swinarski@MAB-OptiPlex-790:~$ magma Magma V2.20-1 Sun Jan 19 2014 14:03:19 on MAB-OptiPlex-790 [Seed = 3107441360] Type ? for help. Type -D to quit. > load "autcv6.txt"; Loading "autcv6.txt" > RunExample(SmallGroup(20,4),4,[2,2,2,5]); Character Table of Group G -------------------------- ---------------------------------------- Class | 1 2 3 4 5 6 7 8 Size | 1 1 5 5 2 2 2 2 Order | 1 2 2 2 5 5 10 10 ---------------------------------------- p = 2 1 1 1 1 6 5 5 6 p = 5 1 2 3 4 1 1 2 2 ---------------------------------------- X.1 + 1 1 1 1 1 1 1 1 X.2 + 1 1 -1 -1 1 1 1 1 X.3 + 1 -1 -1 1 1 1 -1 -1 X.4 + 1 -1 1 -1 1 1 -1 -1 X.5 + 2 -2 0 0 Z1 Z1#2-Z1#2 -Z1 X.6 + 2 2 0 0 Z1 Z1#2 Z1#2 Z1 X.7 + 2 2 0 0 Z1#2 Z1 Z1 Z1#2 X.8 + 2 -2 0 0 Z1#2 Z1 -Z1-Z1#2 Explanation of Character Value Symbols -------------------------------------- # denotes algebraic conjugation, that is, #k indicates replacing the root of unity w by w^k Z1 = (CyclotomicField(5: Sparse := true)) ! [ RationalField() | -1, 0, -1, -1 ] Conjugacy Classes of group G ---------------------------- [1] Order 1 Length 1 Rep Id(G) [2] Order 2 Length 1 Rep G.2 [3] Order 2 Length 5 Rep G.1 * G.2 [4] Order 2 Length 5 Rep G.1 [5] Order 5 Length 2 Rep G.3^2 [6] Order 5 Length 2 Rep G.3 [7] Order 10 Length 2 Rep G.2 * G.3 [8] Order 10 Length 2 Rep G.2 * G.3^2 SKGs: [ G.2, G.1 * G.3, G.1 * G.2 * G.3^3, G.3^3 ] Is hyperelliptic? true Curve is hyperelliptic