Magma V2.21-7 Wed Mar 23 2016 18:26:44 on Davids-MacBook-Pro-2 [Seed = 3715666875] +-------------------------------------------------------------------+ | This copy of Magma has been made available through a | | generous initiative of the | | | | Simons Foundation | | | | covering U.S. Colleges, Universities, Nonprofit Research entities,| | and their students, faculty, and staff | +-------------------------------------------------------------------+ Type ? for help. Type -D to quit. > load "autcv10e.txt"; Loading "autcv10e.txt" > G:=SmallGroup(28,3); > RunExample(G,6,[2,2,2,7]); Set seed to 0. Character Table of Group G -------------------------- -------------------------------------------------- Class | 1 2 3 4 5 6 7 8 9 10 Size | 1 1 7 7 2 2 2 2 2 2 Order | 1 2 2 2 7 7 7 14 14 14 -------------------------------------------------- p = 2 1 1 1 1 6 7 5 5 6 7 p = 7 1 2 3 4 1 1 1 2 2 2 -------------------------------------------------- X.1 + 1 1 1 1 1 1 1 1 1 1 X.2 + 1 -1 -1 1 1 1 1 -1 -1 -1 X.3 + 1 1 -1 -1 1 1 1 1 1 1 X.4 + 1 -1 1 -1 1 1 1 -1 -1 -1 X.5 + 2 2 0 0 Z1 Z1#2 Z1#3 Z1#3 Z1 Z1#2 X.6 + 2 2 0 0 Z1#3 Z1 Z1#2 Z1#2 Z1#3 Z1 X.7 + 2 -2 0 0 Z1#2 Z1#3 Z1 -Z1-Z1#2-Z1#3 X.8 + 2 2 0 0 Z1#2 Z1#3 Z1 Z1 Z1#2 Z1#3 X.9 + 2 -2 0 0 Z1 Z1#2 Z1#3-Z1#3 -Z1-Z1#2 X.10 + 2 -2 0 0 Z1#3 Z1 Z1#2-Z1#2-Z1#3 -Z1 Explanation of Character Value Symbols -------------------------------------- # denotes algebraic conjugation, that is, #k indicates replacing the root of unity w by w^k Z1 = (CyclotomicField(7: Sparse := true)) ! [ RationalField() | 0, 0, 1, 0, 0, 1 ] Conjugacy Classes of group G ---------------------------- [1] Order 1 Length 1 Rep Id(G) [2] Order 2 Length 1 Rep G.2 [3] Order 2 Length 7 Rep G.1 * G.2 [4] Order 2 Length 7 Rep G.1 [5] Order 7 Length 2 Rep G.3 [6] Order 7 Length 2 Rep G.3^2 [7] Order 7 Length 2 Rep G.3^3 [8] Order 14 Length 2 Rep G.2 * G.3^3 [9] Order 14 Length 2 Rep G.2 * G.3 [10] Order 14 Length 2 Rep G.2 * G.3^2 Surface kernel generators: [ G.2, G.1 * G.3^2, G.1 * G.2 * G.3, G.3 ] Is hyperelliptic? true Curve is hyperelliptic > FP,f:=FPGroup(G); > PermG,g:=PermutationGroup(FP); > g(Inverse(f)(G.2)); (1, 2)(3, 4)(5, 7)(6, 8)(9, 11)(10, 12)(13, 14) > g(Inverse(f)(G.1*G.3^2)); (1, 6)(2, 8)(5, 10)(7, 12)(9, 13)(11, 14)