x_5 + 1/4*(2*z_60^14 - 2*z_60^6 - 2*z_60^4 - 1)*x_2*x_4 + 1/4*(3*z_60^14 - 3*z_60^6 - 3*z_60^4 - 1)*x_2*x_5) +c_5*(1/4*(-z_60^14 + z_60^6 + z_60^4 - 1)*x_3^2 + 1/2*(3*z_60^14 - 3*z_60^6 - 3*z_60^4 + 5)*x_3*x_4 + 1/2*(6*z_60^14 - 6*z_60^6 - 6*z_60^4 + 9)*x_3*x_5 + 1/2*(z_60^14 - z_60^6 - z_60^4 + 1)*x_4^2 + 1/2*(5*z_60^14 - 5*z_60^6 - 5*z_60^4 + 8)*x_4*x_5 + 1/4*(6*z_60^14 - 6*z_60^6 - 6*z_60^4 + 11)*x_5^2)
};
o6 : Ideal of S
i7 : time L=flatten entries gens gb(I,DegreeLimit=>4);
-- used 0.278055 seconds
i8 : L3=select(L, i -> degree i == {3,0});
i9 : L3c=unique apply(L3, i -> leadCoefficient i);
i10 : for i from 0 to #L3c-1 do (print toString(L3c_i) << endl)
c_5-12*ww_60^14+12*ww_60^6+12*ww_60^4+15/2
c_2-(297/16)*ww_60^14+(297/16)*ww_60^6+(297/16)*ww_60^4+45/4
1
This suggests setting \( (c_5-12 \zeta_{60}^{14}+12\zeta_{60}^6+12\zeta_{60}^4+15/2)=0\).
This gives us a conjectural description of the desired pencil: we set \(c_5 = 12 \zeta_{60}^{14} - 12\zeta_{60}^6 - 12\zeta_{60}^4- 15/2)\) and let \(c_2 \) vary.
In the Magma session below, we check that least two values of \(c_2\) yield a nonsingular curve.
> K<z_60>:=CyclotomicField(60);
> P5<x_0,x_1,x_2,x_3,x_4,x_5>:=ProjectiveSpace(K,5);
> c_2:=1;
> c_5:=-(-12*z_60^14+12*z_60^6+12*z_60^4+15/2);
> X:=Scheme(P5,[x_0^2 + x_0*x_1 + (-z_60^14 + z_60^6 + z_60^4)*x_0*x_2 + x_1^2\
+ (-z_60^14 + z_60^6 + z_60^4 - 1)*x_1*x_2 + x_2^2+c_2*(x_3^2 + (z_60^14 - z_\
60^6 - z_60^4)*x_3*x_4 + (z_60^14 - z_60^6 - z_60^4)*x_3*x_5 + x_4^2 + x_4*x_5\
+ x_5^2),
> x_0^2 + 1/3*(z_60^14 - z_60^6 - z_60^4 - 2)*x_2^2 +(x_0*x_3 + 1/2*(-z_60^14 \
+ z_60^6 + z_60^4 + 1)*x_0*x_5 + 1/2*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 + 1)*x_\
1*x_4 + 1/2*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 + 1)*x_1*x_5 + 1/2*(3*z_60^14 - \
3*z_60^6 - 3*z_60^4 - 1)*x_2*x_4 + 1/2*(-4*z_60^14 + 4*z_60^6 + 4*z_60^4 + 3)*\
x_2*x_5) +c_5*(x_3^2 + (-z_60^14 + z_60^6 + z_60^4 - 3)*x_3*x_4 + (3*z_60^14 -\
3*z_60^6 - 3*z_60^4 + 3)*x_3*x_5 + 1/2*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 - 4)\
*x_4^2 + (-3*z_60^14 + 3*z_60^6 + 3*z_60^4 - 4)*x_4*x_5 + 1/2*(-z_60^14 + z_60\
^6 + z_60^4)*x_5^2),
> x_0*x_1 + 1/3*x_2^2 +(1/2*(2*z_60^14 - 2*z_60^6 - 2*z_60^4 - 3)*x_0*x_3 + 1/\
4*(-6*z_60^14 + 6*z_60^6 + 6*z_60^4 + 3)*x_0*x_4 + 1/4*(-5*z_60^14 + 5*z_60^6 \
+ 5*z_60^4 + 1)*x_0*x_5 + 1/4*(9*z_60^14 - 9*z_60^6- 9*z_60^4 - 6)*x_1*x_3 + 1\
/4*(-4*z_60^14 + 4*z_60^6 + 4*z_60^4 + 3)*x_1*x_4 + 1/4*(-7*z_60^14 + 7*z_60^6\
+ 7*z_60^4 + 3)*x_1*x_5 + 1/4*(3*z_60^14 - 3*z_60^6 - 3*z_60^4 - 3)*x_2*x_3 +\
1/4*(-8*z_60^14 + 8*z_60^6 + 8*z_60^4 + 3)*x_2*x_4 + 1/4*(-z_60^14 + z_60^6 +\
z_60^4 + 1)*x_2*x_5) +c_5*(1/4*(z_60^14 - z_60^6 - z_60^4)*x_3^2 + (z_60^14 \
- z_60^6 - z_60^4 + 2)*x_3*x_4 + 1/2*(-6*z_60^14 + 6*z_60^6 + 6*z_60^4 - 9)*x_\
3*x_5 + 1/4*(-2*z_60^14 + 2*z_60^6 + 2*z_60^4 - 3)*x_4^2 + 1/2*(-2*z_60^14 + 2\
*z_60^6 + 2*z_60^4 - 3)*x_4*x_5 + 1/4*(-z_60^14 + z_60^6 + z_60^4 - 2)*x_5^2),
> x_0*x_2 + 1/3*(-z_60^14 + z_60^6 + z_60^4 + 1)*x_2^2 +(1/4*(-z_60^14 + z_60^\
6 + z_60^4 - 1)*x_0*x_3 + 1/4*(3*z_60^14 - 3*z_60^6 - 3*z_60^4 - 3)*x_0*x_4 + \
1/2*(-z_60^14 + z_60^6 + z_60^4)*x_0*x_5 + 1/4*(z_60^14 - z_60^6 - z_60^4 - 2)\
*x_1*x_4 + 1/4*(z_60^14 - z_60^6 - z_60^4 - 2)*x_1*x_5 + 1/4*(-3*z_60^14 + 3*z\
_60^6 + 3*z_60^4)*x_2*x_3 +1/4*(2*z_60^14 - 2*z_60^6 - 2*z_60^4 - 1)*x_2*x_4 +\
1/4*(3*z_60^14 - 3*z_60^6 - 3*z_60^4 - 1)*x_2*x_5) +c_5*(1/2*(z_60^14 - z_60^\
6 - z_60^4 + 1)*x_3^2 + 1/2*(3*z_60^14 - 3*z_60^6 - 3*z_60^4 + 5)*x_3*x_4 + 1/\
2*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 - 3)*x_3*x_5 + 1/4*(-z_60^14 + z_60^6 + z_\
60^4 - 1)*x_4^2 + 1/2*(-4*z_60^14 + 4*z_60^6 + 4*z_60^4 - 7)*x_4*x_5 + 1/4*(-3\
*z_60^14 + 3*z_60^6 + 3*z_60^4 - 7)*x_5^2),
> x_1^2 + 1/3*(-z_60^14 + z_60^6 + z_60^4 - 3)*x_2^2 +(1/2*(2*z_60^14 - 2*z_60\
^6 - 2*z_60^4 + 1)*x_0*x_3 + 1/2*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 + 1)*x_0*x_\
5 + 1/2*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 + 3)*x_1*x_3 + 1/2*(z_60^14 - z_60^6\
- z_60^4 - 1)*x_1*x_4 + 1/2*(z_60^14 - z_60^6 - z_60^4 - 1)*x_1*x_5 + 1/2*(2*\
z_60^14 - 2*z_60^6 - 2*z_60^4 + 1)*x_2*x_4 + 1/2*(-z_60^14 + z_60^6 + z_60^4 +\
2)*x_2*x_5) +c_5*(1/2*(-4*z_60^14 + 4*z_60^6 + 4*z_60^4 - 5)*x_3^2 + (2*z_60^\
14 - 2*z_60^6 - 2*z_60^4 + 2)*x_3*x_4 + (6*z_60^14 - 6*z_60^6 - 6*z_60^4 + 9)*\
x_3*x_5 + (z_60^14 - z_60^6 - z_60^4 + 2)*x_4^2 + (2*z_60^14 - 2*z_60^6 - 2*z_\
60^4 + 4)*x_4*x_5 + 1/2*(5*z_60^14 - 5*z_60^6 - 5*z_60^4 + 8)*x_5^2),
> x_1*x_2 + 1/3*(-z_60^14 + z_60^6 + z_60^4 - 2)*x_2^2 +(1/4*(-z_60^14 + z_60^\
6 + z_60^4 + 2)*x_0*x_3 + 1/4*(4*z_60^14 - 4*z_60^6 - 4*z_60^4 - 3)*x_0*x_5 + \
1/4*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 + 3)*x_1*x_3 + 1/4*(z_60^14 - z_60^6 - z\
_60^4 + 1)*x_1*x_4 + 1/2*(2*z_60^14 - 2*z_60^6 - 2*z_60^4 - 1)*x_1*x_5 + 1/4*(\
2*z_60^14 - 2*z_60^6 - 2*z_60^4 - 1)*x_2*x_4 + 1/4*(3*z_60^14 - 3*z_60^6 - 3*z\
_60^4 - 1)*x_2*x_5) +c_5*(1/4*(-z_60^14 + z_60^6 + z_60^4 - 1)*x_3^2 + 1/2*(3*\
z_60^14 - 3*z_60^6 - 3*z_60^4 + 5)*x_3*x_4 + 1/2*(6*z_60^14 - 6*z_60^6 - 6*z_6\
0^4 + 9)*x_3*x_5 + 1/2*(z_60^14 - z_60^6 - z_60^4 + 1)*x_4^2 + 1/2*(5*z_60^14 \
- 5*z_60^6 - 5*z_60^4 + 8)*x_4*x_5 + 1/4*(6*z_60^14 - 6*z_60^6 - 6*z_60^4 + 11\
)*x_5^2)]);
> Dimension(X);
1
> IsSingular(X);
false
> HilbertPolynomial(Ideal(X));
10*$.1 - 5
2
> A:=Matrix([[z_60^14 - z_60^6 - z_60^4, 0, 1, 0, 0, 0],
> [0, -1, 0, 0, 0, 0],
> [z_60^14 - z_60^6 - z_60^4, 0, -z_60^14 + z_60^6 + z_60^4, 0, 0, 0],
> [0, 0, 0, -1, 0, 0],
> [0, 0, 0, 0, 0, -1],
> [0, 0, 0, 0, -1, 0]]);
> B:=Matrix([[0, -1, 0, 0, 0, 0],
> [-1, 0, 0, 0, 0, 0],
> [1, -1, -1, 0, 0, 0],
> [0, 0, 0, 0, 1, 0],
> [0, 0, 0, 1, 0, 0],
> [0, 0, 0, z_60^14 - z_60^6 - z_60^4, z_60^14 - z_60^6 - z_60^4, -1]]);
> C:=Matrix([[z_60^14-z_60^6-z_60^4, -z_60^14+z_60^6+z_60^4-1, -z_60^14+z_60^6\
+z_60^4-1, 0, 0, 0],
> [z_60^14-z_60^6-z_60^4,-z_60^14+z_60^6+z_60^4-1, -z_60^14+z_60^6+z_60^4, 0, \
0, 0],
> [-1, 1, 0, 0, 0, 0],
> [0, 0, 0, -1, 0, z_60^14-z_60^6-z_60^4],
> [0, 0, 0, 0, -1, 1],
> [0, 0, 0, 0, 0, 1]
> ]);
> Order(A);
2
> Order(B);
2
> Order(C);
2
> Order( (A*B*C)^(-1));
3
> GL6K:=GeneralLinearGroup(6,K);
> IdentifyGroup(sub<GL6K | A,B,C>);
<60, 5>
> Automorphism(X,A);
Mapping from: Sch: X to Sch: X
with equations :
(z_60^14 - z_60^6 - z_60^4)*x_0 + (z_60^14 - z_60^6 - z_60^4)*x_2
-x_1
x_0 + (-z_60^14 + z_60^6 + z_60^4)*x_2
-x_3
-x_5
-x_4
and inverse
(z_60^14 - z_60^6 - z_60^4)*x_0 + (z_60^14 - z_60^6 - z_60^4)*x_2
-x_1
x_0 + (-z_60^14 + z_60^6 + z_60^4)*x_2
-x_3
-x_5
-x_4
> Automorphism(X,B);
Mapping from: Sch: X to Sch: X
with equations :
-x_1 + x_2
-x_0 - x_2
-x_2
x_4 + (z_60^14 - z_60^6 - z_60^4)*x_5
x_3 + (z_60^14 - z_60^6 - z_60^4)*x_5
-x_5
and inverse
-x_1 + x_2
-x_0 - x_2
-x_2
x_4 + (z_60^14 - z_60^6 - z_60^4)*x_5
x_3 + (z_60^14 - z_60^6 - z_60^4)*x_5
-x_5
> Automorphism(X,C);
Mapping from: Sch: X to Sch: X
with equations :
(z_60^14 - z_60^6 - z_60^4)*x_0 + (z_60^14 - z_60^6 - z_60^4)*x_1 - x_2
(-z_60^14 + z_60^6 + z_60^4 - 1)*x_0 + (-z_60^14 + z_60^6 + z_60^4 - 1)*x_1 +
x_2
(-z_60^14 + z_60^6 + z_60^4 - 1)*x_0 + (-z_60^14 + z_60^6 + z_60^4)*x_1
-x_3
-x_4
(z_60^14 - z_60^6 - z_60^4)*x_3 + x_4 + x_5
and inverse
(z_60^14 - z_60^6 - z_60^4)*x_0 + (z_60^14 - z_60^6 - z_60^4)*x_1 - x_2
(-z_60^14 + z_60^6 + z_60^4 - 1)*x_0 + (-z_60^14 + z_60^6 + z_60^4 - 1)*x_1 +
x_2
(-z_60^14 + z_60^6 + z_60^4 - 1)*x_0 + (-z_60^14 + z_60^6 + z_60^4)*x_1
-x_3
-x_4
(z_60^14 - z_60^6 - z_60^4)*x_3 + x_4 + x_5
Next, we study the value \(c_2 = 13 + \zeta_{60}^{29}\).
> K:=CyclotomicField(60);
> P5:=ProjectiveSpace(K,5);
> c_2:=13+z_60^29;
> c_5:=-(-12*z_60^14+12*z_60^6+12*z_60^4+15/2);
> X:=Scheme(P5,[x_0^2 + x_0*x_1 + (-z_60^14 + z_60^6 + z_60^4)*x_0*x_2 + x_1^2\
+ (-z_60^14 + z_60^6 + z_60^4 - 1)*x_1*x_2 + x_2^2+c_2*(x_3^2 + (z_60^14 - z_\
60^6 - z_60^4)*x_3*x_4 + (z_60^14 - z_60^6 - z_60^4)*x_3*x_5 + x_4^2 + x_4*x_5\
+ x_5^2),
> x_0^2 + 1/3*(z_60^14 - z_60^6 - z_60^4 - 2)*x_2^2 +(x_0*x_3 + 1/2*(-z_60^14 \
+ z_60^6 + z_60^4 + 1)*x_0*x_5 + 1/2*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 + 1)*x_\
1*x_4 + 1/2*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 + 1)*x_1*x_5 + 1/2*(3*z_60^14 - \
3*z_60^6 - 3*z_60^4 - 1)*x_2*x_4 + 1/2*(-4*z_60^14 + 4*z_60^6 + 4*z_60^4 + 3)*\
x_2*x_5) +c_5*(x_3^2 + (-z_60^14 + z_60^6 + z_60^4 - 3)*x_3*x_4 + (3*z_60^14 -\
3*z_60^6 - 3*z_60^4 + 3)*x_3*x_5 + 1/2*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 - 4)\
*x_4^2 + (-3*z_60^14 + 3*z_60^6 + 3*z_60^4 - 4)*x_4*x_5 + 1/2*(-z_60^14 + z_60\
^6 + z_60^4)*x_5^2),
> x_0*x_1 + 1/3*x_2^2 +(1/2*(2*z_60^14 - 2*z_60^6 - 2*z_60^4 - 3)*x_0*x_3 + 1/\
4*(-6*z_60^14 + 6*z_60^6 + 6*z_60^4 + 3)*x_0*x_4 + 1/4*(-5*z_60^14 + 5*z_60^6 \
+ 5*z_60^4 + 1)*x_0*x_5 + 1/4*(9*z_60^14 - 9*z_60^6- 9*z_60^4 - 6)*x_1*x_3 + 1\
/4*(-4*z_60^14 + 4*z_60^6 + 4*z_60^4 + 3)*x_1*x_4 + 1/4*(-7*z_60^14 + 7*z_60^6\
+ 7*z_60^4 + 3)*x_1*x_5 + 1/4*(3*z_60^14 - 3*z_60^6 - 3*z_60^4 - 3)*x_2*x_3 +\
1/4*(-8*z_60^14 + 8*z_60^6 + 8*z_60^4 + 3)*x_2*x_4 + 1/4*(-z_60^14 + z_60^6 +\
z_60^4 + 1)*x_2*x_5) +c_5*(1/4*(z_60^14 - z_60^6 - z_60^4)*x_3^2 + (z_60^14 \
- z_60^6 - z_60^4 + 2)*x_3*x_4 + 1/2*(-6*z_60^14 + 6*z_60^6 + 6*z_60^4 - 9)*x_\
3*x_5 + 1/4*(-2*z_60^14 + 2*z_60^6 + 2*z_60^4 - 3)*x_4^2 + 1/2*(-2*z_60^14 + 2\
*z_60^6 + 2*z_60^4 - 3)*x_4*x_5 + 1/4*(-z_60^14 + z_60^6 + z_60^4 - 2)*x_5^2),
> x_0*x_2 + 1/3*(-z_60^14 + z_60^6 + z_60^4 + 1)*x_2^2 +(1/4*(-z_60^14 + z_60^\
6 + z_60^4 - 1)*x_0*x_3 + 1/4*(3*z_60^14 - 3*z_60^6 - 3*z_60^4 - 3)*x_0*x_4 + \
1/2*(-z_60^14 + z_60^6 + z_60^4)*x_0*x_5 + 1/4*(z_60^14 - z_60^6 - z_60^4 - 2)\
*x_1*x_4 + 1/4*(z_60^14 - z_60^6 - z_60^4 - 2)*x_1*x_5 + 1/4*(-3*z_60^14 + 3*z\
_60^6 + 3*z_60^4)*x_2*x_3 +1/4*(2*z_60^14 - 2*z_60^6 - 2*z_60^4 - 1)*x_2*x_4 +\
1/4*(3*z_60^14 - 3*z_60^6 - 3*z_60^4 - 1)*x_2*x_5) +c_5*(1/2*(z_60^14 - z_60^\
6 - z_60^4 + 1)*x_3^2 + 1/2*(3*z_60^14 - 3*z_60^6 - 3*z_60^4 + 5)*x_3*x_4 + 1/\
2*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 - 3)*x_3*x_5 + 1/4*(-z_60^14 + z_60^6 + z_\
60^4 - 1)*x_4^2 + 1/2*(-4*z_60^14 + 4*z_60^6 + 4*z_60^4 - 7)*x_4*x_5 + 1/4*(-3\
*z_60^14 + 3*z_60^6 + 3*z_60^4 - 7)*x_5^2),
> x_1^2 + 1/3*(-z_60^14 + z_60^6 + z_60^4 - 3)*x_2^2 +(1/2*(2*z_60^14 - 2*z_60\
^6 - 2*z_60^4 + 1)*x_0*x_3 + 1/2*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 + 1)*x_0*x_\
5 + 1/2*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 + 3)*x_1*x_3 + 1/2*(z_60^14 - z_60^6\
- z_60^4 - 1)*x_1*x_4 + 1/2*(z_60^14 - z_60^6 - z_60^4 - 1)*x_1*x_5 + 1/2*(2*\
z_60^14 - 2*z_60^6 - 2*z_60^4 + 1)*x_2*x_4 + 1/2*(-z_60^14 + z_60^6 + z_60^4 +\
2)*x_2*x_5) +c_5*(1/2*(-4*z_60^14 + 4*z_60^6 + 4*z_60^4 - 5)*x_3^2 + (2*z_60^\
14 - 2*z_60^6 - 2*z_60^4 + 2)*x_3*x_4 + (6*z_60^14 - 6*z_60^6 - 6*z_60^4 + 9)*\
x_3*x_5 + (z_60^14 - z_60^6 - z_60^4 + 2)*x_4^2 + (2*z_60^14 - 2*z_60^6 - 2*z_\
60^4 + 4)*x_4*x_5 + 1/2*(5*z_60^14 - 5*z_60^6 - 5*z_60^4 + 8)*x_5^2),
> x_1*x_2 + 1/3*(-z_60^14 + z_60^6 + z_60^4 - 2)*x_2^2 +(1/4*(-z_60^14 + z_60^\
6 + z_60^4 + 2)*x_0*x_3 + 1/4*(4*z_60^14 - 4*z_60^6 - 4*z_60^4 - 3)*x_0*x_5 + \
1/4*(-3*z_60^14 + 3*z_60^6 + 3*z_60^4 + 3)*x_1*x_3 + 1/4*(z_60^14 - z_60^6 - z\
_60^4 + 1)*x_1*x_4 + 1/2*(2*z_60^14 - 2*z_60^6 - 2*z_60^4 - 1)*x_1*x_5 + 1/4*(\
2*z_60^14 - 2*z_60^6 - 2*z_60^4 - 1)*x_2*x_4 + 1/4*(3*z_60^14 - 3*z_60^6 - 3*z\
_60^4 - 1)*x_2*x_5) +c_5*(1/4*(-z_60^14 + z_60^6 + z_60^4 - 1)*x_3^2 + 1/2*(3*\
z_60^14 - 3*z_60^6 - 3*z_60^4 + 5)*x_3*x_4 + 1/2*(6*z_60^14 - 6*z_60^6 - 6*z_6\
0^4 + 9)*x_3*x_5 + 1/2*(z_60^14 - z_60^6 - z_60^4 + 1)*x_4^2 + 1/2*(5*z_60^14 \
- 5*z_60^6 - 5*z_60^4 + 8)*x_4*x_5 + 1/4*(6*z_60^14 - 6*z_60^6 - 6*z_60^4 + 11\
)*x_5^2)]);
> Dimension(X);
1
> IsSingular(X);
false
> Automorphism(X,A);
Mapping from: Sch: X to Sch: X
with equations :
(z_60^14 - z_60^6 - z_60^4)*x_0 + (z_60^14 - z_60^6 - z_60^4)*x_2
-x_1
x_0 + (-z_60^14 + z_60^6 + z_60^4)*x_2
-x_3
-x_5
-x_4
and inverse
(z_60^14 - z_60^6 - z_60^4)*x_0 + (z_60^14 - z_60^6 - z_60^4)*x_2
-x_1
x_0 + (-z_60^14 + z_60^6 + z_60^4)*x_2
-x_3
-x_5
-x_4
> Automorphism(X,B);
Mapping from: Sch: X to Sch: X
with equations :
-x_1 + x_2
-x_0 - x_2
-x_2
x_4 + (z_60^14 - z_60^6 - z_60^4)*x_5
x_3 + (z_60^14 - z_60^6 - z_60^4)*x_5
-x_5
and inverse
-x_1 + x_2
-x_0 - x_2
-x_2
x_4 + (z_60^14 - z_60^6 - z_60^4)*x_5
x_3 + (z_60^14 - z_60^6 - z_60^4)*x_5
-x_5
> Automorphism(X,C);
Mapping from: Sch: X to Sch: X
with equations :
(z_60^14 - z_60^6 - z_60^4)*x_0 + (z_60^14 - z_60^6 - z_60^4)*x_1 - x_2
(-z_60^14 + z_60^6 + z_60^4 - 1)*x_0 + (-z_60^14 + z_60^6 + z_60^4 - 1)*x_1 +
x_2
(-z_60^14 + z_60^6 + z_60^4 - 1)*x_0 + (-z_60^14 + z_60^6 + z_60^4)*x_1
-x_3
-x_4
(z_60^14 - z_60^6 - z_60^4)*x_3 + x_4 + x_5
and inverse
(z_60^14 - z_60^6 - z_60^4)*x_0 + (z_60^14 - z_60^6 - z_60^4)*x_1 - x_2
(-z_60^14 + z_60^6 + z_60^4 - 1)*x_0 + (-z_60^14 + z_60^6 + z_60^4 - 1)*x_1 +
x_2
(-z_60^14 + z_60^6 + z_60^4 - 1)*x_0 + (-z_60^14 + z_60^6 + z_60^4)*x_1
-x_3
-x_4
(z_60^14 - z_60^6 - z_60^4)*x_3 + x_4 + x_5