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Given a finite group G and an irreducible character χ of G, mod-
ern software such as GAP and Magma contain commands for producing
matrix generators of a representation V of G with character χ. Find-
ing fast algorithms to produce “nice” matrix generators is a subject
of ongoing research. It seems that these computer algebra systems
implement several different algorithms that cover many special cases.

I do not know a reference for a general algorithm. Hence, I briefly
present an algorithm that was suggested to me by Valery Alexeev and
James McKernan. This algorithm is not expected to perform efficiently;
it is included merely to establish that this can be performed algorith-
mically.

Algorithm 1.
Inputs: a finite group G with generators g1, . . . , gr; an irreducible
character χ : G→ C of degree n.
Outputs: matrices M1, . . . ,Mr ∈ GL(n,C) such that the homomor-
phism gi 7→Mi is a representation with character χ

(1) Compute matrix generators for the regular representation V of
G. The entries of these matrices are in {0, 1}.

(2) Use the projection formula to compute matrix generators ρW (g)
for a representation W with character nχ. Let K be the smallest
field containing {χ(g) : g ∈ G}. Note that Q ⊆ K ⊆ Q[ζ#G].
Then the matrix generators ρW (g) lie in GL(n2, K).

(3) Let x1, . . . , xn2 be indeterminates. Let M be the #G×n2 matrix
over K whose rows are given by the vectors ρW (g).(x1, . . . , xn2).

Let X ⊂ Pn2−1
K be the determinantal variety rankM ≤ n. Since

representations of finite groups are complete reducible in char-
acteristic zero, the representation W is isomorphic over K to
the direct sum V ⊕nχ , and therefore X(K) is non-empty.

(4) Intersect X with generic hyperplanes over K to obtain a zero-
dimensional variety Y .
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(5) If necessary, pass to a finite field extension L of K to obtain a
reduced closed point y ∈ Y (L).

(6) The point y (thought of as a vector in W ⊗ L) generates the
desired representation.

1. Example

We use this algorithm to produce matrix generators for the degree
two irreducible representation of the symmetric group S3.

The character table for S3 is

Class Id (1, 2) (1, 2, 3)
χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1.

Matrix generators for the regular representation of S3 with respect to
the ordered basis {eId, e(1,2), e(1,3), e(2,3), e(1,2,3), e(1,3,2)}. are given below.
(Here, the linear algebra convention we follow is that matrices of linear
transformation act on the left of column vectors.)

ρreg((1, 2)) =


0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0

 , ρreg((1, 2, 3)) =


0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0

 .

The projection formula (see for instance Fulton and Harris formula
(2.31))

πi =
dim(Vi)

#G

∑
g∈G

χi(g)g.



MATRIX GENERATORS OF IRREDUCIBLE REPRESENTATIONS OF FINITE GROUPS3

yields the following matrix for the projection π3 onto the four-dimensional
isotypical subspace W ∼= V ⊕23 .

π3 =
2

6

2


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−


0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0

−


0 0 0 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0





=



2
3

0 0 0 −1
3
−1

3
0 2

3
−1

3
−1

3
0 0

0 −1
3

2
3
−1

3
0 0

0 −1
3
−1

3
2
3

0 0
−1

3
0 0 0 2

3
−1

3
−1

3
0 0 0 −1

3
2
3

 .

A basis for Image(π3) is given by the first, second, third, and fifth
columns. This yields the following matrix generators for the represen-
tation W :

ρW ((1, 2)) =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , ρW ((1, 2, 3)) =


0 0 0 −1
0 −1 1 0
0 −1 0 0
1 0 0 −1

 .
Let x1, x2, x3, x4 be indeterminates. The image of (x1, x2, x3, x4) un-

der the ρW images of {Id, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)} are given
in the rows of the matrix M below:

M =


x1 x2 x3 x4
x2 x1 x4 x3

−x2 + x3 −x4 x1 − x4 −x2
−x3 −x1 + x4 −x1 x2 − x3
−x4 −x2 + x3 −x2 x1 − x4

−x1 + x4 −x3 x2 − x3 −x1

 .
I used Macaulay2 to produce the ideal generated by the 3×3 minors

of this matrix; it has 72 generators. Let X ⊂ P3 be the determinantal
subvariety defined by these equations. We know X(Q) 6= 0 since W ∼=
V ⊕23 over Q. I intersected X with the hyperplanes x1 = 1, x2 = 0,
x3 = 0 to obtain a zero-dimensional variety Y defined by the equations
x1 − 1, x2, x3, x

2
4 − x4 + 1. By passing to the field L = Q[ζ3] we can

split x24 − x4 + 1 to obtain the solutions x4 = ζ3 + 1,−ζ3. Thus we
obtain a vector v = (1, 0, 0,−ζ3) whose orbit under ρW (G) generates a
representation isomorphic to V3.
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We have

ρW ((1, 2))(v) = (0, 1,−ζ3, 0)

ρW ((1, 2, 3))(v) = (ζ3, 0, 0, ζ3 + 1)

ρW ((1, 2, 3))(0, 1,−ζ3, 0) = (0,−ζ3 − 1,−1, 0)

Hence, with respect to the ordered basis {v, ρW ((1, 2))(v)} = {(1, 0, 0,−ζ3), (0, 1,−ζ3, 0)},
we obtain matrix generators for a two-dimensional representation V3
with character χ3.

ρV3((1, 2)) =

[
0 1
1 0

]
, ρV3((1, 2, 3)) =

[
ζ3 0
0 −ζ3 − 1

]
.

Remark. If instead we had intersected X with the hyperplanes x1 =
0, x2 = 1, x3 = 0, we would have obtained the points x4 = ±1. This
would have led to rational matrix generators

ρV3((1, 2)) =

[
0 1
1 0

]
, ρV3((1, 2, 3)) =

[
−1 1
−1 0

]
.

The field extension L of K in the algorithm arises because although
X(K) is nonempty, there is no guarantee that when we intersect X
with generic hyperplanes that we will capture a point in X(K).
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