swinarski@MAB-OptiPlex-790:~$ magma Magma V2.20-1 Sun Jan 19 2014 13:22:10 on MAB-OptiPlex-790 [Seed = 2129673141] Type ? for help. Type -D to quit. > load "autcv6.txt"; Loading "autcv6.txt" > RunExample(SmallGroup(32,19),4,[2,4,16]); Character Table of Group G -------------------------- --------------------------------------------------- Class | 1 2 3 4 5 6 7 8 9 10 11 Size | 1 1 8 2 8 2 2 2 2 2 2 Order | 1 2 2 4 4 8 8 16 16 16 16 --------------------------------------------------- p = 2 1 1 1 2 2 4 4 6 7 6 7 --------------------------------------------------- X.1 + 1 1 1 1 1 1 1 1 1 1 1 X.2 + 1 1 1 1 -1 1 1 -1 -1 -1 -1 X.3 + 1 1 -1 1 -1 1 1 1 1 1 1 X.4 + 1 1 -1 1 1 1 1 -1 -1 -1 -1 X.5 + 2 2 0 2 0 -2 -2 0 0 0 0 X.6 + 2 2 0 -2 0 0 0 -Z1 Z1 -Z1 Z1 X.7 + 2 2 0 -2 0 0 0 Z1 -Z1 Z1 -Z1 X.8 0 2 -2 0 0 0 Z1 -Z1 Z2-Z2#3 -Z2 Z2#3 X.9 0 2 -2 0 0 0 -Z1 Z1-Z2#3 -Z2 Z2#3 Z2 X.10 0 2 -2 0 0 0 Z1 -Z1 -Z2 Z2#3 Z2-Z2#3 X.11 0 2 -2 0 0 0 -Z1 Z1 Z2#3 Z2-Z2#3 -Z2 Explanation of Character Value Symbols -------------------------------------- # denotes algebraic conjugation, that is, #k indicates replacing the root of unity w by w^k Z1 = (CyclotomicField(8: Sparse := true)) ! [ RationalField() | 0, -1, 0, 1 ] Z2 = (CyclotomicField(16: Sparse := true)) ! [ RationalField() | 0, 0, 0, 1, 0, 1, 0, 0 ] Conjugacy Classes of group G ---------------------------- [1] Order 1 Length 1 Rep Id(G) [2] Order 2 Length 1 Rep G.5 [3] Order 2 Length 8 Rep G.2 [4] Order 4 Length 2 Rep G.4 [5] Order 4 Length 8 Rep G.1 [6] Order 8 Length 2 Rep G.3 [7] Order 8 Length 2 Rep G.3 * G.5 [8] Order 16 Length 2 Rep G.1 * G.2 * G.4 * G.5 [9] Order 16 Length 2 Rep G.1 * G.2 * G.5 [10] Order 16 Length 2 Rep G.1 * G.2 * G.4 [11] Order 16 Length 2 Rep G.1 * G.2 SKGs: [ G.2 * G.4, G.1 * G.4 * G.5, G.1 * G.2 ] Is hyperelliptic? true Curve is hyperelliptic > G:=SmallGroup(32,19); > FP,f:=FPGroup(G); > PermG,g:=PermutationGroup(FP); > g(Inverse(f)(G.2 * G.4)); (1, 4)(2, 14)(3, 12)(5, 11)(6, 8)(7, 9)(13, 15) > g(Inverse(f)(G.1 * G.4*G.5)); (1, 13, 5, 8)(2, 4, 9, 11)(3, 7, 12, 14)(6, 10, 15, 16)