Magaard, Shaska, Shpectorov, and Völklein list smooth Riemann surfaces of genus \( g \leq 10\) with automorphism groups \(G\) satisfying \( \# G > 4(g-1)\). Their list is based on a computer search by Breuer.
They list two 1-parameter family of genus 6 Riemann surface with automorphism grou (24,8) in the GAP library of small groups. One of these families consists of hyperelliptic Riemann surfaces, and the other family consists of cyclic trigonal Riemann surfaces. In this page we study the trigonal family. The quotient of any surface in this family by its automorphism group has genus zero, and the quotient morphism is branched over four points with ramification indices (2,2,3,4). Moreover, this family contains the cyclic trigonal Riemann surface with automorphism group (48,15).
We use Magma to compute equations of these Riemann surfaces.
We begin with the conjecture that the cyclic trigonal equation for this family is \( y^3 = (x^4-t)^2 (tx^4+1)\). We find the subgroup of the group (48,15) that preserves this equation and check that it is the desired group.
First, we write the canonical ideal associated to this trigonal equation for a generic value of \(t\), and load the matrix generators from the group (48,15):
Magma V2.21-7 Fri May 6 2016 22:08:34 on Davids-MacBook-Pro-2 [Seed =
3083710188]
+-------------------------------------------------------------------+
| This copy of Magma has been made available through a |
| generous initiative of the |
| |
| Simons Foundation |
| |
| covering U.S. Colleges, Universities, Nonprofit Research entities,|
| and their students, faculty, and staff |
+-------------------------------------------------------------------+
Type ? for help. Type -D to quit.
> K<z_24>:=CyclotomicField(24);
> z_8:=z_24^3;
> i:=z_24^6;
> z_6:=z_24^4;
> z_3:=z_24^8;
> t:=17+z_24^5;
> P5<x_0,x_1,x_2,x_3,x_4,x_5>:=ProjectiveSpace(K,5);
> X:=Scheme(P5,[
> -x_4^2 + x_3*x_5,
> -x_2*x_4 + x_1*x_5,
> -x_2*x_3 + x_1*x_4,
> -x_2*x_3 + x_0*x_5,
> -x_1*x_3 + x_0*x_4,
> -x_1^2 + x_0*x_2,
> x_0*x_1^2 - t*x_2^3 - t*x_3*x_4^2 - x_5^3,
> x_0^2*x_1 - t*x_1*x_2^2 - t*x_3^2*x_4 - x_4*x_5^2,
> x_0^3 - t*x_1^2*x_2 - t*x_3^3 - x_4^2*x_5
> ]);
> A:=Matrix([
> [0,0,0,0,0,-z_8],
> [0,0,0,0,i,0],
> [0,0,0,-z_8^3,0,0],
> [0,0,z_8,0,0,0],
> [0,-i,0,0,0,0],
> [z_8^3,0,0,0,0,0]
> ]);
> B:=Matrix([
> [0,0,-z_6,0,0,0],
> [0,z_6,0,0,0,0],
> [-z_6,0,0,0,0,0],
> [0,0,0,0,0,-z_3],
> [0,0,0,0,z_3,0],
> [0,0,0,-z_3,0,0]
> ]);
>
> GL6K:=GeneralLinearGroup(6,K);
> G:=sub<GL6K | A,B>;
Next, we compute the subgroup of \(G\) that preserves \(X\):
> nm:=Inverse(NumberingMap(G));
> L:=[];
> for i:=1 to 48 do
for> if Automorphism(P5,nm(i))(X) eq X then
for|if> L:=Append(L,nm(i));
for|if> end if;
for> end for;
> #L;
24
> H:=sub<GL6K | L>;
> IdentifyGroup(H);
<24, 6>
We search \(H\) to find a set of surface kernel generators:
> load "autcv10e.txt";
> ASKG:=AllSurfaceKernelGenerators(H,[2,2,3,4]);
> ASKG[1];
[
[0 0 0 0 0 z_24^5]
[0 0 0 0 z_24^2 0]
[0 0 0 -z_24^7 + z_24^3 0 0]
[0 0 z_24 0 0 0]
[0 -z_24^6 + z_24^2 0 0 0 0]
[-z_24^7 0 0 0 0 0],
[0 0 0 0 0 z_24^7]
[0 0 0 0 -z_24^6 + z_24^2 0]
[0 0 0 -z_24 0 0]
[0 0 z_24^7 - z_24^3 0 0 0]
[0 z_24^2 0 0 0 0]
[-z_24^5 0 0 0 0 0],
[z_24^4 - 1 0 0 0 0 0]
[ 0 z_24^4 - 1 0 0 0 0]
[ 0 0 z_24^4 - 1 0 0 0]
[ 0 0 0 -z_24^4 0 0]
[ 0 0 0 0 -z_24^4 0]
[ 0 0 0 0 0 -z_24^4],
[-z_24^6 0 0 0 0 0]
[ 0 -1 0 0 0 0]
[ 0 0 z_24^6 0 0 0]
[ 0 0 0 -z_24^6 0 0]
[ 0 0 0 0 -1 0]
[ 0 0 0 0 0 z_24^6]
]
First we check the value \(t=1\). (Note that this is the curve we obtained when we studied the group (48,15).)
> K:=CyclotomicField(24);
> z_3:=z_24^8;
> t:=1;
> P5:=ProjectiveSpace(K,5);
> X:=Scheme(P5,[
> -x_4^2 + x_3*x_5,
> -x_2*x_4 + x_1*x_5,
> -x_2*x_3 + x_1*x_4,
> -x_2*x_3 + x_0*x_5,
> -x_1*x_3 + x_0*x_4,
> -x_1^2 + x_0*x_2,
> x_0*x_1^2 - t*x_2^3 - t*x_3*x_4^2 - x_5^3,
> x_0^2*x_1 - t*x_1*x_2^2 - t*x_3^2*x_4 - x_4*x_5^2,
> x_0^3 - t*x_1^2*x_2 - t*x_3^3 - x_4^2*x_5
> ]);
> Dimension(X);
1
> IsSingular(X);
false
> HilbertPolynomial(Ideal(X));
10*$.1 - 5
2
> A:=Matrix([
> [0,0,0,0,0,z_24^5],
> [0,0,0,0,z_24^2,0],
> [0,0,0,z_24^-1,0,0],
> [0,0,z_24,0,0,0],
> [0,z_24^-2,0,0,0,0],
> [z_24^-5,0,0,0,0,0]
> ]);
> B:=Matrix([
> [0,0,0,0,0,z_24^7],
> [0,0,0,0,z_24^-2,0],
> [0,0,0,-z_24,0,0],
> [0,0,-z_24^-1,0,0,0],
> [0,z_24^2,0,0,0,0],
> [-z_24^5,0,0,0,0,0]
> ]);
> C:=DiagonalMatrix([z_3,z_3,z_3,z_3^2,z_3^2,z_3^2]);
> Order(A);
2
> Order(B);
2
> Order(C);
3
> Order( (A*B*C)^-1);
4
> GL6K:=GeneralLinearGroup(6,K);
> IdentifyGroup(sub);
<24, 6>
> Automorphism(X,A);
Mapping from: Sch: X to Sch: X
with equations :
-z_24^7*x_5
(-z_24^6 + z_24^2)*x_4
z_24*x_3
(-z_24^7 + z_24^3)*x_2
z_24^2*x_1
z_24^5*x_0
and inverse
-z_24^7*x_5
(-z_24^6 + z_24^2)*x_4
z_24*x_3
(-z_24^7 + z_24^3)*x_2
z_24^2*x_1
z_24^5*x_0
> Automorphism(X,B);
Mapping from: Sch: X to Sch: X
with equations :
-z_24^5*x_5
z_24^2*x_4
(z_24^7 - z_24^3)*x_3
-z_24*x_2
(-z_24^6 + z_24^2)*x_1
z_24^7*x_0
and inverse
-z_24^5*x_5
z_24^2*x_4
(z_24^7 - z_24^3)*x_3
-z_24*x_2
(-z_24^6 + z_24^2)*x_1
z_24^7*x_0
> Automorphism(X,C);
Mapping from: Sch: X to Sch: X
with equations :
(z_24^4 - 1)*x_0
(z_24^4 - 1)*x_1
(z_24^4 - 1)*x_2
-z_24^4*x_3
-z_24^4*x_4
-z_24^4*x_5
and inverse
-z_24^4*x_0
-z_24^4*x_1
-z_24^4*x_2
(z_24^4 - 1)*x_3
(z_24^4 - 1)*x_4
(z_24^4 - 1)*x_5
Next we check the value \(t=17+z_{12}^5\):
> K<z_24>:=CyclotomicField(24);
> z_3:=z_24^8;
> t:=17+z_24^5;
> P5<x_0,x_1,x_2,x_3,x_4,x_5>:=ProjectiveSpace(K,5);
> X:=Scheme(P5,[
> -x_4^2 + x_3*x_5,
> -x_2*x_4 + x_1*x_5,
> -x_2*x_3 + x_1*x_4,
> -x_2*x_3 + x_0*x_5,
> -x_1*x_3 + x_0*x_4,
> -x_1^2 + x_0*x_2,
> x_0*x_1^2 - t*x_2^3 - t*x_3*x_4^2 - x_5^3,
> x_0^2*x_1 - t*x_1*x_2^2 - t*x_3^2*x_4 - x_4*x_5^2,
> x_0^3 - t*x_1^2*x_2 - t*x_3^3 - x_4^2*x_5
> ]);
> Dimension(X);
1
> IsSingular(X);
false
> HilbertPolynomial(Ideal(X));
10*$.1 - 5
2
> A:=Matrix([
> [0,0,0,0,0,z_24^5],
> [0,0,0,0,z_24^2,0],
> [0,0,0,z_24^-1,0,0],
> [0,0,z_24,0,0,0],
> [0,z_24^-2,0,0,0,0],
> [z_24^-5,0,0,0,0,0]
> ]);
> B:=Matrix([
> [0,0,0,0,0,z_24^7],
> [0,0,0,0,z_24^-2,0],
> [0,0,0,-z_24,0,0],
> [0,0,-z_24^-1,0,0,0],
> [0,z_24^2,0,0,0,0],
> [-z_24^5,0,0,0,0,0]
> ]);
> C:=DiagonalMatrix([z_3,z_3,z_3,z_3^2,z_3^2,z_3^2]);
> Order(A);
2
> Order(B);
2
> Order(C);
3
> Order( (A*B*C)^-1);
4
> GL6K:=GeneralLinearGroup(6,K);
> IdentifyGroup(sub<GL6K | A,B,C>);
<24, 6>
> Automorphism(X,A);
Mapping from: Sch: X to Sch: X
with equations :
-z_24^7*x_5
(-z_24^6 + z_24^2)*x_4
z_24*x_3
(-z_24^7 + z_24^3)*x_2
z_24^2*x_1
z_24^5*x_0
and inverse
-z_24^7*x_5
(-z_24^6 + z_24^2)*x_4
z_24*x_3
(-z_24^7 + z_24^3)*x_2
z_24^2*x_1
z_24^5*x_0
> Automorphism(X,B);
Mapping from: Sch: X to Sch: X
with equations :
-z_24^5*x_5
z_24^2*x_4
(z_24^7 - z_24^3)*x_3
-z_24*x_2
(-z_24^6 + z_24^2)*x_1
z_24^7*x_0
and inverse
-z_24^5*x_5
z_24^2*x_4
(z_24^7 - z_24^3)*x_3
-z_24*x_2
(-z_24^6 + z_24^2)*x_1
z_24^7*x_0
> Automorphism(X,C);
Mapping from: Sch: X to Sch: X
with equations :
(z_24^4 - 1)*x_0
(z_24^4 - 1)*x_1
(z_24^4 - 1)*x_2
-z_24^4*x_3
-z_24^4*x_4
-z_24^4*x_5
and inverse
-z_24^4*x_0
-z_24^4*x_1
-z_24^4*x_2
(z_24^4 - 1)*x_3
(z_24^4 - 1)*x_4
(z_24^4 - 1)*x_5