Davids-MacBook-Pro-2:aut dswinarski$ magma Magma V2.21-7 Tue Mar 22 2016 07:09:33 on Davids-MacBook-Pro-2 [Seed = 662722192] +-------------------------------------------------------------------+ | This copy of Magma has been made available through a | | generous initiative of the | | | | Simons Foundation | | | | covering U.S. Colleges, Universities, Nonprofit Research entities,| | and their students, faculty, and staff | +-------------------------------------------------------------------+ Type ? for help. Type -D to quit. > load "autcv10d.txt"; Loading "autcv10d.txt" > G:=SmallGroup(48,6); > RunExample(G,6,[2,4,24]); Set seed to 0. Character Table of Group G -------------------------- ----------------------------------------------------------------- Class | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Size | 1 1 12 2 2 12 2 2 2 2 2 2 2 2 2 Order | 1 2 2 3 4 4 6 8 8 12 12 24 24 24 24 ----------------------------------------------------------------- p = 2 1 1 1 4 2 2 4 5 5 7 7 10 11 11 10 p = 3 1 2 3 1 5 6 2 8 9 5 5 9 9 8 8 ----------------------------------------------------------------- X.1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 + 1 1 -1 1 1 -1 1 1 1 1 1 1 1 1 1 X.3 + 1 1 1 1 1 -1 1 -1 -1 1 1 -1 -1 -1 -1 X.4 + 1 1 -1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 X.5 + 2 2 0 -1 2 0 -1 2 2 -1 -1 -1 -1 -1 -1 X.6 + 2 2 0 -1 2 0 -1 -2 -2 -1 -1 1 1 1 1 X.7 + 2 2 0 2 -2 0 2 0 0 -2 -2 0 0 0 0 X.8 0 2 -2 0 2 0 0 -2 Z1 -Z1 0 0 -Z1 -Z1 Z1 Z1 X.9 0 2 -2 0 2 0 0 -2 -Z1 Z1 0 0 Z1 Z1 -Z1 -Z1 X.10 + 2 2 0 -1 -2 0 -1 0 0 1 1 Z2 -Z2 -Z2 Z2 X.11 + 2 2 0 -1 -2 0 -1 0 0 1 1 -Z2 Z2 Z2 -Z2 X.12 0 2 -2 0 -1 0 0 1 Z1 -Z1 Z2 -Z2 Z3-Z3#5 Z3#5 -Z3 X.13 0 2 -2 0 -1 0 0 1 -Z1 Z1 Z2 -Z2 -Z3 Z3#5-Z3#5 Z3 X.14 0 2 -2 0 -1 0 0 1 Z1 -Z1 -Z2 Z2-Z3#5 Z3 -Z3 Z3#5 X.15 0 2 -2 0 -1 0 0 1 -Z1 Z1 -Z2 Z2 Z3#5 -Z3 Z3-Z3#5 Explanation of Character Value Symbols -------------------------------------- # denotes algebraic conjugation, that is, #k indicates replacing the root of unity w by w^k Z1 = (CyclotomicField(8: Sparse := true)) ! [ RationalField() | 0, -1, 0, -1 ] Z2 = (CyclotomicField(12: Sparse := true)) ! [ RationalField() | 0, 1, 0, 2 ] Z3 = (CyclotomicField(24: Sparse := true)) ! [ RationalField() | 0, -1, 0, 0, 0, -1, 0, 1 ] Conjugacy Classes of group G ---------------------------- [1] Order 1 Length 1 Rep Id(G) [2] Order 2 Length 1 Rep G.4 [3] Order 2 Length 12 Rep G.1 [4] Order 3 Length 2 Rep G.5 [5] Order 4 Length 2 Rep G.3 [6] Order 4 Length 12 Rep G.1 * G.2 * G.3 [7] Order 6 Length 2 Rep G.4 * G.5 [8] Order 8 Length 2 Rep G.2 [9] Order 8 Length 2 Rep G.2 * G.4 [10] Order 12 Length 2 Rep G.3 * G.5^2 [11] Order 12 Length 2 Rep G.3 * G.5 [12] Order 24 Length 2 Rep G.2 * G.4 * G.5 [13] Order 24 Length 2 Rep G.2 * G.4 * G.5^2 [14] Order 24 Length 2 Rep G.2 * G.5^2 [15] Order 24 Length 2 Rep G.2 * G.5 Surface kernel generators: [ G.1 * G.4 * G.5, G.1 * G.2 * G.4, G.2 * G.3 * G.4 * G.5 ] Is hyperelliptic? true Curve is hyperelliptic > FP,f:=FPGroup(G); > PermG,g:=PermutationGroup(FP); > g(Inverse(f)(G.1 * G.4 * G.5)); (1, 11)(2, 22)(3, 10)(4, 5)(6, 15)(7, 14)(8, 13)(9, 18)(12, 21)(16, 24)(17, 23) > g(Inverse(f)(G.1 * G.2 * G.4)); (1, 7, 4, 2)(3, 6, 9, 13)(5, 24, 11, 17)(8, 12, 15, 21)(10, 16, 18, 23)(14, 19, 22, 20)