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The setting is the following:
Let (M,ω) be a 2d-dimensional compact connected symplectic manifold, G

an abelian compact Lie group, i.e., an n-dimensional torus, with a hamiltonian
action on M :

τ : G×M → M

The corresponding moment map is a map

Φ : M → g∗

which is defined uniquely up to an additive constant by the following properties:

• Φ is equivariant with respect to the action τ of G on M and the coadjoint
action Ad∗ of G on g∗

• For ξ ∈ g, the ξ-component of the moment map is Φξ : M → R given
by Φξ(p) = 〈Φ(p), ξ〉. From ξ we obtain also ξ#, the vector field on M
generated by the 1-parameter subgroup {exp tξ : t ∈ R}. Then Φξ is a
hamiltonian function for the vector field ξ#:

dΦξ = ιξ#ω

The theorem that we will prove in this talk is very simple to state, it concerns
the image of the moment map in the conditions above. Recall that g∗ is a vector
space (in particular, with G being a torus, its Lie algebra is g = Rn, and the
dual g∗ can be identified again with Rn). Then:

Theorem. (Atiyah-Guillemin-Sternberg)
The image of Φ is a convex polytope, the convex hull of Φ(MG).

This theorem was proved independently by Atiyah and by Guillemin and
Sternberg, practically at the same time. In this talk we will follow the proof
by Guillemin and Sternberg in the original article [G-S]. Atiyah’s proof can be
found, for example, in [McD-S].

The proof will be divided in three steps:
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1. Equivariant Darboux Theorem

In which we state but do not prove a theorem to be used in the next two
steps. This theorem appears in [W] and a sketch of the proof is also given
in [G-S].

2. Local Convexity

In which we show that the image under the moment map of a neighbour-
hood of a fixed point p ∈ MG is convex.

3. Global Convexity

In which we show that the image of the moment map is indeed convex,
unsing results from Morse theory, some of which we will prove and some
which we will not.

1 Equivariant Darboux Theorem

For p ∈ MG a fixed point, we have α1,p, α2,p, . . . , αd,p ∈ g∗ weights of the
isotropy representation of G on the tangent space TpM .

The equivariant Darboux theorem1 states that there is a G-equivariant
neighbourhood U ⊂ M centered at p and coordinates z1, . . . , zd such in which
the symplectic form can be written as

ω =
1
2i

d∑
k=1

dzk ∧ dz̄k

and the action τ becomes the linear action of G on Cd with weights α1,p, α2,p, . . . , αd,p.
We remark that all other points in UG have the same weights.

We claim that the moment map at q ∈ U can be written in these coordinates
as

Φ(q) = Φ̃(z) = Φ̃(0) +
d∑

k=1

αk,p
|zk|2

2

where Φ̃(0) = Φ(p).
We take a moment here to convince ourselves that this claim is indeed true:

The linear action of S1 on (C, 1
2i dz ∧ dz̄ = r dr ∧ dθ) is

θ · z = eiθz

The moment map will be

Φ : C → Lie(S1)∗ = R∗ ∼= R

such that
dΦ = ι ∂

∂θ
(r dr ∧ dθ) = r dr = d(r2)

1See Alan Weinstein’s Lectures in Symplectic Geometry.
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Thus,

Φ(z) =
|z|2

2
+ constant

Furthermore, the linear action of S1 on C with weight α is

θ · z = eiαθz

in which case it is easy to see that the moment map becomes

Φ(z) = α
|z|2

2
+ constant

Lastly, the linear action of the n-torus Tn on C with weight α ∈ (Rn)∗ ∼= Rn,
α ∼= (α(1), . . . , α(n)) is

(θ1, . . . , θn) · z = ei(α(1)θ1+...+α(n)θn)z

and in this case we obtain

dΦ
∂

∂θk = α(k)d(r2)

so

Φ(z) = α
|z|2

2
+ constant ∈ Rn

The result for Tn acting on Cd follows easily from this one.

2 Local Convexity

Consider a fixed point p ∈ MG, a neighbourhood U and coordinates z1, . . . , zd

with the properties given by the Equivariant Darboux Theorem.
The image of U under the moment map will be

Φ(U) = ImΦ̃ =

{
Φ̃(0) +

d∑
k=1

skαk,p : sk ≥ 0

}
= Φ(p) + S(α1,p, . . . , αd,p)

where

S(α1,p, . . . , αd,p) =

{
d∑

k=1

skαk,p : sk ≥ 0

}
⊂ g∗.

The primary aim of this step is fulfilled, as we have shown that the image
under the moment map of a neighbourhood of a fixed point p ∈ MG is a cone
with vertex Φ(p), but we will need a relative form of the result above in the
following step, so we will prove it here:

Let p ∈ M not necessarily a fixed point, and let H ⊂ G be the stabilizer
group of p ∈ MH . We can think of the action of H on M that is simply
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a restriction of the action τ and apply the result above to this setting. The
moment map ΦH is obtained from Φ by composing with the linear mapping
π : g∗ → h∗ induced by the inclusion of H in G:

ΦH = π ◦ Φ : M → g∗ → h∗

Then
ΦH(U) = ΦH(p) + SH(α1,p, . . . , αd,p) ⊂ h∗

with weights αk,p ∈ h∗, and

Φ(U) = π−1 (ΦH(p) + SH(α1,p, . . . , αd,p)) = Φ(p) + π−1 (SH(α1,p, . . . , αd,p)) .

The notation will be

S′(α1,p, . . . , αd,p) := π−1 (SH(α1,p, . . . , αd,p)) ⊂ g∗.

3 Global Convexity

The desired result of global convexity follows easily from local convexity together
with the following lemma:

Lemma. For any ξ ∈ g, the function Φξ : M → R has a unique local maximum.

We will first see how to prove the convexity theorem, and then proceed to
the proof of this lemma.

Let x ∈ g∗ be a point in the boundary of the image of the moment map,
p ∈ M be a pre-image of x, H ⊂ G the stabilizer of p and α1,p, . . . , αd,p ∈ h∗

the corresponding weights. Then

Φ(U) = x + S′(α1,p, . . . , αd,p).

Let Sk be a boundary component of S′(α1,p, . . . , αd,p). Since Sk is at least
codimension 1, we can choose ξ ∈ g such that lξ ≡ 0 on Sk and lξ < 0 on the
interior of S′(α1,p, . . . , αd,p) (here lξ = 〈ξ, ·〉). Then, if lξ(x) = a, we have for
all q ∈ U

Φξ(q) = (lξ ◦ Φ)(q) ≤ a

which implies that a is a local maximum of Φξ. By the lemma above, it is in
fact an absolute maximum, so Φξ(M) ≤ a.

Applying this argument to all faces Sk of S′(α1,p, . . . , αd,p) we conclude that
Φ(M) sits inside the cone

Φ(M) ⊂ x + S′(α1,p, . . . , αd,p).

So we have proved that Φ(M) behaves like a convex set relative to its bound-
ary, which implies that is it a convex set, which finishes the proof of the theorem.

Now, we will prove the lemma using Morse theory.
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Definition. A smooth function f : M → R is Morse-Bott if each connected
component of the critical set of f , Cf , is a submanifold of M and if at each
critical point p ∈ Cf the Hessian Hess fp is nondegenerate in the directions
normal to Cf at p.

We define the index of Hess fp to be

(i−, i+) = (# {negative eigenvalues} ,# {positive eigenvalues})

If f is Morse-Bott then the index of Hess fp is constant along each connected
component C of Cf and it is called the index of the critical set C.

Equipping M with a Riemann metric, f defines a gradient vector field ∇f
on M . The flow generated by this vector field is ϕt : M → M , t ∈ R, and this
allows us to define for each component Ci of Cf the stable manifold

Wi = {p ∈ M : ϕt(p) → Ci as t → +∞} .

An important result in Morse theory is the following:

Theorem. If f is Morse-Bott then each Wi is a fibre bundle with fibre a i−-cell
over Ci, so

dim(Wi) = i− + dim(Ci),

and M is given as a disjoint union of these Wi,

M =
⋃
i

Wi

Corollary. If f : M → R is Morse-Bott and the index i− of all critical mani-
folds of f is even, then f attains a unique local maximum.

Proof. Let C1, . . . , Ck be the critical manifolds of local maxima, f ≡ ai on
Ci, and let Ck+1, . . . , CN bet the remaining critical manifolds. We make two
remarks:

One is that by definition of Wi, the stable manifolds corresponding to local
maxima must be 2d-dimensional, and so Wi, . . . ,Wk are open subsets of M .

The other is that by the nondegeneracy condition on the Hessian, the codi-
mension of Wi is exactly i−. Now, stable manifolds not corresponding to local
maxima must have i− > 0 and hence, by hypothesis, i− ≥ 2. So the manifolds
Wk+1, . . . ,WN have codimension ≥ 2.

But a manifold of codimension ≥ 2 cannot disconnect M , so M−
⋃

i>k Wi is
connected but also it is

⋃
i≤k, a disjoint union of k open sets, so we must have

k = 1, a unique local maximum.

Finally, we are left only with showing that all components of the moment
map, Φξ, are in the conditions of the corollary above.

Theorem. For any ξ ∈ t, the function Φξ is Morse-Bott and all its critical
manifolds have even i− index.
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Proof. Let ξ ∈ g and p ∈ CΦξ. Then p is a fixed point for the action of the
1-parameter subgroup {exp−tξ : t ∈ R} and we apply the equivariant Darboux
theorem for the action of this subgroup on M . Let α1,p(ξ), . . . , αd,p(ξ) be the
weights of the isotropy representation of {exp−tξ : t ∈ R} on TpM

2.
The moment map for this action is Φ{exp−tξ:t∈R} = π ◦Φ, π induced by the

inclusion of {exp−tξ : t ∈ R} in G, as in the end of section 2. But this is exactly
the ξ-component of the moment map for the G-action, Φξ.

The equivariant Darboux theorem then tells us that in local coordinates,

Φξ(q) = Φξ(p) +
d∑

k=1

αk,p(ξ) |zk|2

We can assume that for some 0 ≤ j ≤ d, αj+1,p(ξ) = . . . = αd,p(ξ) = 0. Now
it’s easy to see from the formula above that

CΦξ ∩ U ∼=
{
(0, . . . , 0, zj+1, . . . , zd) ∈ Cd

}
so CΦξ is a 2(d− j)-dimensional submanifold of M .

Furthermore, the Hessian of Φξ at p is a diagonal matrix

α1,p(ξ)
α1,p(ξ)

. . .
αj,p(ξ)

αj,p(ξ)
0

. . .
0


so i− is twice the number of negative αk,p’s and therefore an even number.

4 Two examples

The circle S1 acts on the sphere (S2, dθ∧ dh) by rotation, and the moment map
is simply the height function, Φ = h:

dΦ = ι ∂
∂θ

(dθ ∧ dh) = dh

The image of the moment map is the interval [−1, 1], which is the convex hull
of the images of the two fixed points:

Φ(North pole) = 1
Φ(South pole) = −1

2The choice of notation here is not innocent. In fact, these correspond to the evaluation
at ξ of the weights of the G-action α1,p, . . . , αd,p.
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Another example is the Tn action on CPn given by

(θ1, . . . , θn) · [z0; . . . ; zn] =
[
z0; eiθ1z1; . . . ; eiθnzn

]
The moment map for this action is

Φ([z0; . . . ; zn]) = (
|z1|2

|z0|2 + . . . + |zn|2
, . . . ,

|zn|2

|z0|2 + . . . + |zn|2
)

The fixed points are [1; 0; . . . ; 0] , [0; 1; . . . ; 0] , . . . , [0; . . . ; 0; 1] and they map to

Φ([1; 0; . . . ; 0]) = (0, 0, . . . , 0)
Φ([0; 1; . . . ; 0]) = (1, 0, . . . , 0)
Φ([0; . . . ; 0; 1]) = (0, . . . , 0, 1)

The convex hull of the images of these points is exactly the moment polytope
Im(Φ), the simplex

{x ∈ Rn : x1 + . . . + xn ≤ 1 and xi ≥ 0 for all i }
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