![]() |
Here is the file MukaiModelOfM7.m2.txt used in the session below.
Macaulay2, version 1.20
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems, Isomorphism, LLLBases,
MinimalPrimes, OnlineLookup, PrimaryDecomposition, ReesAlgebra, Saturation, TangentCone
i1 : load "../MukaiModelOfM7.m2";
i2 : M0 = matrix {{0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0}, {1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0}, {0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1}, {0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1}, {0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0}, {1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1}, {1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0}}
o2 = | 0 1 0 0 0 0 0 0 1 1 0 0 |
| 1 0 1 0 0 0 0 0 0 0 1 0 |
| 0 1 0 1 0 0 0 0 0 0 0 1 |
| 0 0 1 0 1 0 0 0 0 1 0 0 |
| 0 0 0 1 0 1 0 0 0 0 1 0 |
| 0 0 0 0 1 0 1 0 0 0 0 1 |
| 0 0 0 0 0 1 0 1 0 1 0 0 |
| 0 0 0 0 0 0 1 0 1 0 1 0 |
| 1 0 0 0 0 0 0 1 0 0 0 1 |
| 1 0 0 1 0 0 1 0 0 0 0 0 |
| 0 1 0 0 1 0 0 1 0 0 0 0 |
| 0 0 1 0 0 1 0 0 1 0 0 0 |
12 12
o2 : Matrix ZZ <--- ZZ
i3 : -- Enter the basis of five cycles
-- The columns (before transposing) are labelled by 01,08,09,12,110,23,211,34,39,45,410,56,511,67,69,78,710,811
Z1G = transpose matrix {
{1,0,-1,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0},
{0,0,0,1,-1,1,0,1,0,0,1,0,0,0,0,0,0,0},
{0,0,0,0,0,1,-1,1,0,1,0,0,1,0,0,0,0,0},
{0,0,0,0,0,0,0,1,-1,1,0,1,0,0,1,0,0,0},
{0,0,0,0,0,0,0,0,0,1,-1,1,0,1,0,0,1,0},
{0,0,0,0,0,0,0,0,0,0,0,1,-1,1,0,1,0,1},
{0,-1,1,0,0,0,0,0,0,0,0,0,0,1,-1,1,0,0}
};
18 7
o3 : Matrix ZZ <--- ZZ
i4 : I = BEGraphCurveIdealGivenZ1G(M0,Z1G)
o4 = ideal (y y , y y , y y - y y + y y , y y , y y , y y - y y + y y - y y , y y , y y - y y + y y - y y
2 6 1 6 3 5 4 5 4 6 1 5 0 5 2 4 3 4 4 5 4 6 0 4 1 3 2 3 3 4 4 5
--------------------------------------------------------------------------------------------------------------
2
+ y y , y y - y y + y - y y + y y + y y , y y - y y + y y - y y + y y - y y , y y y - y y y +
4 6 0 3 2 3 3 4 5 3 6 4 6 0 2 1 2 2 3 3 4 4 5 4 6 3 4 6 4 5 6
--------------------------------------------------------------------------------------------------------------
2 2 2 2 2 2
y y , y y y - y y y - y y + y y y )
4 6 4 5 6 4 5 6 4 6 4 5 6
o4 : Ideal of QQ[y ..y ]
0 6
i5 : betti res I
0 1 2 3 4 5
o5 = total: 1 10 16 16 10 1
0: 1 . . . . .
1: . 10 16 . . .
2: . . . 16 10 .
3: . . . . . 1
o5 : BettiTally
Next, to find the irreducible components, we compute a primary
decomposition of this ideal.
i6 : primaryDecomposition(I)
o6 = {ideal (y , y , y , y , y ), ideal (y , y , y , y , y - y ), ideal (y , y , y , y - y , y - y + y ), ideal
6 5 4 3 2 6 5 4 3 0 1 6 5 4 1 2 0 2 3
--------------------------------------------------------------------------------------------------------------
(y , y , y , y , y ), ideal (y , y , y - y , y - y + y , y ), ideal (y , y , y , y , y ), ideal (y , y -
6 5 3 2 0 6 5 2 3 1 3 4 0 6 4 3 1 0 6 3
--------------------------------------------------------------------------------------------------------------
y , y - y + y , y , y ), ideal (y , y , y , y , y ), ideal (y , y , y , y , y + y + y ), ideal (y - y ,
4 2 4 5 1 0 5 4 3 2 1 5 4 2 1 0 3 6 5 6
--------------------------------------------------------------------------------------------------------------
y , y , y , y ), ideal (y , y , y , y , y ), ideal (y - y , y - y + y , y , y , y )}
3 2 1 0 4 3 2 1 0 4 5 3 5 6 2 1 0
o6 : List
We can match each of these components to the vertices of the graph
\(G_0\) using the description given in Bayer and Eisenbud's proof [4, Prop. 3.1]:
the ideal of the component corresponding to a vertex \(v\) is
generated by the set of cocycles whose supports do not contain edges
incident to \(v\).
We order the components to match the ordering of the vertices and
check that this gives the graph \(G_0\).
i7 : L={ideal({y_5,y_4,y_3,y_2,y_1}),
ideal({y_6,y_5,y_4,y_3,y_2}),
ideal({y_6,y_5,y_4,y_3,y_0-y_1}),
ideal({y_6,y_5,y_4,y_1-y_2,y_0-y_2+y_3}),
ideal({y_6,y_5,y_2-y_3,y_1-y_3+y_4,y_0}),
ideal({y_6,y_3-y_4,y_2-y_4+y_5,y_1,y_0}),
ideal({y_4-y_5,y_3-y_5+y_6,y_2,y_1,y_0}),
ideal({y_5-y_6,y_3,y_2,y_1,y_0}),
ideal({y_4,y_3,y_2,y_1,y_0}),
ideal({y_5,y_4,y_2,y_1,y_0+y_3+y_6}),
ideal({y_6,y_5,y_3,y_2,y_0}),
ideal({y_6,y_4,y_3,y_1,y_0})};
i8 : computedAdjacencyMatrix = matrix apply(#L, i -> apply(#L, j -> if i==j then 0 else dim(L_i + L_j)))
o8 = | 0 1 0 0 0 0 0 0 1 1 0 0 |
| 1 0 1 0 0 0 0 0 0 0 1 0 |
| 0 1 0 1 0 0 0 0 0 0 0 1 |
| 0 0 1 0 1 0 0 0 0 1 0 0 |
| 0 0 0 1 0 1 0 0 0 0 1 0 |
| 0 0 0 0 1 0 1 0 0 0 0 1 |
| 0 0 0 0 0 1 0 1 0 1 0 0 |
| 0 0 0 0 0 0 1 0 1 0 1 0 |
| 1 0 0 0 0 0 0 1 0 0 0 1 |
| 1 0 0 1 0 0 1 0 0 0 0 0 |
| 0 1 0 0 1 0 0 1 0 0 0 0 |
| 0 0 1 0 0 1 0 0 1 0 0 0 |
12 12
o8 : Matrix ZZ <--- ZZ
i9 : computedAdjacencyMatrix==M0
o9 = true