IVRG, POLYNOMIALS AND SYMMETRY
 $g=5, G=\langle 192,181\rangle$

TYLER JOHNSON

The group $G=\langle 192,181\rangle$ is the automorphism group of a genus 5 curve [2]. We use DecomposeGAction, in conjunction with the Chevalley-Weil and Eichler Trace formulas, to find equations for a curve with this automorphism group.

First, we find matrix generators for the action of $\operatorname{Aut}(C)$ on the vector space $H^{0}(C, K)$. These are given in [1], Prop. 3.6, p. 92.

Let $z=e^{2 \pi i / 8}$. Then the generators are

$$
\begin{gathered}
\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & i & 0 & 0 & 0 \\
0 & 0 & i & 0 & 0 \\
0 & 0 & 0 & -i & 0 \\
0 & 0 & 0 & 0 & -i
\end{array}\right),\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & -1
\end{array}\right),\left(\begin{array}{ccccc}
-1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & -1
\end{array}\right), \\
\left(\begin{array}{ccccc}
-i & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & i & 0 \\
0 & 0 & i & 0 & 0 \\
0 & i & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
0 & z^{5} / \sqrt{2} & 0 & z^{5} / \sqrt{2} & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & z^{7} / \sqrt{2} & 0 & z^{3} / \sqrt{2} & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right),\left(\begin{array}{ccccc}
-1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & z & 0 \\
0 & 0 & 0 & 0 & -1 \\
0 & z^{7} & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0
\end{array}\right)
\end{gathered}
$$

which we call A, B, C, D, E, and F in the Magma session below.

```
> K<z>:=CyclotomicField(8);
> i:=z^2;
> sqrt2:=z+z^7;
> sqrt2^2;
2
> GL5K:=GeneralLinearGroup(5,K);
> A:=elt<GL5K | 1,0,0,0,0, 0,i,0,0,0, 0,0,i,0,0, 0,0,0,-i,0, 0,0,0,0,-i>;
> B:=elt<GL5K | 1,0,0,0,0, 0,1,0,0,0, 0,0,-1,0,0, 0,0,0,1,0, 0,0,0,0,-1>;
> C:=elt<GL5K | -1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0,
0,0,0,0,-1>;
> D:=elt<GL5K | -i,0,0,0,0, 0,0,0,i,0, 0,0,i,0,0, 0,i,0,0,0,
0,0,0,0,1>;
> E:=elt<GL5K | 0,0,0,0,1, 0,z^5/sqrt2,0,z^5/sqrt2,0, 1,0,0,0,0,
0,z^7/sqrt2,0,z^3/sqrt2,0, 0,0,1,0,0>;
> F:=elt<GL5K | -1,0,0,0,0, 0,0,0,z,0, 0,0,0,0,-1, 0,z^7,0,0,0, 0,0,-1,0,0>;
> G:=sub<GL5K | A,B,C,D,E,F>;
> IdentifyGroup(G);
<192,181>
```

E requires the use of square root of two; in $\mathbb{Q}\left[\zeta_{8}\right]$, the square root of two can be written as $\zeta_{8}+\zeta_{8}^{7}$.

```
> load "DGAv3.txt";
Loading "DecomposeGAction.txt"
```

Date: November 15, 2010.

```
> S<a,b,c,d,e>:=PolynomialRing(K,5);
> DecomposeGAction(G,S,2);
[
    rec<recformat<CharacterRow, Dimension, Multiplicity, Elements> |
        CharacterRow := 6,
        Dimension := 6,
        Multiplicity := 2,
        Elements := [
            a^2,
            b^2,
            b*d,
            c^2,
            d^2,
            e^2
        ]>,
    rec<recformat<CharacterRow, Dimension, Multiplicity, Elements> |
        CharacterRow := 11,
        Dimension := 3,
        Multiplicity := 1,
        Elements := [
            a*c,
            a*e,
            c*e
        ]>,
    rec<recformat<CharacterRow, Dimension, Multiplicity, Elements> |
        CharacterRow := 15,
        Dimension := 6,
        Multiplicity := 1,
        Elements := [
            a*b,
            a*d,
            b*c,
            b*e,
            c*d,
            d*e
        ]>
]
```

It is not clear from DecomposeGAction where our polynomials lie, so we turn to our Magma implementations of the Chevalley-Weil and Eichler Trace formulas (whose commands are CW and Eichler, respectively).

First, Eichler finds a set of surface kernel generators.

```
> load "eichlerv3.txt";
Loading "eichlerv3.txt"
> load "CWv2.txt";
Loading "CWv2.txt"
> SKG:=AllSurfaceKernelGenerators(G, [2, 3, 8]);
> #SKG;
384
> chi:=Character(GModule(G));
```

```
> L:=[ chi eq Eichler(G,5,SKG[i]) : i in [1..10]];
> L;
[ false, true, false, false, false, true, true, false, false, false ]
```

We have Eichler test to the first ten of 384 sets of surface kernel generators to see if any are compatible with our set of matrix generators for G; the second turns out to be.

Now, we can work with CW.
> M:=SKG[2];
> $\mathrm{T}:=$ CharacterTable (G);
> CCL:=Classes (G);
$>\mathrm{CW}(\mathrm{G}, 0, \mathrm{~T}, \mathrm{CCL}, \mathrm{M}, 2, \mathrm{~S})$;
S_m=
[
0 ,
0 ,
0 ,
0 ,
0 ,
2,
0 ,
0 ,

0 ,

0 ,

1,
0 ,
0 ,
1,
0
]
$\mathrm{H}^{\wedge} \mathrm{O}(\mathrm{C}, \mathrm{mK})=$
$[0,0,0,0,0,1,0,0,0,0,1,0,0,1,0]$

I_m=
[
0 ,

0 ,
0 ,
0 ,
0 ,
1,
0,
0 ,
0 ,
0 ,
0 ,

0 ,

0 ,

```
    0,
    0
]
```

The values of I_{m} tell us in which character row of G we should be looking for our equations; it turns out to be the sixth character row. Referring back to the output of DecomposeGAction, we see our equations must lie in $\operatorname{Span}\left\{a^{2}, b^{2}, b d, c^{2}, d^{2}, e^{2}\right\}$.

In order to figure out what type of equations we are looking for, we must know whether or not G is hyperelliptic; we can find this with a command from Eichler, IsHyperelliptic, using the set of surface kernel generators we selected earlier, M.

```
> IsHyperelliptic(G,5,M);
false
```

Let us assume G is not trigonal; we will attempt to verify this by finding equations consistent with a general group. So, by this assumption, we are looking for a 3-dimensional subspace of $\operatorname{Span}\left\{a^{2}, b^{2}, b d, c^{2}, d^{2}, e^{2}\right\}$.

Peering a little further into DecomposeGAction, we learn more about the this three dimensional subspace.

```
> S2,i2,B2:=GModule(G,S,2);
> V6:=sub<S2 | i2(a^2),i2(b^2),i2(b*d),i2(c^2),i2(d^2),i2(e^2)>;
> E:=EndomorphismRing(V6);
> Image(E.1);
Vector space of degree 6, dimension 3 over K
Echelonized basis:
(1 0 0 0 0 0)
(0}00~00 1 00 0)
(0 0 0 0 0 1)
> Image(E.2);
Vector space of degree 6, dimension 3 over K
Echelonized basis:
(0 1 1 0 0 0 0)
```



```
(0 0 0 0 1 0)
> Image(E.3);
Vector space of degree 6, dimension 3 over K
Echelonized basis:
(0 1 1 0 0 0 0)
(0}00~1% 0 0 0) (
(0 0 0 0 1 0)
> Image(E.4);
Vector space of degree 6, dimension 3 over K
Echelonized basis:
(1 0 0 0 0 0)
(0}00~01%lll
(0 0 0 0 0 1)
```

The bases of the images of the endomorphism ring tell us we need something more specific than a G-invariant, 3 -dimensional subspace of $\operatorname{Span}\left\{a^{2}, b^{2}, b d, c^{2}, d^{2}, e^{2}\right\}$; we actually need a subspace of $\operatorname{Span}\left\{a^{2}, c^{2}, e^{2}\right\}+\operatorname{Span}\left\{b^{2}, b d, d^{2}\right\}$.

To show a putative subspace is G-invariant, is sufficient to show that it is invariant under our

$$
\begin{aligned}
& \text { set of surface kernel generators, } M \text {, the elements of which are } \\
& \text { These } \\
& \text { matrices } \\
& \text { have some } \\
& \text { incorrect } \\
& \text { signs }
\end{aligned}\left(\begin{array}{ccccc}
0 & 0 & -1 & 0 & 0 \\
0 & -1 / \sqrt{2} & 0 & -i / \sqrt{2} & 0 \\
-1 & 0 & 0 & 0 & 0 \\
0 & i / \sqrt{2} & 0 & 1 / \sqrt{2} & 0 \\
0 & 0 & 0 & 0 & -1
\end{array}\right),\left(\begin{array}{ccccc}
0 & 0 & i & 0 & 0 \\
0 & z^{3} / \sqrt{2} & 0 & z^{5} / \sqrt{2} & 0 \\
0 & 0 & 0 & 0 & -1 \\
0 & z^{7} / \sqrt{2} & 0 & z^{5} / \sqrt{2} & 0 \\
i & 0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & i \\
0 & i / \sqrt{2} & 0 & i / \sqrt{2} & 0 \\
0 & 0 & i & 0 & 0 \\
0 & -i / \sqrt{2} & 0 & i / \sqrt{2} & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(referred to as $M[1], M[2]$, and $M[3]$). However, since M is a set of surface kernel generators, we have $M[1] * M[2] * M[3]=I d$; therefore $M[3]=(M[1] * M[2])^{-1}$, so invariance under $M[3]$ follows directly from invariance under $M[1]$ and $M[2]$.

So, beginning with $\operatorname{Span}\left\{a^{2}, c^{2}, e^{2}\right\}$, under $M[1], a^{2} \mapsto c^{2}, c^{2} \mapsto a^{2}, e^{2} \mapsto e^{2}$, and under $M[2]$, $a^{2} \mapsto-c^{2}, c^{2} \mapsto e^{2}$, and $e^{2} \mapsto-a^{2}$. We need to pair these with three elements of $\operatorname{Span}\left\{b^{2}, b d, d^{2}\right\}$ that have the same action under $M[1]$ and $M[2]$, i.e. α, β, and $\gamma \in \operatorname{Span}\left\{b^{2}, b d, d^{2}\right\}$ such that, under $M[1], \alpha \mapsto \beta, \beta \mapsto \alpha$, and $\gamma \mapsto \gamma$, and likewise for $M[2]$; such α, β, and γ constitute a basis for $\operatorname{Span}\left\{b^{2}, b d, d^{2}\right\}$, and ensure invariance of our polynomial.
$\alpha=-2 i b d, \beta=b^{2}+d^{2}$, and $\gamma=i b^{2}-i d^{2}$ are some such elements of $\operatorname{Span}\left\{b^{2}, b d, d^{2}\right\}$, so our the equations for G are $a^{2}-2 i b d, c^{2}+b^{2}+d^{2}$, and $e^{2}+i b^{2}-i d^{2}$, if these equations are nonsingular, which we can verify with Magma.

```
> P4<a,b,c,d,e>:=ProjectiveSpace(K,4);
> X:=Scheme(P4,[a^2-2*i*b*d, c^2+b^2+d^2, e^2+i*b^2-i*d^2]);
> IsNonsingular(X);
true
```


References

[1] Akikazu Kuribayashi and Hideyuki Kimura, Automorphism groups of compact Riemann surfaces of genus five, J. Algebra 134 (1990), no. 1, 80-103, DOI 10.1016/0021-8693(90)90212-7. MR1068416 (91j:30033) $\leftarrow 1$
[2] K. Magaard, T. Shaska, S. Shpectorov, and H. Völklein, The locus of curves with prescribed automorphism group, Sūrikaisekikenkyūsho Kōkyūroku 1267 (2002), 112-141, available at arXiv:math.AG/0205314. Communications in arithmetic fundamental groups (Kyoto, 1999/2001). MR1954371 $\leftarrow 1$

Software Packages Referenced

[3] School of Mathematics and Statistics Computational Algebra Research Group University of SYDNEY, MAGMA computational algebra system (2008), available at http://magma.maths.usyd.edu.au/magma/. Version 2.15-1. \leftarrow

