// (120,34) K:=RationalField(); P3:=ProjectiveSpace(K,3); X:=Scheme(P3,[x_0^2 + x_0*x_1 + x_1^2 - x_1*x_2 + x_2^2 - x_2*x_3 + x_3^2, x_0^2*x_1 + x_0*x_1^2 + x_1^2*x_2 - x_1*x_2^2 + x_2^2*x_3 - x_2*x_3^2]); Dimension(X); IsSingular(X); HilbertPolynomial(Ideal(X)); A:=Matrix([ [-1,0,0,0], [0,-1,0,0], [0,0,-1,-1], [0,0,0,1] ]); B:=Matrix([ [1,-1,-1,0], [1,0,0,0], [0,-1,0,0], [0,0,-1,-1] ]); Order(A); Order(B); Order((A*B)^-1); GL4K:=GeneralLinearGroup(4,K); IdentifyGroup(sub); Automorphism(X,A); Automorphism(X,B); R=QQ[x_0..x_3]; I=ideal({ x_0^2 + x_0*x_1 + x_1^2 - x_1*x_2 + x_2^2 - x_2*x_3 + x_3^2, x_0^2*x_1 + x_0*x_1^2 + x_1^2*x_2 - x_1*x_2^2 + x_2^2*x_3 - x_2*x_3^2 }); A=map(R,R,{-x_0,-x_1,-x_2,-x_2+x_3}) B=map(R,R,{x_0+x_1,-x_0-x_2,-x_0-x_3,-x_3}) // (72,42) K:=CyclotomicField(12); z_6:=z_12^2; z_3:=z_12^4; i:=z_12^3; P3:=ProjectiveSpace(K,3); X:=Scheme(P3,[ -x_2^2 + x_1*x_3, x_0^3 - x_1^2*x_2 +x_2*x_3^2 ]); Dimension(X); IsSingular(X); HilbertPolynomial(Ideal(X)); A:=Matrix([ [-1,0,0,0], [0,0,0,-i], [0,0,-1,0], [0,i,0,0] ]); B:=Matrix([ [-z_6,0,0,0], [0,-1/2*z_12,1/2*z_3,1/2*z_12], [0,z_12,0,z_12], [0,-1/2*z_12,-1/2*z_3,1/2*z_12] ]); Order(A); Order(B); Order( (A*B)^-1); GL4K:=GeneralLinearGroup(4,K); IdentifyGroup(sub); Automorphism(X,A); Automorphism(X,B); loadPackage("Cyclotomic"); K=cyclotomicField(24); z_24=K_0; z_12=z_24^2; z_6=z_24^4; i=z_24^6; z_3=z_24^8; R=K[x_0..x_3]; I=ideal({-x_2^2 + x_1*x_3, x_0^3 - x_1^2*x_2 +x_2*x_3^2}); A=map(R,R,{-x_0,i*x_3,-x_2,-i*x_1}); B=map(R,R,{-z_6*x_0,-1/2*z_12*x_1+z_12*x_2-1/2*z_12*x_3,1/2*z_3*x_1-1/2*z_3*x_3,1/2*z_12*x_1+z_12*x_2+1/2*z_12*x_3}) B=map(R,R,{-z_6*x_0,-1/2*z_12*(x_1-2*x_2+x_3),1/2*z_3*(x_1-x_3),1/2*z_12*(x_1+2*x_2+x_3)}) // (72,40) K:=CyclotomicField(6); P3:=ProjectiveSpace(K,3); X:=Scheme(P3,[ x_0*x_3-x_1*x_2, x_1^3-x_0^3-x_3^3-x_2^3]); Dimension(X); IsSingular(X); HilbertPolynomial(Ideal(X)); A:=Matrix([ [-1,0,0,0], [0,0,1,0], [0,1,0,0], [0,0,0,-1] ]); B:=Matrix([ [0,z_6^2,0,0], [0,0,0,1], [-1,0,0,0], [0,0,z_6,0] ]); GL4K:=GeneralLinearGroup(4,K); IdentifyGroup(sub); Automorphism(X,A); Automorphism(X,B); loadPackage("Cyclotomic"); K=cyclotomicField(6); z_6=K_0; R=K[x_0..x_3]; I=ideal({x_0*x_3-x_1*x_2, x_1^3-x_0^3-x_3^3-x_2^3}); A=map(R,R,{-x_0,x_2,x_1,-x_3}); B=map(R,R,{-x_2,z_6^2*x_0,z_6*x_3,x_1}); A(I)==I B(I)==I // (36,12) K:=CyclotomicField(6); z_3:=z_6^2; P3:=ProjectiveSpace(K,3); X:=Scheme(P3,[ x_1*x_3-x_2^2, x_0^3-x_1^3+x_3^3]); Dimension(X); IsSingular(X); HilbertPolynomial(Ideal(X)); A:=Matrix([ [-1,0,0,0], [0,0,0,-z_6], [0,0,-1,0], [0,z_6-1,0,0] ]); B:=Matrix([ [z_3,0,0,0], [0,0,0,-1], [0,0,z_6,0], [0,-z_3,0,0] ]); Order(A); Order(B); Order( (A*B)^-1); GL4K:=GeneralLinearGroup(4,K); IdentifyGroup(sub); Automorphism(X,A); Automorphism(X,B); loadPackage("Cyclotomic"); K=cyclotomicField(6); z_6=K_0; z_3=z_6^2; R=K[x_0..x_3]; I=ideal({x_1*x_3-x_2^2, x_0^3-x_1^3+x_3^3}); A=map(R,R,{-x_0,z_3*x_3,-x_2,-z_6*x_1}); B=map(R,R,{z_3*x_0,-z_3*x_3, z_6*x_2, -x_1}); A(I)==I B(I)==I // (15,1) K:=CyclotomicField(15); P3:=ProjectiveSpace(K,3); X:=Scheme(P3,[ -x_2^2 + x_1*x_3, x_0^3 - x_1^2*x_2 +x_3^3 ]); Dimension(X); IsSingular(X); HilbertPolynomial(Ideal(X)); A:=DiagonalMatrix([z_15^10,z_15^5,z_15^5,z_15^5]); B:=DiagonalMatrix([z_15^3,z_15^9,z_15^6,z_15^3]); Order(A); Order(B); Order( (A*B)^-1); GL4K:=GeneralLinearGroup(4,K); IdentifyGroup(sub); Automorphism(X,A); Automorphism(X,B); loadPackage("Cyclotomic"); K=cyclotomicField(15); z_15=K_0; z_5=z_15^3; z_3=z_15^5; R=K[x_0..x_3]; I=ideal({x_1*x_3-x_2^2, x_0^3 - x_1^2*x_2 +x_3^3}); A=map(R,R,{z_3^2*x_0,z_3* x_1,z_3*x_2, z_3*x_3}); B=map(R,R,{z_5*x_0,z_5^3*x_1, z_5^2*x_2, z_5*x_3}); A(I)==I B(I)==I // (36,10) K:=CyclotomicField(3); P3:=ProjectiveSpace(K,3); t:=17; X:=Scheme(P3,[ x_0*x_3-x_1*x_2, x_1^3 + t*x_0^3 + x_2^3 - t*x_3^3 ]); Dimension(X); IsSingular(X); HilbertPolynomial(Ideal(X)); A:=Matrix([ [-1,0,0,0], [0,0,-z_3,0], [0,-z_3^2,0,0], [0,0,0,-1] ]); B:=Matrix([ [0,0,0,1], [0,-1,0,0], [0,0,-1,0], [1,0,0,0] ]); C:=Matrix([ [0,0,0,-z_3^2], [0,0,1,0], [0,1,0,0], [-z_3,0,0,0] ]); Order(A); Order(B); Order(C); Order( (A*B*C)^-1); GL4K:=GeneralLinearGroup(4,K); IdentifyGroup(sub); Automorphism(X,A); Automorphism(X,B); Automorphism(X,C); // (24,12) K:=RationalField(); P3:=ProjectiveSpace(K,3); t:=17; X:=Scheme(P3,[ x_0^2+x_1^2+x_2^2+t*x_3^2, x_0*x_1*x_2-x_3^3 ]); Dimension(X); IsSingular(X); HilbertPolynomial(Ideal(X)); A:=Matrix([ [-1,0,0,0], [0,0,-1,0], [0,-1,0,0], [0,0,0,-1] ]); B:=Matrix([ [0,0,1,0], [0,-1,0,0], [1,0,0,0], [0,0,0,-1] ]); C:=Matrix([ [-1,0,0,0], [0,0,1,0], [0,1,0,0], [0,0,0,-1] ]); Order(A); Order(B); Order(C); Order( (A*B*C)^-1); GL4K:=GeneralLinearGroup(4,K); IdentifyGroup(sub); Automorphism(X,A); Automorphism(X,B); Automorphism(X,C); // (18,3) K:=CyclotomicField(3); P3:=ProjectiveSpace(K,3); t:=17+z_3; X:=Scheme(P3,[x_1*x_3-x_2^2,x_0^3-x_3^3+t*x_2^3+x_1^3]); Dimension(X); IsSingular(X); HilbertPolynomial(Ideal(X)); A:=Matrix([ [-1,0,0,0], [0,0,0,1], [0,0,-1,0], [0,1,0,0] ]); B:=Matrix([ [-1,0,0,0], [0,0,0,z_3^2], [0,0,-1,0], [0,z_3,0,0] ]); C:=DiagonalMatrix([1,z_3^2,z_3,1]); Order(A); Order(B); Order(C); Order( (A*B*C)^-1); GL4K:=GeneralLinearGroup(4,K); IdentifyGroup(sub); Automorphism(X,A); Automorphism(X,B); Automorphism(X,C);