Magaard, Shaska, Shpectorov, and Völklein give tables of smooth Riemann surfaces of genus \( g \leq 10\) with automorphism groups \(G\) satisfying \( \# G > 4(g-1)\). Their list is based on a computer search by Breuer.
They list a 1-parameter family of genus 4 Riemann surfaces with automorphism group (36,10) in the GAP library of small groups. The quotient of any surface in this family by its automorphism group has genus zero, and the quotient morphism is branched over four points with ramification indices (2,2,2,3).
We use Magma to compute equations of one member of this family, and give a conjectural description of this family.
Magma V2.21-7 Mon Apr 25 2016 17:24:01 on Davids-MacBook-Pro-2 [Seed =
1141742062]
+-------------------------------------------------------------------+
| This copy of Magma has been made available through a |
| generous initiative of the |
| |
| Simons Foundation |
| |
| covering U.S. Colleges, Universities, Nonprofit Research entities,|
| and their students, faculty, and staff |
+-------------------------------------------------------------------+
Type ? for help. Type -D to quit.
> load "autcv10e.txt";
Loading "autcv10e.txt"
> G:=SmallGroup(36,10);
> MatrixSKG,MatrixGens,Q,C:=RunExample(G,4,[2,2,2,3]);
Set seed to 0.
Character Table of Group G
--------------------------
-----------------------------------
Class | 1 2 3 4 5 6 7 8 9
Size | 1 3 3 9 2 2 4 6 6
Order | 1 2 2 2 3 3 3 6 6
-----------------------------------
p = 2 1 1 1 1 5 6 7 5 6
p = 3 1 2 3 4 1 1 1 3 2
-----------------------------------
X.1 + 1 1 1 1 1 1 1 1 1
X.2 + 1 -1 1 -1 1 1 1 1 -1
X.3 + 1 1 -1 -1 1 1 1 -1 1
X.4 + 1 -1 -1 1 1 1 1 -1 -1
X.5 + 2 2 0 0 2 -1 -1 0 -1
X.6 + 2 -2 0 0 2 -1 -1 0 1
X.7 + 2 0 2 0 -1 2 -1 -1 0
X.8 + 2 0 -2 0 -1 2 -1 1 0
X.9 + 4 0 0 0 -2 -2 1 0 0
Conjugacy Classes of group G
----------------------------
[1] Order 1 Length 1
Rep Id(G)
[2] Order 2 Length 3
Rep G.2
[3] Order 2 Length 3
Rep G.1
[4] Order 2 Length 9
Rep G.1 * G.2
[5] Order 3 Length 2
Rep G.3
[6] Order 3 Length 2
Rep G.4
[7] Order 3 Length 4
Rep G.3 * G.4
[8] Order 6 Length 6
Rep G.1 * G.3
[9] Order 6 Length 6
Rep G.2 * G.4
Surface kernel generators: [ G.1 * G.2 * G.3^2, G.1 * G.4, G.2, G.3^2 * G.4^2 ]
Is hyperelliptic? false
Is cyclic trigonal? true
Multiplicities of irreducibles in relevant G-modules:
I_1 =[ 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
S_1 =[ 0, 0, 0, 0, 0, 1, 0, 1, 0 ]
H^0(C,K) =[ 0, 0, 0, 0, 0, 1, 0, 1, 0 ]
I_2 =[ 1, 0, 0, 0, 0, 0, 0, 0, 0 ]
S_2 =[ 2, 0, 0, 0, 1, 0, 1, 0, 1 ]
H^0(C,2K)=[ 1, 0, 0, 0, 1, 0, 1, 0, 1 ]
I_3 =[ 0, 0, 0, 1, 0, 1, 0, 1, 0 ]
S_3 =[ 0, 1, 1, 2, 0, 2, 0, 2, 2 ]
H^0(C,3K)=[ 0, 1, 1, 1, 0, 1, 0, 1, 2 ]
I2timesS1=[ 0, 0, 0, 0, 0, 1, 0, 1, 0 ]
Is clearly not generated by quadrics? true
Matrix generators for action on H^0(C,K):
Field K Cyclotomic Field of order 36 and degree 12
[
[ 0 -1 0 0]
[-1 0 0 0]
[ 0 0 -1 0]
[ 0 0 0 -1],
[-1 0 0 0]
[ 0 -1 0 0]
[ 0 0 0 1]
[ 0 0 1 0],
[ 1 0 0 0]
[ 0 1 0 0]
[ 0 0 0 -1]
[ 0 0 1 -1],
[-1 1 0 0]
[-1 0 0 0]
[ 0 0 1 0]
[ 0 0 0 1]
]
Matrix Surface Kernel Generators:
[
[ 0 1 0 0]
[ 1 0 0 0]
[ 0 0 1 0]
[ 0 0 1 -1],
[ 1 0 0 0]
[ 1 -1 0 0]
[ 0 0 -1 0]
[ 0 0 0 -1],
[-1 0 0 0]
[ 0 -1 0 0]
[ 0 0 0 1]
[ 0 0 1 0],
[ 0 -1 0 0]
[ 1 -1 0 0]
[ 0 0 -1 1]
[ 0 0 -1 0]
]
Finding quadrics:
I2 contains a 1-dimensional subspace of CharacterRow 1
Dimension 2
Multiplicity 2
[
x_0^2 + x_0*x_1 + x_1^2,
x_2^2 + x_2*x_3 + x_3^2
]
Finding cubics:
I3 contains a 1-dimensional subspace of CharacterRow 4
Dimension 2
Multiplicity 2
[
x_0^2*x_1 + x_0*x_1^2,
x_2^3 + 3/2*x_2^2*x_3 - 3/2*x_2*x_3^2 - x_3^3
]
I3 contains a 2-dimensional subspace of CharacterRow 6
Dimension 4
Multiplicity 2
[
x_0^3 - x_1^3,
x_0^2*x_1 + x_0*x_1^2 + x_1^3,
x_0*x_2^2 + x_0*x_2*x_3 + x_0*x_3^2,
x_1*x_2^2 + x_1*x_2*x_3 + x_1*x_3^2
]
I3 contains a 2-dimensional subspace of CharacterRow 8
Dimension 4
Multiplicity 2
[
x_0^2*x_2 + x_0*x_1*x_2 + x_1^2*x_2,
x_0^2*x_3 + x_0*x_1*x_3 + x_1^2*x_3,
x_2^3 - x_3^3,
x_2^2*x_3 + x_2*x_3^2 + x_3^3
]
From the output, we see that this curve is cyclic trigonal. The ideal contains a quadric of the form \[ c_1(x_0^2 + x_0 x_1 + x_1^2)+c_2(x_2^2 + x_2 x_3 + x_3^2) \] The extra cubic generator is of the form \[ c_3(x_0^2 x_1 + x_0 x_1^2) +c_4(x_2^3 + 3/2 x_2^2 x_3 - 3/2 x_2 x_3^2 - x_3^3) \] Assume that \(c_1\) and \(c_2\) are nonzero. Then after scaling \(x_0,x_1\) and dividing, we may assume that \(c_1=c_2=1\). Similarly, after dividing by \(c_3\), we may assume that \(c_3=1\).
> K:=RationalField();
> P3<x_0,x_1,x_2,x_3>:=ProjectiveSpace(K,3);
> c_4:=1;
> X:=Scheme(P3,[x_0^2 + x_0*x_1 + x_1^2+x_2^2 + x_2*x_3 + x_3^2,
> x_0^2*x_1 + x_0*x_1^2+c_4*(x_2^3 + 3/2*x_2^2*x_3 - 3/2*x_2*x_3^2 -
> x_3^3)]);
> Dimension(X);
1
> IsSingular(X);
false
> HilbertPolynomial(Ideal(X));
6*$.1 - 3
2
> A:=Matrix([
> [0,1,0,0],
> [1,0,0,0],
> [0,0,1,0],
> [0,0,1,-1]
> ]);
> B:=Matrix([
> [1,0,0,0],
> [1,-1,0,0],
> [0,0,-1,0],
> [0,0,0,-1]
> ]);
> C:=Matrix([
> [-1,0,0,0],
> [0,-1,0,0],
> [0,0,0,1],
> [0,0,1,0]
> ]);
> Order(A);
2
> Order(B);
2
> Order(C);
2
> Order( (A*B*C)^-1);
3
> GL4K:=GeneralLinearGroup(4,K);
> IdentifyGroup(sub<GL4K | A,B,C>);
<36, 10>
> Automorphism(X,A);
Mapping from: Sch: X to Sch: X
with equations :
x_1
x_0
x_2 + x_3
-x_3
and inverse
x_1
x_0
x_2 + x_3
-x_3
> Automorphism(X,B);
Mapping from: Sch: X to Sch: X
with equations :
x_0 + x_1
-x_1
-x_2
-x_3
and inverse
x_0 + x_1
-x_1
-x_2
-x_3
> Automorphism(X,C);
Mapping from: Sch: X to Sch: X
with equations :
-x_0
-x_1
x_3
x_2
and inverse
-x_0
-x_1
x_3
x_2
Next we study the value \(c_4 =17+\zeta_{12}^5\):
> K<z_12>:=CyclotomicField(12);
> P3<x_0,x_1,x_2,x_3>:=ProjectiveSpace(K,3);
> c_4:=17+z_12^5;
> X:=Scheme(P3,[x_0^2 + x_0*x_1 + x_1^2+x_2^2 + x_2*x_3 + x_3^2,
> x_0^2*x_1 + x_0*x_1^2+c_4*(x_2^3 + 3/2*x_2^2*x_3 - 3/2*x_2*x_3^2 -
> x_3^3)]);
> Dimension(X);
1
> IsSingular(X);
false
> HilbertPolynomial(Ideal(X));
6*$.1 - 3
2
> Automorphism(X,A);
Mapping from: Sch: X to Sch: X
with equations :
x_1
x_0
x_2 + x_3
-x_3
and inverse
x_1
x_0
x_2 + x_3
-x_3
> Automorphism(X,B);
Mapping from: Sch: X to Sch: X
with equations :
x_0 + x_1
-x_1
-x_2
-x_3
and inverse
x_0 + x_1
-x_1
-x_2
-x_3
> Automorphism(X,C);
Mapping from: Sch: X to Sch: X
with equations :
-x_0
-x_1
x_3
x_2
and inverse
-x_0
-x_1
x_3
x_2
> K<z_6>:=CyclotomicField(6);
> A:=Matrix([
> [-1,0,0,0],
> [0,0,1,0],
> [0,1,0,0],
> [0,0,0,-1]
> ]);
> B:=Matrix([
> [0,z_6^2,0,0],
> [0,0,0,1],
> [-1,0,0,0],
> [0,0,z_6,0]
> ]);
> GL4K:=GeneralLinearGroup(4,K);
> G:=sub<GL4K | A,B>;
> SCL:=SubgroupClasses(G);
> SCL;
Conjugacy classes of subgroups
------------------------------
[ 1] Order 1 Length 1
MatrixGroup(4, K) of order 1
[ 2] Order 2 Length 6
MatrixGroup(4, K) of order 2
Generators:
[ 0 -z_6 + 1 0 0]
[ z_6 0 0 0]
[ 0 0 0 z_6 - 1]
[ 0 0 -z_6 0]
[ 3] Order 2 Length 6
MatrixGroup(4, K) of order 2
Generators:
[-1 0 0 0]
[ 0 0 1 0]
[ 0 1 0 0]
[ 0 0 0 -1]
[ 4] Order 2 Length 9
MatrixGroup(4, K) of order 2
Generators:
[ 0 0 0 1]
[ 0 0 -1 0]
[ 0 -1 0 0]
[ 1 0 0 0]
[ 5] Order 3 Length 2
MatrixGroup(4, K) of order 3
Generators:
[ 1 0 0 0]
[ 0 -z_6 0 0]
[ 0 0 z_6 - 1 0]
[ 0 0 0 1]
[ 6] Order 3 Length 2
MatrixGroup(4, K) of order 3
Generators:
[z_6 - 1 0 0 0]
[ 0 -z_6 0 0]
[ 0 0 z_6 - 1 0]
[ 0 0 0 -z_6]
[ 7] Order 4 Length 9
MatrixGroup(4, K) of order 2^2
Generators:
[ 0 z_6 - 1 0 0]
[ 0 0 0 1]
[ -1 0 0 0]
[ 0 0 z_6 0]
[ 0 0 0 z_6 - 1]
[ 0 0 z_6 0]
[ 0 -z_6 + 1 0 0]
[ -z_6 0 0 0]
[ 8] Order 4 Length 9
MatrixGroup(4, K) of order 2^2
Generators:
[-1 0 0 0]
[ 0 0 1 0]
[ 0 1 0 0]
[ 0 0 0 -1]
[ 0 0 0 1]
[ 0 0 -1 0]
[ 0 -1 0 0]
[ 1 0 0 0]
[ 9] Order 4 Length 9
MatrixGroup(4, K) of order 2^2
Generators:
[ 0 -z_6 + 1 0 0]
[ z_6 0 0 0]
[ 0 0 0 z_6 - 1]
[ 0 0 -z_6 0]
[ 0 0 0 -z_6]
[ 0 0 -1 0]
[ 0 -1 0 0]
[z_6 - 1 0 0 0]
[10] Order 6 Length 2
MatrixGroup(4, K) of order 2 * 3
Generators:
[-1 0 0 0]
[ 0 0 1 0]
[ 0 1 0 0]
[ 0 0 0 -1]
[ 1 0 0 0]
[ 0 -z_6 0 0]
[ 0 0 z_6 - 1 0]
[ 0 0 0 1]
[11] Order 6 Length 2
MatrixGroup(4, K) of order 2 * 3
Generators:
[ 0 -1 0 0]
[-1 0 0 0]
[ 0 0 0 1]
[ 0 0 1 0]
[z_6 - 1 0 0 0]
[ 0 -z_6 0 0]
[ 0 0 z_6 - 1 0]
[ 0 0 0 -z_6]
[12] Order 6 Length 6
MatrixGroup(4, K) of order 2 * 3
Generators:
[-1 0 0 0]
[ 0 0 1 0]
[ 0 1 0 0]
[ 0 0 0 -1]
[z_6 - 1 0 0 0]
[ 0 1 0 0]
[ 0 0 1 0]
[ 0 0 0 -z_6]
[13] Order 6 Length 6
MatrixGroup(4, K) of order 2 * 3
Generators:
[ 0 0 0 1]
[ 0 0 -1 0]
[ 0 -1 0 0]
[ 1 0 0 0]
[ 1 0 0 0]
[ 0 -z_6 0 0]
[ 0 0 z_6 - 1 0]
[ 0 0 0 1]
[14] Order 6 Length 6
MatrixGroup(4, K) of order 2 * 3
Generators:
[ 0 -z_6 + 1 0 0]
[ -1 0 0 0]
[ 0 0 0 1]
[ 0 0 -z_6 0]
[ -z_6 0 0 0]
[ 0 -z_6 0 0]
[ 0 0 z_6 - 1 0]
[ 0 0 0 z_6 - 1]
[15] Order 6 Length 6
MatrixGroup(4, K) of order 2 * 3
Generators:
[ 0 0 0 1]
[ 0 0 -1 0]
[ 0 -1 0 0]
[ 1 0 0 0]
[z_6 - 1 0 0 0]
[ 0 -z_6 0 0]
[ 0 0 z_6 - 1 0]
[ 0 0 0 -z_6]
[16] Order 9 Length 1
MatrixGroup(4, K) of order 3^2
Generators:
[ 1 0 0 0]
[ 0 -z_6 0 0]
[ 0 0 z_6 - 1 0]
[ 0 0 0 1]
[z_6 - 1 0 0 0]
[ 0 1 0 0]
[ 0 0 1 0]
[ 0 0 0 -z_6]
[17] Order 8 Length 9
MatrixGroup(4, K) of order 2^3
Generators:
[-1 0 0 0]
[ 0 0 1 0]
[ 0 1 0 0]
[ 0 0 0 -1]
[ 0 z_6 - 1 0 0]
[ 0 0 0 z_6 - 1]
[ z_6 0 0 0]
[ 0 0 z_6 0]
[ 0 0 0 -z_6]
[ 0 0 -1 0]
[ 0 -1 0 0]
[z_6 - 1 0 0 0]
[18] Order 12 Length 6
MatrixGroup(4, K) of order 2^2 * 3
Generators:
[-1 0 0 0]
[ 0 0 1 0]
[ 0 1 0 0]
[ 0 0 0 -1]
[ 0 0 0 1]
[ 0 0 -1 0]
[ 0 -1 0 0]
[ 1 0 0 0]
[ 1 0 0 0]
[ 0 -z_6 0 0]
[ 0 0 z_6 - 1 0]
[ 0 0 0 1]
[19] Order 12 Length 6
MatrixGroup(4, K) of order 2^2 * 3
Generators:
[ 0 -1 0 0]
[-1 0 0 0]
[ 0 0 0 1]
[ 0 0 1 0]
[ 0 0 0 1]
[ 0 0 -1 0]
[ 0 -1 0 0]
[ 1 0 0 0]
[z_6 - 1 0 0 0]
[ 0 -z_6 0 0]
[ 0 0 z_6 - 1 0]
[ 0 0 0 -z_6]
[20] Order 18 Length 1
MatrixGroup(4, K) of order 2 * 3^2
Generators:
[ 0 0 0 1]
[ 0 0 -1 0]
[ 0 -1 0 0]
[ 1 0 0 0]
[ 1 0 0 0]
[ 0 -z_6 0 0]
[ 0 0 z_6 - 1 0]
[ 0 0 0 1]
[z_6 - 1 0 0 0]
[ 0 1 0 0]
[ 0 0 1 0]
[ 0 0 0 -z_6]
[21] Order 18 Length 2
MatrixGroup(4, K) of order 2 * 3^2
Generators:
[ 0 -z_6 + 1 0 0]
[ -1 0 0 0]
[ 0 0 0 1]
[ 0 0 -z_6 0]
[ 1 0 0 0]
[ 0 -z_6 0 0]
[ 0 0 z_6 - 1 0]
[ 0 0 0 1]
[z_6 - 1 0 0 0]
[ 0 1 0 0]
[ 0 0 1 0]
[ 0 0 0 -z_6]
[22] Order 18 Length 2
MatrixGroup(4, K) of order 2 * 3^2
Generators:
[-1 0 0 0]
[ 0 0 1 0]
[ 0 1 0 0]
[ 0 0 0 -1]
[ 1 0 0 0]
[ 0 -z_6 0 0]
[ 0 0 z_6 - 1 0]
[ 0 0 0 1]
[z_6 - 1 0 0 0]
[ 0 1 0 0]
[ 0 0 1 0]
[ 0 0 0 -z_6]
[23] Order 36 Length 1
MatrixGroup(4, K) of order 2^2 * 3^2
Generators:
[-1 0 0 0]
[ 0 0 1 0]
[ 0 1 0 0]
[ 0 0 0 -1]
[ 0 0 0 1]
[ 0 0 -1 0]
[ 0 -1 0 0]
[ 1 0 0 0]
[ 1 0 0 0]
[ 0 -z_6 0 0]
[ 0 0 z_6 - 1 0]
[ 0 0 0 1]
[z_6 - 1 0 0 0]
[ 0 1 0 0]
[ 0 0 1 0]
[ 0 0 0 -z_6]
[24] Order 36 Length 1
MatrixGroup(4, K) of order 2^2 * 3^2
Generators:
[ 0 z_6 - 1 0 0]
[ 0 0 0 1]
[ -1 0 0 0]
[ 0 0 z_6 0]
[ 0 0 0 1]
[ 0 0 -1 0]
[ 0 -1 0 0]
[ 1 0 0 0]
[ 1 0 0 0]
[ 0 -z_6 0 0]
[ 0 0 z_6 - 1 0]
[ 0 0 0 1]
[z_6 - 1 0 0 0]
[ 0 1 0 0]
[ 0 0 1 0]
[ 0 0 0 -z_6]
[25] Order 36 Length 1
MatrixGroup(4, K) of order 2^2 * 3^2
Generators:
[ 0 -z_6 + 1 0 0]
[ -1 0 0 0]
[ 0 0 0 1]
[ 0 0 -z_6 0]
[ 0 0 0 1]
[ 0 0 -1 0]
[ 0 -1 0 0]
[ 1 0 0 0]
[ 1 0 0 0]
[ 0 -z_6 0 0]
[ 0 0 z_6 - 1 0]
[ 0 0 0 1]
[z_6 - 1 0 0 0]
[ 0 1 0 0]
[ 0 0 1 0]
[ 0 0 0 -z_6]
[26] Order 72 Length 1
MatrixGroup(4, K) of order 2^3 * 3^2
Generators:
[-1 0 0 0]
[ 0 0 1 0]
[ 0 1 0 0]
[ 0 0 0 -1]
[ 0 z_6 - 1 0 0]
[ 0 0 0 1]
[ -1 0 0 0]
[ 0 0 z_6 0]
[ 0 0 0 1]
[ 0 0 -1 0]
[ 0 -1 0 0]
[ 1 0 0 0]
[ 1 0 0 0]
[ 0 -z_6 0 0]
[ 0 0 z_6 - 1 0]
[ 0 0 0 1]
[z_6 - 1 0 0 0]
[ 0 1 0 0]
[ 0 0 1 0]
[ 0 0 0 -z_6]
> IdentifyGroup(SCL[23]`subgroup);
<36, 10>
> IdentifyGroup(SCL[24]`subgroup);
<36, 9>
> IdentifyGroup(SCL[25]`subgroup);
<36, 10>
The output shows two subgroups of (72,40) isomorphic to (36,10).
We find matrix surface kernel generators for one of these subgroups
and proceed with the analysis:
> H:=SCL[23]`subgroup;
> ASKG:=AllSurfaceKernelGenerators(H,[2,2,2,3]);
> MatrixGens,MatrixSKG,Q,C:=RunGivenSKMatrixGenerators(36,4,ASKG[1]);
Set seed to 0.
Character Table of Group G
--------------------------
-----------------------------------
Class | 1 2 3 4 5 6 7 8 9
Size | 1 3 3 9 2 2 4 6 6
Order | 1 2 2 2 3 3 3 6 6
-----------------------------------
p = 2 1 1 1 1 5 6 7 5 6
p = 3 1 2 3 4 1 1 1 3 2
-----------------------------------
X.1 + 1 1 1 1 1 1 1 1 1
X.2 + 1 -1 1 -1 1 1 1 1 -1
X.3 + 1 1 -1 -1 1 1 1 -1 1
X.4 + 1 -1 -1 1 1 1 1 -1 -1
X.5 + 2 2 0 0 2 -1 -1 0 -1
X.6 + 2 -2 0 0 2 -1 -1 0 1
X.7 + 2 0 2 0 -1 2 -1 -1 0
X.8 + 2 0 -2 0 -1 2 -1 1 0
X.9 + 4 0 0 0 -2 -2 1 0 0
Conjugacy Classes of group G
----------------------------
[1] Order 1 Length 1
Rep [1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
[2] Order 2 Length 3
Rep [ 0 0 0 -z^6 + 1]
[ 0 -1 0 0]
[ 0 0 -1 0]
[ z^6 0 0 0]
[3] Order 2 Length 3
Rep [ -1 0 0 0]
[ 0 0 z^6 - 1 0]
[ 0 -z^6 0 0]
[ 0 0 0 -1]
[4] Order 2 Length 9
Rep [ 0 0 0 z^6 - 1]
[ 0 0 -z^6 + 1 0]
[ 0 z^6 0 0]
[ -z^6 0 0 0]
[5] Order 3 Length 2
Rep [z^6 - 1 0 0 0]
[ 0 1 0 0]
[ 0 0 1 0]
[ 0 0 0 -z^6]
[6] Order 3 Length 2
Rep [ 1 0 0 0]
[ 0 -z^6 0 0]
[ 0 0 z^6 - 1 0]
[ 0 0 0 1]
[7] Order 3 Length 4
Rep [ -z^6 0 0 0]
[ 0 z^6 - 1 0 0]
[ 0 0 -z^6 0]
[ 0 0 0 z^6 - 1]
[8] Order 6 Length 6
Rep [ z^6 0 0 0]
[ 0 0 1 0]
[ 0 1 0 0]
[ 0 0 0 -z^6 + 1]
[9] Order 6 Length 6
Rep [ 0 0 0 -1]
[ 0 -z^6 + 1 0 0]
[ 0 0 z^6 0]
[ -1 0 0 0]
Is hyperelliptic? false
Is cyclic trigonal? true
Multiplicities of irreducibles in relevant G-modules:
I_1 =[ 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
S_1 =[ 0, 0, 0, 0, 0, 1, 0, 1, 0 ]
H^0(C,K) =[ 0, 0, 0, 0, 0, 1, 0, 1, 0 ]
I_2 =[ 1, 0, 0, 0, 0, 0, 0, 0, 0 ]
S_2 =[ 2, 0, 0, 0, 1, 0, 1, 0, 1 ]
H^0(C,2K)=[ 1, 0, 0, 0, 1, 0, 1, 0, 1 ]
I_3 =[ 0, 0, 0, 1, 0, 1, 0, 1, 0 ]
S_3 =[ 0, 1, 1, 2, 0, 2, 0, 2, 2 ]
H^0(C,3K)=[ 0, 1, 1, 1, 0, 1, 0, 1, 2 ]
I2timesS1=[ 0, 0, 0, 0, 0, 1, 0, 1, 0 ]
Is clearly not generated by quadrics? true
Matrix Surface Kernel Generators:
Field K Cyclotomic Field of order 36 and degree 12
[
[ 0 0 0 -z^6 + 1]
[ 0 -1 0 0]
[ 0 0 -1 0]
[ z^6 0 0 0],
[ 0 0 0 1]
[ 0 0 -1 0]
[ 0 -1 0 0]
[ 1 0 0 0],
[ -1 0 0 0]
[ 0 0 z^6 - 1 0]
[ 0 -z^6 0 0]
[ 0 0 0 -1],
[ -z^6 0 0 0]
[ 0 z^6 - 1 0 0]
[ 0 0 -z^6 0]
[ 0 0 0 z^6 - 1]
]
Finding quadrics:
I2 contains a 1-dimensional subspace of CharacterRow 1
Dimension 2
Multiplicity 2
[
x_0*x_3,
x_1*x_2
]
Finding cubics:
I3 contains a 1-dimensional subspace of CharacterRow 4
Dimension 2
Multiplicity 2
[
x_0^3 + x_3^3,
x_1^3 - x_2^3
]
I3 contains a 2-dimensional subspace of CharacterRow 6
Dimension 4
Multiplicity 2
[
x_0*x_1*x_3,
x_0*x_2*x_3,
x_1^2*x_2,
x_1*x_2^2
]
I3 contains a 2-dimensional subspace of CharacterRow 8
Dimension 4
Multiplicity 2
[
x_0^2*x_3,
x_0*x_1*x_2,
x_0*x_3^2,
x_1*x_2*x_3
]
This shows that the canonical ideal is
\[
x_0 x_3-x_1 x_2, x_0^3 + x_3^3+t(x_1^3 - x_2^3)
\]
Comparing this to the basis of differentials
\[
\{y \frac{dx}{y^2}, yx\frac{dx}{y^2}, g(x) \frac{dx}{y^2}, xg(x) \frac{dx}{y^2} \}
\]
we see that this cubic encodes \( y^3 = (1+tx^3)^2(t-x^3) \)