Magaard, Shaska, Shpectorov, and Völklein list smooth Riemann surfaces of genus \( g \leq 10\) with automorphism groups \(G\) satisfying \( \# G > 4(g-1)\). Their list is based on a computer search by Breuer.
They list a 1-parameter family of genus 6 Riemann surface with automorphism group (24,8) in the GAP library of small groups. The quotient of any surface in this family by its automorphism group has genus zero, and the quotient morphism is branched over four points with ramification indices (2,2,3,4). Moreover, this family contains the cyclic trigonal Riemann surface with automorphism group (72,15).
We use Magma to compute equations of these Riemann surfaces.
We begin with the conjecture that the cyclic trigonal equation for this family is \( y^3 = (x^4-tx^2+1) (x^4+ t x^2+1)^2\). We find the subgroup of the group (72,15) that preserves this equation and check that it is the desired group.
First, we write the canonical ideal associated to this trigonal equation for a generic value of \(t\), and load the matrix generators from the group (72,15):
Magma V2.21-7 Fri May 6 2016 21:20:33 on Davids-MacBook-Pro-2 [Seed =
3250312281]
+-------------------------------------------------------------------+
| This copy of Magma has been made available through a |
| generous initiative of the |
| |
| Simons Foundation |
| |
| covering U.S. Colleges, Universities, Nonprofit Research entities,|
| and their students, faculty, and staff |
+-------------------------------------------------------------------+
Type ? for help. Type -D to quit.
> K<z_36>:=CyclotomicField(36);
> z_12:=z_36^3;
> z_9:=z_36^4;
> z_6:=z_36^6;
> z_3:=z_36^12;
> t:=17+z_36^5;
> P5<x_0,x_1,x_2,x_3,x_4,x_5>:=ProjectiveSpace(K,5);
> X:=Scheme(P5,[
> x_0*x_2-x_1^2,
> x_0*x_4-x_1*x_3,
> x_0*x_5-x_2*x_3,
> x_1*x_4-x_0*x_5,
> x_1*x_5-x_2*x_4,
> x_3*x_5-x_4^2,
> x_0^3+t*x_0^2*x_2+x_0*x_2^2+x_3^3-t*x_3^2*x_5+x_3*x_5^2,
> x_0^2*x_1+t*x_0*x_1*x_2+x_1*x_2^2+x_3^2*x_4-t*x_3*x_4*x_5+x_4*x_5^2,
> x_0^2*x_2+t*x_0*x_2^2+x_2^3+x_3^2*x_5-t*x_3*x_5^2+x_5^3
> ]);
> A:=Matrix([
> [0, 0, 0, -z_9/2, z_36^13/2, z_9/2],
> [0, 0, 0, -z_36^13, 0, -z_36^13],
> [0, 0, 0, z_9/2, z_36^13/2, -z_9/2],
> [z_36^14/2, z_36^5/2, -z_36^14/2, 0, 0, 0],
> [-z_36^5, 0, -z_36^5, 0, 0, 0],
> [-z_36^14/2, z_36^5/2, z_36^14/2, 0, 0, 0]
> ]);
> B:=Matrix([
> [0, 0, 0, z_12^5, 0, 0],
> [0, 0, 0, 0, z_3^2, 0],
> [0, 0, 0, 0, 0, -z_12^5],
> [z_12, 0, 0, 0, 0, 0],
> [0, z_3, 0, 0, 0, 0],
> [0, 0, -z_12, 0, 0, 0]
> ]);
> GL6K:=GeneralLinearGroup(6,K);
> G:=sub<GL6K | A,B>;
Next, we compute the subgroup of \(G\) that preserves \(X\):
> nm:=Inverse(NumberingMap(G));
> L:=[];
> for i:=1 to 72 do
for> if Automorphism(P5,nm(i))(X) eq X then
for|if> L:=Append(L,nm(i));
for|if> end if;
for> end for;
> #L;
24
> H:=sub<GL6K | L>;
> IdentifyGroup(H);
<24, 8>
We search \(H\) to find a set of surface kernel generators:
> load "autcv10e.txt";
> ASKG:=AllSurfaceKernelGenerators(H,[2,2,3,4]);
> ASKG[1];
[
[0 0 0 0 0 z_36^9 - z_36^3]
[0 0 0 0 z_36^6 0]
[0 0 0 -z_36^9 + z_36^3 0 0]
[0 0 z_36^3 0 0 0]
[0 -z_36^6 + 1 0 0 0 0]
[-z_36^3 0 0 0 0 0],
[ 0 0 1 0 0 0]
[ 0 -1 0 0 0 0]
[ 1 0 0 0 0 0]
[ 0 0 0 0 0 1]
[ 0 0 0 0 -1 0]
[ 0 0 0 1 0 0],
[z_36^6 - 1 0 0 0 0 0]
[ 0 z_36^6 - 1 0 0 0 0]
[ 0 0 z_36^6 - 1 0 0 0]
[ 0 0 0 -z_36^6 0 0]
[ 0 0 0 0 -z_36^6 0]
[ 0 0 0 0 0 -z_36^6],
[0 0 0 -z_36^3 0 0]
[0 0 0 0 z_36^6 - 1 0]
[0 0 0 0 0 z_36^3]
[-z_36^9 + z_36^3 0 0 0 0 0]
[0 -z_36^6 0 0 0 0]
[0 0 z_36^9 - z_36^3 0 0 0]
]
> K<z_12>:=CyclotomicField(12);
> z_6:=z_12^2;
> z_3:=z_12^4;
> t:=1;
> P5<x_0,x_1,x_2,x_3,x_4,x_5>:=ProjectiveSpace(K,5);
> X:=Scheme(P5,[
> x_0*x_2-x_1^2,
> x_0*x_4-x_1*x_3,
> x_0*x_5-x_2*x_3,
> x_1*x_4-x_0*x_5,
> x_1*x_5-x_2*x_4,
> x_3*x_5-x_4^2,
> x_0^3+t*x_0^2*x_2+x_0*x_2^2+x_3^3-t*x_3^2*x_5+x_3*x_5^2,
> x_0^2*x_1+t*x_0*x_1*x_2+x_1*x_2^2+x_3^2*x_4-t*x_3*x_4*x_5+x_4*x_5^2,
> x_0^2*x_2+t*x_0*x_2^2+x_2^3+x_3^2*x_5-t*x_3*x_5^2+x_5^3
> ]);
> Dimension(X);
1
> IsSingular(X);
false
> HilbertPolynomial(Ideal(X));
10*$.1 - 5
2
> A:=Matrix([
> [0, 0, 0, 0, 0, z_12^5],
> [0, 0, 0, 0, z_6, 0],
> [0, 0, 0, z_12^-1, 0, 0],
> [0, 0, z_12, 0, 0, 0],
> [0, -z_6+1, 0, 0, 0, 0],
> [-z_12, 0, 0, 0, 0, 0]
> ]);
> B:=Matrix([
> [0, 0, 1, 0, 0, 0],
> [0, -1, 0, 0, 0, 0],
> [1, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 1],
> [0, 0, 0, 0, -1, 0],
> [0, 0, 0, 1, 0, 0]
> ]);
> C:=Matrix([
> [z_3, 0, 0, 0, 0, 0],
> [0, z_3, 0, 0, 0, 0],
> [0, 0, z_3, 0, 0, 0],
> [0, 0, 0, z_3^2, 0, 0],
> [0, 0, 0, 0, z_3^2, 0],
> [0, 0, 0, 0, 0, z_3^2]
> ]);
> Order(A);
2
> Order(B);
2
> Order(C);
3
> Order( (A*B*C)^(-1));
4
> GL6K:=GeneralLinearGroup(6,K);
> IdentifyGroup(sub<GL6K | A,B,C>);
<24, 8>
> Automorphism(X,A);
Mapping from: Sch: X to Sch: X
with equations :
-z_12*x_5
(-z_12^2 + 1)*x_4
z_12*x_3
(-z_12^3 + z_12)*x_2
z_12^2*x_1
(z_12^3 - z_12)*x_0
and inverse
-z_12*x_5
(-z_12^2 + 1)*x_4
z_12*x_3
(-z_12^3 + z_12)*x_2
z_12^2*x_1
(z_12^3 - z_12)*x_0
> Automorphism(X,B);
Mapping from: Sch: X to Sch: X
with equations :
x_2
-x_1
x_0
x_5
-x_4
x_3
and inverse
x_2
-x_1
x_0
x_5
-x_4
x_3
> Automorphism(X,C);
Mapping from: Sch: X to Sch: X
with equations :
(z_12^2 - 1)*x_0
(z_12^2 - 1)*x_1
(z_12^2 - 1)*x_2
-z_12^2*x_3
-z_12^2*x_4
-z_12^2*x_5
and inverse
-z_12^2*x_0
-z_12^2*x_1
-z_12^2*x_2
(z_12^2 - 1)*x_3
(z_12^2 - 1)*x_4
(z_12^2 - 1)*x_5
Next we check the value \(t=17+\zeta_{12}^5\):
> K<z_12>:=CyclotomicField(12);
> z_6:=z_12^2;
> z_3:=z_12^4;
> t:=17+z_12^5;
> P5<x_0,x_1,x_2,x_3,x_4,x_5>:=ProjectiveSpace(K,5);
> X:=Scheme(P5,[
> x_0*x_2-x_1^2,
> x_0*x_4-x_1*x_3,
> x_0*x_5-x_2*x_3,
> x_1*x_4-x_0*x_5,
> x_1*x_5-x_2*x_4,
> x_3*x_5-x_4^2,
> x_0^3+t*x_0^2*x_2+x_0*x_2^2+x_3^3-t*x_3^2*x_5+x_3*x_5^2,
> x_0^2*x_1+t*x_0*x_1*x_2+x_1*x_2^2+x_3^2*x_4-t*x_3*x_4*x_5+x_4*x_5^2,
> x_0^2*x_2+t*x_0*x_2^2+x_2^3+x_3^2*x_5-t*x_3*x_5^2+x_5^3
> ]);
> Dimension(X);
1
> IsSingular(X);
false
> HilbertPolynomial(Ideal(X));
10*$.1 - 5
2
> A:=Matrix([
> [0, 0, 0, 0, 0, z_12^5],
> [0, 0, 0, 0, z_6, 0],
> [0, 0, 0, z_12^-1, 0, 0],
> [0, 0, z_12, 0, 0, 0],
> [0, -z_6+1, 0, 0, 0, 0],
> [-z_12, 0, 0, 0, 0, 0]
> ]);
> B:=Matrix([
> [0, 0, 1, 0, 0, 0],
> [0, -1, 0, 0, 0, 0],
> [1, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 1],
> [0, 0, 0, 0, -1, 0],
> [0, 0, 0, 1, 0, 0]
> ]);
> C:=Matrix([
> [z_3, 0, 0, 0, 0, 0],
> [0, z_3, 0, 0, 0, 0],
> [0, 0, z_3, 0, 0, 0],
> [0, 0, 0, z_3^2, 0, 0],
> [0, 0, 0, 0, z_3^2, 0],
> [0, 0, 0, 0, 0, z_3^2]
> ]);
> Order(A);
2
> Order(B);
2
> Order(C);
3
> Order( (A*B*C)^(-1));
4
> GL6K:=GeneralLinearGroup(6,K);
> IdentifyGroup(sub<GL6K | A,B,C>);
<24, 8>
> Automorphism(X,A);
Mapping from: Sch: X to Sch: X
with equations :
-z_12*x_5
(-z_12^2 + 1)*x_4
z_12*x_3
(-z_12^3 + z_12)*x_2
z_12^2*x_1
(z_12^3 - z_12)*x_0
and inverse
-z_12*x_5
(-z_12^2 + 1)*x_4
z_12*x_3
(-z_12^3 + z_12)*x_2
z_12^2*x_1
(z_12^3 - z_12)*x_0
> Automorphism(X,B);
Mapping from: Sch: X to Sch: X
with equations :
x_2
-x_1
x_0
x_5
-x_4
x_3
and inverse
x_2
-x_1
x_0
x_5
-x_4
x_3
> Automorphism(X,C);
Mapping from: Sch: X to Sch: X
with equations :
(z_12^2 - 1)*x_0
(z_12^2 - 1)*x_1
(z_12^2 - 1)*x_2
-z_12^2*x_3
-z_12^2*x_4
-z_12^2*x_5
and inverse
-z_12^2*x_0
-z_12^2*x_1
-z_12^2*x_2
(z_12^2 - 1)*x_3
(z_12^2 - 1)*x_4
(z_12^2 - 1)*x_5
>