
IVRG, POLYNOMIALS AND SYMMETRY
g = 5, G = h192, 181i

TYLER JOHNSON

The group G = h192, 181i is the automorphism group of a genus 5 curve [2]. We use DecomposeGAction,
in conjunction with the Chevalley-Weil and Eichler Trace formulas, to find equations for a curve
with this automorphism group.

First, we find matrix generators for the action of Aut(C) on the vector space H0(C, K). These
are given in [1], Prop. 3.6, p. 92.

Let z = e2⇡i/8. Then the generators are
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which we call A, B, C, D, E, and F in the Magma session below.
> K<z>:=CyclotomicField(8);
> i:=z^2;
> sqrt2:=z+z^7;
> sqrt2^2;
2
> GL5K:=GeneralLinearGroup(5,K);
> A:=elt<GL5K | 1,0,0,0,0, 0,i,0,0,0, 0,0,i,0,0, 0,0,0,-i,0, 0,0,0,0,-i>;
> B:=elt<GL5K | 1,0,0,0,0, 0,1,0,0,0, 0,0,-1,0,0, 0,0,0,1,0, 0,0,0,0,-1>;
> C:=elt<GL5K | -1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0,
0,0,0,0,-1>;
> D:=elt<GL5K | -i,0,0,0,0, 0,0,0,i,0, 0,0,i,0,0, 0,i,0,0,0,
0,0,0,0,1>;
> E:=elt<GL5K | 0,0,0,0,1, 0,z^5/sqrt2,0,z^5/sqrt2,0, 1,0,0,0,0,
0,z^7/sqrt2,0,z^3/sqrt2,0, 0,0,1,0,0>;
> F:=elt<GL5K | -1,0,0,0,0, 0,0,0,z,0, 0,0,0,0,-1, 0,z^7,0,0,0, 0,0,-1,0,0>;
> G:=sub<GL5K | A,B,C,D,E,F>;
> IdentifyGroup(G);
<192,181>

E requires the use of square root of two; in Q[⇣8], the square root of two can be written as ⇣8+⇣7
8 .

> load "DGAv3.txt";
Loading "DecomposeGAction.txt"
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> S<a,b,c,d,e>:=PolynomialRing(K,5);
> DecomposeGAction(G,S,2);
[

rec<recformat<CharacterRow, Dimension, Multiplicity, Elements> |
CharacterRow := 6,
Dimension := 6,
Multiplicity := 2,
Elements := [

a^2,
b^2,
b*d,
c^2,
d^2,
e^2

]>,
rec<recformat<CharacterRow, Dimension, Multiplicity, Elements> |

CharacterRow := 11,
Dimension := 3,
Multiplicity := 1,
Elements := [

a*c,
a*e,
c*e

]>,
rec<recformat<CharacterRow, Dimension, Multiplicity, Elements> |

CharacterRow := 15,
Dimension := 6,
Multiplicity := 1,
Elements := [

a*b,
a*d,
b*c,
b*e,
c*d,
d*e

]>
]

It is not clear from DecomposeGAction where our polynomials lie, so we turn to our Magma
implementations of the Chevalley-Weil and Eichler Trace formulas (whose commands are CW and
Eichler, respectively).

First, Eichler finds a set of surface kernel generators.

> load "eichlerv3.txt";
Loading "eichlerv3.txt"
> load "CWv2.txt";
Loading "CWv2.txt"
> SKG:=AllSurfaceKernelGenerators(G,[2,3,8]);
> #SKG;
384
> chi:=Character(GModule(G));
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> L:=[ chi eq Eichler(G,5,SKG[i]) : i in [1..10]];
> L;
[ false, true, false, false, false, true, true, false, false, false ]

We have Eichler test to the first ten of 384 sets of surface kernel generators to see if any are
compatible with our set of matrix generators for G; the second turns out to be.

Now, we can work with CW.

> M:=SKG[2];
> T:=CharacterTable(G);
> CCL:=Classes(G);
> CW(G,0,T,CCL,M,2,S);
S_m=
[
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]

H^0(C,mK)=
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0 ]

I_m=
[

0,
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0,
0,
1,
0,
0,
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0,
0,
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0,
0

]

The values of Im tell us in which character row of G we should be looking for our equations; it
turns out to be the sixth character row. Referring back to the output of DecomposeGAction, we
see our equations must lie in Span{a2, b2, bd, c2, d2, e2}.

In order to figure out what type of equations we are looking for, we must know whether or not
G is hyperelliptic; we can find this with a command from Eichler, IsHyperelliptic, using the
set of surface kernel generators we selected earlier, M .

> IsHyperelliptic(G,5,M);
false

Let us assume G is not trigonal; we will attempt to verify this by finding equations consistent
with a general group. So, by this assumption, we are looking for a 3-dimensional subspace of
Span{a2, b2, bd, c2, d2, e2}.

Peering a little further into DecomposeGAction, we learn more about the this three dimensional
subspace.

> S2,i2,B2:=GModule(G,S,2);
> V6:=sub<S2 | i2(a^2),i2(b^2),i2(b*d),i2(c^2),i2(d^2),i2(e^2)>;
> E:=EndomorphismRing(V6);
> Image(E.1);
Vector space of degree 6, dimension 3 over K
Echelonized basis:
(1 0 0 0 0 0)
(0 0 0 1 0 0)
(0 0 0 0 0 1)
> Image(E.2);
Vector space of degree 6, dimension 3 over K
Echelonized basis:
(0 1 0 0 0 0)
(0 0 1 0 0 0)
(0 0 0 0 1 0)
> Image(E.3);
Vector space of degree 6, dimension 3 over K
Echelonized basis:
(0 1 0 0 0 0)
(0 0 1 0 0 0)
(0 0 0 0 1 0)
> Image(E.4);
Vector space of degree 6, dimension 3 over K
Echelonized basis:
(1 0 0 0 0 0)
(0 0 0 1 0 0)
(0 0 0 0 0 1)

The bases of the images of the endomorphism ring tell us we need something more specific than
a G-invariant, 3-dimensional subspace of Span{a2, b2, bd, c2, d2, e2}; we actually need a subspace of
Span{a2, c2, e2} + Span{b2, bd, d2}.
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To show a putative subspace is G-invariant, is su�cient to show that it is invariant under our
set of surface kernel generators, M , the elements of which are
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(referred to as M [1], M [2], and M [3]). However, since M is a set of surface kernel generators, we
have M [1] ⇤M [2] ⇤M [3] = Id; therefore M [3] = (M [1] ⇤M [2])�1, so invariance under M [3] follows
directly from invariance under M [1] and M [2].

So, beginning with Span{a2, c2, e2}, under M [1], a2 7! c2, c2 7! a2, e2 7! e2, and under M [2],
a2 7! �c2, c2 7! e2, and e2 7! �a2. We need to pair these with three elements of Span{b2, bd, d2}
that have the same action under M [1] and M [2], i.e. ↵, �, and � 2 Span{b2, bd, d2} such that,
under M [1], ↵ 7! �, � 7! ↵, and � 7! �, and likewise for M [2]; such ↵, �, and � constitute a basis
for Span{b2, bd, d2}, and ensure invariance of our polynomial.

↵ = �2ibd, � = b2 + d2, and � = ib2 � id2 are some such elements of Span{b2, bd, d2}, so our the
equations for G are a2 � 2ibd, c2 + b2 + d2, and e2 + ib2 � id2, if these equations are nonsingular,
which we can verify with Magma.
> P4<a,b,c,d,e>:=ProjectiveSpace(K,4);
> X:=Scheme(P4,[a^2-2*i*b*d, c^2+b^2+d^2, e^2+i*b^2-i*d^2]);
> IsNonsingular(X);
true
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