MATRIX GENERATORS OF IRREDUCIBLE REPRESENTATIONS OF FINITE GROUPS

DAVID SWINARSKI

Given a finite group G and an irreducible character χ of G, modern software such as GAP and Magma contain commands for producing matrix generators of a representation V of G with character χ . Finding fast algorithms to produce "nice" matrix generators is a subject of ongoing research. It seems that these computer algebra systems implement several different algorithms that cover many special cases.

I do not know a reference for a general algorithm. Hence, I briefly present an algorithm that was suggested to me by Valery Alexeev and James McKernan. This algorithm is not expected to perform efficiently; it is included merely to establish that this can be performed algorithmically.

Algorithm 1.

INPUTS: a finite group G with generators g_1, \ldots, g_r ; an irreducible character $\chi: G \to \mathbb{C}$ of degree n.

OUTPUTS: matrices $M_1, \ldots, M_r \in \mathrm{GL}(n, \mathbb{C})$ such that the homomorphism $g_i \mapsto M_i$ is a representation with character χ

- (1) Compute matrix generators for the regular representation V of G. The entries of these matrices are in {0,1}.
- (2) Use the projection formula to compute matrix generators $\rho_W(g)$ for a representation W with character $n\chi$. Let K be the smallest field containing $\{\chi(g):g\in G\}$. Note that $\mathbb{Q}\subseteq K\subseteq \mathbb{Q}[\zeta_{\#G}]$. Then the matrix generators $\rho_W(g)$ lie in $\mathrm{GL}(n^2,K)$.
- (3) Let x_1, \ldots, x_{n^2} be indeterminates. Let M be the $\#G \times n^2$ matrix over K whose rows are given by the vectors $\rho_W(g).(x_1, \ldots, x_{n^2}).$ Let $X \subset \mathbb{P}_K^{n^2-1}$ be the determinantal variety rank $M \leq n$. Since representations of finite groups are complete reducible in characteristic zero, the representation W is isomorphic over K to the direct sum $V_\chi^{\oplus n}$, and therefore X(K) is non-empty.
- (4) Intersect X with generic hyperplanes over K to obtain a zerodimensional variety Y.

Date: March 10, 2016.

- (5) If necessary, pass to a finite field extension L of K to obtain a reduced closed point $y \in Y(L)$.
- (6) The point y (thought of as a vector in $W \otimes L$) generates the desired representation.

1. Example

We use this algorithm to produce matrix generators for the degree two irreducible representation of the symmetric group S_3 .

The character table for S_3 is

Class Id
$$(1,2)$$
 $(1,2,3)$
 χ_1 1 1 1
 χ_2 1 -1 1
 χ_3 2 0 -1.

Matrix generators for the regular representation of S_3 with respect to the ordered basis $\{e_{\mathrm{Id}}, e_{(1,2)}, e_{(1,3)}, e_{(2,3)}, e_{(1,2,3)}, e_{(1,3,2)}\}$. are given below. (Here, the linear algebra convention we follow is that matrices of linear transformation act on the left of column vectors.)

$$\rho_{\text{reg}}((1,2)) = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}, \quad \rho_{\text{reg}}((1,2,3)) = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

The projection formula (see for instance Fulton and Harris formula (2.31))

$$\pi_i = \frac{\dim(V_i)}{\#G} \sum_{g \in G} \overline{\chi_i(g)} g.$$

yields the following matrix for the projection π_3 onto the four-dimensional isotypical subspace $W \cong V_3^{\oplus 2}$.

$$\pi_{3} = \frac{2}{6} \left(2 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \right) - \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \right)$$

$$= \begin{bmatrix} \frac{2}{3} & 0 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 \\ 0 & -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} & 0 & 0 \\ 0 & -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} & 0 & 0 \\ -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}.$$

A basis for $Image(\pi_3)$ is given by the first, second, third, and fifth columns. This yields the following matrix generators for the representation W:

$$\rho_W((1,2)) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad \rho_W((1,2,3)) = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & -1 \end{bmatrix}.$$

Let x_1, x_2, x_3, x_4 be indeterminates. The image of (x_1, x_2, x_3, x_4) under the ρ_W images of $\{\text{Id}, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)\}$ are given in the rows of the matrix M below:

$$M = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ x_2 & x_1 & x_4 & x_3 \\ -x_2 + x_3 & -x_4 & x_1 - x_4 & -x_2 \\ -x_3 & -x_1 + x_4 & -x_1 & x_2 - x_3 \\ -x_4 & -x_2 + x_3 & -x_2 & x_1 - x_4 \\ -x_1 + x_4 & -x_3 & x_2 - x_3 & -x_1 \end{bmatrix}.$$

I used Macaulay2 to produce the ideal generated by the 3×3 minors of this matrix; it has 72 generators. Let $X \subset \mathbb{P}^3$ be the determinantal subvariety defined by these equations. We know $X(\mathbb{Q}) \neq 0$ since $W \cong V_3^{\oplus 2}$ over \mathbb{Q} . I intersected X with the hyperplanes $x_1 = 1$, $x_2 = 0$, $x_3 = 0$ to obtain a zero-dimensional variety Y defined by the equations $x_1 - 1, x_2, x_3, x_4^2 - x_4 + 1$. By passing to the field $L = \mathbb{Q}[\zeta_3]$ we can split $x_4^2 - x_4 + 1$ to obtain the solutions $x_4 = \zeta_3 + 1, -\zeta_3$. Thus we obtain a vector $v = (1, 0, 0, -\zeta_3)$ whose orbit under $\rho_W(G)$ generates a representation isomorphic to V_3 .

We have

$$\rho_W((1,2))(v) = (0,1,-\zeta_3,0)$$

$$\rho_W((1,2,3))(v) = (\zeta_3,0,0,\zeta_3+1)$$

$$\rho_W((1,2,3))(0,1,-\zeta_3,0) = (0,-\zeta_3-1,-1,0)$$

Hence, with respect to the ordered basis $\{v, \rho_W((1,2))(v)\} = \{(1,0,0,-\zeta_3), (0,1,-\zeta_3,0)\}$, we obtain matrix generators for a two-dimensional representation V_3 with character χ_3 .

$$\rho_{V_3}((1,2)) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \rho_{V_3}((1,2,3)) = \begin{bmatrix} \zeta_3 & 0 \\ 0 & -\zeta_3 - 1 \end{bmatrix}.$$

Remark. If instead we had intersected X with the hyperplanes $x_1 = 0$, $x_2 = 1$, $x_3 = 0$, we would have obtained the points $x_4 = \pm 1$. This would have led to rational matrix generators

$$\rho_{V_3}((1,2)) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \rho_{V_3}((1,2,3)) = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}.$$

The field extension L of K in the algorithm arises because although X(K) is nonempty, there is no guarantee that when we intersect X with generic hyperplanes that we will capture a point in X(K).

E-mail address: dswinarski@fordham.edu