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Abstract

An origami manifold is a manifold equipped with a closed 2-form which is symplectic ev-
erywhere except on a hypersurface, where it is a folded form whose kernel defines a circle
fibration. In this thesis I explain how an origami manifold can be unfolded into a collection
of symplectic pieces and conversely, how a collection of symplectic pieces can be folded
(modulo compatibility conditions) into an origami manifold. Using equivariant versions of
these operations, I show how classic symplectic results of convexity and classification of
toric manifolds translate to the origami world. Several examples are presented, including a
complete classification of toric origami surfaces. Furthermore, I extend the results above to
the case of nonorientable origami manifolds.
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Chapter 1

Introduction

1.1 Symplectic and folded symplectic background

Symplectic geometry is the theory of even-dimensional manifolds M2n equipped with a

closed differential 2-form ω that is nondegenerate, i.e., ωn 6= 0. In particular, because ωn

is never vanishing, symplectic manifolds are necessarily orientable. The Darboux theorem

states that all symplectic manifolds are locally isomorphic to even-dimensional Euclidean

space with form
∑

i dxi ∧ dyi.

Symmetries of a manifold can be described by group actions. Let G be a compact

connected Lie group that acts by symplectomorphisms on a symplectic manifold M , and let

g and g
∗ be its Lie algebra and corresponding dual. We say that the action is a hamiltonian

action if there exists a map µ : M → g
∗ such that for each element X ∈ g,

dµX = ω(X#, ·),

where µX = 〈µ,X〉 is the component of µ along X and X♯ is the vector field on M generated

by X. Furthermore we require that µ be equivariant with respect to the given action of G

on M and the coadjoint action on g
∗. This map is called the moment map, and it encodes

the symmetry of M that is captured by the G-action, as well as geometric information

about the manifold and the action.

V. Guillemin and S. Sternberg [7], and independently M. Atiyah [1], showed that when

M is compact connected and G is a torus group, the moment image µ(M) is convex, and

furthermore, it is the convex hull of the image of its fixed point set. For toric manifolds, i.e.,
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compact symplectic 2n-manifolds with an effective hamiltonian action of an n-dimensional

torus, we get a stronger result: T. Delzant [5] proved that toric manifolds are in one-to-one

correspondence with their moment images, which are convex polytopes of Delzant type.

Thus, a toric manifold M can be recovered from the combinatorial data of its moment

polytope µ(M).

The next best case to nondegenerate symplectic is that of a folded symplectic structure,

that is, a 2-form that is symplectic everywhere except on an exceptional hypersurface, where

it vanishes in the transverse direction. These were studied in [4] by A. Cannas da Silva, V.

Guillemin and C. Woodward.

Consider a closed 2-form ω on an oriented manifoldM2n: If ωn intersects the zero section

of Λ2n(T ∗M) transversally, then Z =
{
p ∈M : ωn

p = 0
}

is a codimension one embedded

submanifold of M . Furthermore, if the restriction ω|Z is of maximal rank, i.e., if i∗ω has

a one-dimensional kernel at each point, where i : Z →֒ M is the inclusion, we say that

ω is a folded symplectic form and Z is the folding hypersurface or fold. These structures

occur more frequently than their symplectic counterpart: For example, all even dimensional

spheres can be given a folded symplectic structure with folding hypersurface the equator,

whereas only S2 admits a symplectic structure.

Similarly to the Darboux theorem for symplectic manifolds, a local normal form for a

folded ω in a neighborhood of a point of Z is

x1dx1 ∧ dy1 +
∑

i≥2

dxi ∧ dyi.

Furthermore, a semi-global normal form in a tubular neighborhood of (a compact) Z is

p∗i∗ω + d(t2p∗α), (1.1)

where p : Z × (−ǫ, ǫ) → Z is the projection (z, t) 7→ z and α ∈ Ω1(Z) is a one-form dual to

a nonvanishing section of the kernel of i∗ω. These results from [4] are proved in Section 2.1.

In [4] it is shown that if the distribution ker(i∗ω) on Z integrates to a principal S1-

fibration over a compact base B, then the manifold obtained by unfolding M can be endowed

with a symplectic structure. This manifold consists of the disjoint union of the closures

of the connected components of M r Z, with points that are on the same leaf of the
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distribution on Z being identified (thus producing two copies of B). The symplectic form

on the complement of a neighborhood of the copies of B coincides pointwise with ω on the

complement of a neighborhood of Z in M .

1.2 Origami results

In this thesis I study the geometry of origami manifolds, the class of folded symplectic

manifolds whose nullfoliation integrates to a principal S
1-fibration over a compact base B.

The fibration S1 →֒ Z
π−→ B is called the nullfibration and the folded symplectic form is

called origami form. Much of this work was developed in a joint project with Ana Cannas

da Silva and Victor Guillemin [3].

Chapter 2 shows how to move between the symplectic and origami worlds. In section 2.2,

the unfolding operation introduced in [4] is slightly modified, but with a similar approach:

working in the coordinates of the semi-global normal form (1.1), one can perform symplectic

cutting on a symplectified half neighborhood of Z. This yields naturally symplectic cut

pieces in which B embeds as symplectic submanifold with projectivised normal bundle

isomorphic to Z → B and on which the induced symplectic form coincides with ω up to B

and Z respectively.

For the converse construction, in order to build an origami manifold M from two sym-

plectic manifolds M1 and M2, one must have symplectomorphic embedded submanifolds

B1 →֒ M1 and B2 →֒ M2 of codimension 2 and a symplectomorphism between neighbor-

hoods of B1 in M1 and B2 in M2. This construction is detailed in Section 2.3 and requires

that a suitable Z be created: Let Z be the radially projectivised normal bundle of B1 in

M1. A blow-up model is a map from Z × (−ǫ, ǫ) to a tubular neighborhood of B1 in M1

that pulls back the symplectic form to an origami form, which creates an origami collar

neighborhood of Z. By attaching the remainder of the manifolds M1 and M2 to this collar

neighborhood we obtain an origami manifold.

In Sections 2.4 and 2.5 I show how this radial blow-up construction is truly the converse

of the new unfolding construction, in the sense that performing one and then the other, or

vice-versa, yields manifolds symplectomorphic, or origami-symplectomorphic (the origami

analogue of that notion), to the original ones. Thus, an origami manifold is essentially

determined by its symplectic cut pieces.
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Chapter 3 takes up the theme of torus actions on origami manifolds. An origami mani-

fold endowed with a hamiltonianG-action can be unfolded equivariantly, yielding symplectic

G-manifolds to which the machinery of classic symplectic geometry applies. This is used to

prove origami analogues of the Atiyah-Guillemin-Sternberg convexity theorem in Section 3.1

and of Delzant’s classification theorem in Section 3.2.

The moment image of an origami manifold is the superposition of the (convex) moment

polytopes of its symplectic cut pieces. More specifically, if (M,ω,G, µ) is a compact con-

nected origami manifold with nullfibration S
1 →֒ Z

π→ B and a hamiltonian action of an

m-dimensional torus G with moment map µ : M → g
∗, then:

(a) The image µ(M) of the moment map is the union of a finite number of convex poly-

topes ∆i, i = 1, . . . , N , each of which is the image of the moment map restricted to

the closure of a connected component of M r Z;

(b) Over each connected component Z ′ of Z, µ(Z ′) is a facet of each of the two polytopes

corresponding to the neighboring components of MrZ if and only if the nullfibration

on Z ′ is given by a circle subgroup of G. In that case, the two polytopes agree near

that facet.

Two polytopes ∆1 and ∆2 in R
n agree near a facet F1 = F2 when there is a neighborhood

U ⊂ Rn such that U ∩ ∆1 = U ∩ ∆2. When the nullfibration on all components of Z is

given by a subgroup of G, two-dimensional origami polytopes resemble paper origami, with

the folding hypersurface mapping to folded edges, hence the name. It is then possible to

produce origami polytopes that are not convex, not simply connected, or not k-connected,

for any choice of k.

The symplectic cut pieces of a toric origami manifold are toric manifolds, hence classified

by Delzant polytopes. These symplectic pieces, together with information on how to as-

semble them, determine the origami manifold. Therefore, a collection of Delzant polytopes,

together with information on which pairs of facets “fold together”, should determine the

original origami manifold. Indeed, toric origami manifolds are classified by their moment

data, which can be summarized in the form of an origami template: a pair (P,F), where

P is a finite collection of oriented n-dimensional Delzant polytopes and F is a collection of

pairs of facets of polytopes in P satisfying the following properties:

14



(a) for each pair {F1, F2} ∈ F , the corresponding polytopes ∆1 ∋ F1 and ∆2 ∋ F2 agree

near those facets and have opposite orientations;

(b) if a facet F occurs in a pair in F , then neither F nor any of its neighboring facets

occur elsewhere in F ;

(c) the topological space constructed from the disjoint union ⊔∆i, ∆i ∈ P by identifying

facet pairs in F is connected.

An application of this theorem is a complete listing of origami surfaces: Up to difeomor-

phism, they are either spheres or tori, with the folding curve the disjoint union of a variable

number of circles.

As a counterpoint to the rigid structure of the moment data of origami manifolds, in

Section 3.4 I briefly discuss the (non-origami) folded symplectic case. A combinatorial

classification as in the origami case is impossible in this situation, as practically any set can

be realized as a moment image. Some advances in particular cases have been made by C.

Lee in [8].

Chapter 4 deals with the fact that the definition of origami form still makes sense

when M is not an orientable manifold. Section 4.1 points out that, thus far, a tubular

neighborhood of a connected component of the folding hypersurface has always been an

oriented open submanifold of M . Indeed, all folds on an oriented origami manifold are of

this type, which we call coorientable folds. The other possibility is that of non-coorientable

folds, any tubular neighborhood of which is non-orientable. All folds on an oriented origami

manifold are coorientable, but non-orientable manifolds may have both types of folds, only

non-coorientable folds, or even only coorientable folds. For example, the Klein bottle admits

origami structures covering all these possibilities.

Section 4.2 shows how the cutting and radial blow-up construction can be extended to

accommodate both orientable and non-orientable origami manifolds, partly by working with

orientable double covers.

The moment image of a tubular neighborhood of a coorientable fold is an open neigh-

borhood of a facet shared by two superimposing agreeing polytopes. For a noncoorientable

fold, it is the neighborhood of a facet of a single polytope. In Section 4.3, the convexity and

classification results of Sections 3.1 and 3.2 are modified and extended to include general

origami manifolds, whether orientable or nonorientable. In particular, in the definition of

15



origami template, F becomes a collection of facets and pairs of facets, and the orientability

requirement is dropped. The listing of origami surfaces can now be completed with the

nonorientable manifolds, diffeomorphic either to the projective plane or the Klein bottle,

the folding curve being the disjoint union of a variable number of circles.
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Chapter 2

Origami manifolds

2.1 Folded symplectic manifolds

A symplectic form on a smooth 2n-dimensional manifold M2n is a nondegenerate closed

2-form ω ∈ Ω2(M). This nondegeneracy condition means that the top power ωn does not

vanish, and hence is a volume form on M . In particular, ωn induces an orientation on M .

Assume now that a smooth oriented manifold M2n is endowed with a closed 2-form ω

such that ωn vanishes transversally on a set Z. This implies that Z
i→֒ M is an embedded

codimension one submanifold of M . This leads to the folded symplectic case:

Definition 2.1. A folded symplectic form on a smooth oriented 2n-dimensional man-

ifold M2n is a closed 2-form ω ∈ Ω2n(M) whose top power ωn vanishes transversally on a

submanifold Z
i→֒ M and is such that i∗ω is of maximal rank (equivalently, (i∗ω)n−1 does

not vanish). The manifold (M,ω) is called a folded symplectic manifold and Z is called

the folding hypersurface or fold.

We say that two folded symplectic manifoldsM1 andM2 are folded-symplectomorphic

if there exists an orientation preserving diffeomorphism ρ : M1 →M2 such that ρ∗ω2 = ω1.

Note that ρ will necessarily map the fold Z1 onto the fold Z2.

Example 2.2. The form ω0 = x1dx1∧dy1+dx2∧dy2+ . . .+dxn∧dyn is a folded symplectic

form on the Euclidean space R2n, with the fold being the hyperplane {x1 = 0}. Furthermore,

a folded analogue of the Darboux theorem (Corollary 2.10) states that for each point on

the folding hypersurface of a folded symplectic manifold, there is a neighborhood that is

folded-symplectomorphic to (R2n, ω0). ♦
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Since M is oriented, the set M rZ splits as M+, where ωn > 0, and M−, where ω < 0.

This induces a coorientation and hence an orientation on Z. As i∗ω is a 2-form of maximal

rank on the odd-dimensional manifold Z, it has a one-dimensional kernel at each point.

This gives rise to the line field V ⊂ TZ, which we call the nullfoliation on Z. Let E be the

rank 2 vector bundle over Z whose fiber at each point is the kernel of ω; then V = E ∩TZ.

The (2n− 2)-form ωn−1 gives an orientation of (i∗TM)/E, which induces an orientation on

E. Finally, the orientations on the vector bundles E and TZ induce an orientation on the

nullfoliation V .

Let v be an oriented non-vanishing section of V and α ∈ Ω1(M) a one-form such that

α(v) = 1.

Proposition 2.3. [4] Assume that Z is compact. Then there exists a tubular neighborhood

U of Z in M and an orientation preserving diffeomorphism ϕ : Z × (−ε, ε) → U mapping

Z × {0} onto Z such that

ϕ∗ω = p∗i∗ω + d(t2p∗α), (2.4)

where p : Z × (−ε, ε) → Z is the projection onto the first factor and t is the real coordinate

on (−ε, ε).

Proof. We follow the proof given in [4].

Let w be a vector field on M such that for all z ∈ Z, the ordered pair (wz, vz) is an

oriented basis of Ez. Let U be a tubular neighborhood of Z in M and ρ : Z × (−ε, ε) → U
the map that takes Z × {0} onto Z and the lines {z} × (−ε, ε) onto the integral curves of

w. We use ρ to identify U with Z × (−ε, ε) and w with ∂
∂t

. Moreover ρ allows us to extend

the vector field v to all of U via the inclusion of TzZ into T(z,t)U .

We will apply the “Moser trick” to the forms ω0 := p∗i∗ω + d(t2p∗α) and ω1 := ω by

setting ωs := (1 − s)ω0 + sω1 and finding a vector field vs on M such that

Lvs
ωs +

dωs

ds
= 0. (2.5)

We must first prove the following:

Lemma 2.6. The linear combination ωs := (1 − s)ω0 + sω1 is a folded symplectic form,

with fold Z.

We begin by proving the following criteria for foldedness:

18



Lemma 2.7. Let µ be a closed 2-form on U . Then p∗i∗ω + tµ is a folded symplectic form

(on a possibly smaller tubular neighborhood of Z) if and only if µ(w, v) is nonvanishing on

Z.

Proof of Lemma 2.7. We must check that the top power of p∗i∗ω+tµ vanishes transversally

on Z and that i∗(p∗i∗ω + tµ) is of maximal rank.

In order for (p∗i∗ω + tµ)n = (n − 1)t(p∗i∗ω)n−1 ∧ µ + O(t2) to vanish transversally at

t = 0 we must have (p∗i∗ω)n−1 ∧ µ is nonvanishing on Z. Since the kernel of (p∗i∗ω)z is

spanned by wz and vz, this happens if and only if µ(w, v) is nonvanishing on Z. The rank

maximality is satisfied because i∗(p∗i∗ω + tµ) = i∗ω.

Proof of Lemma 2.6. Let us see that both ω0 and ω1 are of the form above: We have

ω0 = p∗i∗ω + tµ0, where µ0 = 2dtp∗α + td(p∗α) with µ0(w, v) = 2 on Z. As for ω1, note

that ιu(ω − p∗i∗ω) = 0 for any vector field u in TZ and furthermore ιw(ω − p∗i∗ω) = 0,

since ιwω = 0 and ιw(p∗i∗ω) = 0. Thus we have ω − p∗i∗ω = 0 on Z and consequently

ω − p∗i∗ω = tµ1 for some µ1 ∈ Ω2(U). Since ω is folded, we get for free that µ1(w, v) is

nonvanishing on Z, and the choices made above furthermore guarantee that it is positive.

We can now write ωs = p∗i∗w + tµs, where µs := (1 − s)µ0 + sµ1. Since µs(w, v) is

positive on Z, the form ωs is folded symplectic.

We now return to our purpose of finding a suitable vector field vs: Note that equation

2.5 simplifies to

dιvs
ωs = ω0 − ω1. (2.8)

Since ω0 − ω1 is closed and vanishes on Z, which is a deformation retract of U , there exists

a 1-form η ∈ Ω1(U) that vanishes to second order on Z and such that dη = ω0 − ω1. Then

2.8 is satisfied if

ιvs
ωs = η.

Because ωs is a folded symplectic form, there exists a unique such vector field, and it

vanishes to first order on Z. Integrating vs we get an isotopy ϕs that satisfies dϕs

ds
◦ϕ−1

s = vs

with ϕ0 = id, and thus ϕ∗
sωs = ω0 and ϕs maps Z to Z.

For Z not compact, replace ε ∈ R
+ by an appropriate continuous function ε : Z → R

+

in the statement and proof of Proposition 2.3.
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Remark 2.9. Let G be a compact connected Lie group that acts on the manifold M and

preserves ω. Averaging the oriented nonvanishing section v of the nullfoliation makes it

G-invariant, thus making α invariant as well. The open set U can be chosen G-invariant

and the Moser map ϕ equivariant with respect to the G-action on Z × (−ε, ε), which acts

only on Z.

The following Corollary locally classifies folded symplectic manifolds up to folded sym-

plectomorphism, as the Darboux theorem does in the classic symplectic case:

Corollary 2.10. (Darboux Theorem for folded symplectic manifolds) Let (M,ω) be a 2n-

dimensional folded symplectic manifold and let z be a point on the folding hypersurface Z.

Then there is a coordinate chart (U , x1, . . . , xn, y1, . . . , yn) centered at z such that on U the

set Z is given by x1 = 0 and

ω = x1dx1 ∧ dy1 + dx2 ∧ dy2 + . . .+ dxn ∧ dyn.

Proof. By the classical Darboux theorem, i∗ω = dx2 ∧ dy2 + . . . + dxn ∧ dyn. Now apply

Proposition 2.3 with x1 = t and α = 1
2 dy1.

A folded symplectic form on a manifold M induces a line field V on the folding hyper-

surface Z; we will focus on the case in which this foliation is a circle fibration.

Definition 2.11. An origami manifold is a folded symplectic manifold (M,ω) whose

nullfoliation on Z integrates to a principal S
1-fibration, called the nullfibration, over a

compact base B:

S1 �

� // Z

π

��
B

The form ω is called an origami form.

We assume that the principal S1-action matches the induced orientation of the null-

foliation V . Note that any folded symplectic manifold that is folded-symplectomorphic

to an origami manifold must be an origami manifold as well; we say they are origami-

symplectomorphic. If v is an oriented nonvanishing section of the nullfoliation V , we can

without loss of generality scale it uniformly over each S
1-orbit so that its integral curves all

have period 2π.
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As in symplectic reduction, the base B of the nullfibration is naturally symplectic. The

form i∗ω descends to B, because it is invariant and horizontal. Let ωB denote the natural

reduced symplectic form on B satisfying

i∗ω = π∗ωB .

The form ωB is closed and nondegenerate.

Example 2.12. Consider the unit sphere S
2n in euclidean space R

2n+1 ≃ C
n × R with

coordinates (x1, y1, . . . , xn, yn, h) and let ω0 be the restriction to S2n of the form dx1∧dy1 +

. . .+dxn∧dyn = r1dr1∧dθ1 + . . .+ rndrn∧dθn. This form is folded symplectic on S
2n with

folding hypersurface the equator (2n− 1)-sphere given by intersection with the hyperplane

{h = 0}. Furthermore, since

ι ∂

∂θ1
+...+ ∂

∂θn

ω0 = −r1dr1 − . . .− rndrn = hdh

vanishes on Z, the nullfoliation is the Hopf fibration: S
1 →֒ S

2n−1 → CPn−1, and (S2n, ω0)

is an origami manifold. ♦

2.2 From origami to symplectic: Cutting

Take an origami manifold, cut it along the folding hypersurface and consider the closures of

the pieces obtained. In Example 2.12 this yields two closed hemispheres, each containing a

copy of the fold. Now, collapse the S
1-fibers on each of the copies of Z to form two copies

of the base B. The pieces thus obtained are smooth manifolds, and furthermore admit a

natural symplectic structure. This operation is called symplectic cutting.

Let (M,ω) be a symplectic manifold with a codimension two symplectic submanifold

B
i→֒M . The radially projectivized normal bundle of B in M is the circle bundle

N := P
+ (i∗TM/TB) = {x ∈ (i∗TM)/TB, x 6= 0}/ ∼

where λx ∼ x for λ ∈ R
+.

Proposition 2.13. Let (M2n, ω) be an origami manifold with nullfibration S
1 →֒ Z

π−→ B.

Then the unions M+ ⊔ B and M− ⊔ B both admit natural symplectic structures (M+
0 , ω

+
0 )
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and (M−
0 , ω

−
0 ), where ω+

0 and ω−
0 coincide with ω when restricted to M+ and M− respec-

tively. Furthermore, (B,ωB) embeds as a symplectic submanifold with radially projectivized

normal bundle isomorphic to Z → B.

The orientation induced from the original orientation on M matches the symplectic

orientation on M+
0 and is opposite to the symplectic orientation on M−

0 .

A result very similar to this Proposition is proved in [4].

Proof. Let U be a tubular neighborhood of Z and ϕ : Z × (−ε, ε) → U a Moser model

diffeomorphism as in Proposition 2.3, with ϕ∗ω = p∗i∗ω + d(t2p∗α).

Consider U+ = M+ ∩ U = ϕ(Z × (0, ε)) and the diffeomorphism ψ : Z × (0, ε2) → U+

given by ψ(x, s) = ϕ(x,
√
s). Then ν := ψ∗ω = p∗i∗ω + d(sp∗α) is a symplectic form on

Z × (0, ε2) and it extends symplectically by the same formula to Z × (−ε2, ε2).

The nullfibration on Z induces an S1 action on (Z × (−ε2, ε2), ν) given by eiθ · (x, s) =

(eiθ · x, s), which is hamiltonian with moment map (x, s) 7→ s. We will perform symplectic

cutting at the 0-level set: Consider the product space (Z × (−ε2, ε2), ν) × (C,−idz ∧ dz̄)
with the S1 action eiθ ·(x, s, z) = (eiθ ·x, s, e−iθz). This is a hamiltonian action with moment

map µ(x, s, z) = s − |z|2. Since 0 is a regular value of µ, the set µ−1(0) is a codimension

one submanifold that decomposes as

µ−1(0) = Z × {0} × {0} ⊔ {(x, s, z) : s > 0, |z|2 = s}.

Since S
1 acts freely on each of these subsets of µ−1(0), the quotient space µ−1(0)/S1 is

a symplectic manifold and the point-orbit map is a principal S
1 bundle. We can write

µ−1(0)/S1 ≃ B ⊔ U+, where B embeds as a codimension two submanifold via

j : B −→ µ−1(0)/S1

π(x) 7−→ [x, 0, 0] for x ∈ Z

and U+ embeds as an open dense submanifold via

j+ : U+ −→ µ−1(0)/S1

ψ(x, s) 7−→ [x, s,
√
s] .
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The symplectic form Ωred on µ−1(0)/S1 obtained by reduction makes the above embed-

dings symplectic.

The normal bundle to j(B) in µ−1(0)/S1 is the quotient over S1-orbits (upstairs and

downstairs) of the normal bundle to Z × {0} × {0} in µ−1(0). This in turn is the product

bundle Z×{0}×{0}×C, where the S1-action is given by eiθ ·(x, 0, 0, z) = (eiθ ·x, 0, 0, e−iθz).

Performing R+-projectivization and taking the quotient by the S1-action we get the bundle

Z → B with natural isomorphism:

(Z × {0} × {0} × C
∗)/S1 ≃ //

��

Z

��

[x, 0, 0, reiθ]
� //

_

��

eiθ · x
_

��
(Z × {0} × {0})/S1 ≃ // B [x, 0, 0] � // π(x) .

Gluing the rest ofM+ along U+ produces a 2n-dimensional symplectic manifold (M+
0 , ω

+
0 )

with a natural symplectomorphism j+ : M+ →M+
0 r j(B) extending j+.

For the other side, we use the map ψ− : Z×(0, ε2) → U− := M−∩U , (x, s) 7→ ϕ(x,−√
s);

this map is orientation reversing and we have (ψ−)∗ω = ν. The base B embeds as a

symplectic submanifold of µ−1(0)/S1 by the previous formula and U− via the orientation-

reversing symplectomorphism

j− : U− −→ µ−1(0)/S1

ψ−(x, s) 7−→ [x, s,−√
s] .

As in the previous case, we produce (M−
0 , ω

−
0 ) by gluing the rest of M− along U− and get

a natural symplectomorphism j− : M− →M−
0 r j(B) by extending j− .

Different initial choices of a Moser model ϕ for a tubular neighborhood U of Z yield

symplectomorphic manifolds.

Remark 2.14. Note that the cutting procedure in the proof above produces a symplec-

tomorphism between the tubular neighborhoods µ−1(0)/S1 of the embeddings of B in M+
0

and M−
0 that from U+ to U− is ϕ(x, t) 7→ ϕ(x,−t) and on B restricts to the identity map:

γ : µ−1(0)/S1 −→ µ−1(0)/S1

[x, s,
√
s] 7−→ [x, s,−√

s] .
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Definition 2.15. The symplectic manifolds (M+
0 , ω

+
0 ) and (M−

0 , ω
−
0 ) obtained by cutting

are called the symplectic cut pieces of the origami manifold (M,ω) and the embedded

copies of B are called centers.

The symplectic cut pieces of a compact origami manifold are compact as well.

Cutting is a local operation, so it may be performed on a connected component of

Z rather than on the whole fold. In particular, M can be cut by stages, one connected

component of the fold at a time.

Example 2.16. Cutting the origami manifold (S2n, ω0) from Example 2.12 produces CPn

and CPn, each equipped with the same multiple of the Fubini-Study form with total volume

equal to that of an original hemisphere, n!(2π)n, and each with an embedded copy of CPn−1

as the center. ♦

2.3 From symplectic to origami: Blowing-up

Symplectic cutting gives us a way to split an origami manifold into symplectic components.

Conversely, we would like to be able to take symplectic manifolds and use them to create an

origami manifold – ideally so that once we perform symplectic cutting on that origami mani-

folds, we will get the original symplectic manifolds back. The obvious necessary condition is

that the symplectic manifolds, M1 and M2, we start with must contain symplectomorphic

codimension two symplectic submanifolds, B1 and B2, and symplectomorphic neighbor-

hoods of those, U1 and U2. This will in fact be sufficient to create the origami manifold.

The main question then is how to create a suitable S1-bundle over B1 ≃ B2 from the local

data, so that acts as the folding hypersurface for the new origami manifold.

We choose an S
1-action on the radially projectivized normal bundle N over B and let

ε > 0.

Definition 2.17. A blow-up model for a neighborhood U of B in (M,ω) is a map

β : N × (−ε, ε) −→ U
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that factors as

N × (−ε, ε) β //

β0 ''PPPPPPPPPPPP
U

(N × C) /S1

≃

OO

where β0(x, t) = [x, t], the S
1-action on N ×C is eiθ · (x, t) = (eiθ ·x, te−iθ), and the vertical

arrow is a bundle diffeomorphism from the image of β0 to U covering the identity B → B.

In practice, a blow-up model may be obtained by choosing a riemannian metric to

identify N with the unit bundle inside the geometric normal bundle TB⊥ and then using

the exponential map: β(x, t) = expp(tx) where p = π(x).

Lemma 2.18. If β : N × (−ε, ε) → U is a blow-up model for the neighborhood U of B

in (M,ω), then the pull-back form β∗ω is an origami form whose nullfoliation is the circle

fibration π : N × {0} → B.

Proof. The restriction β|N×(0,ε) : N ×(0, ε) → U rB is an orientation-preserving diffeomor-

phism and β(−x,−t) = β(x, t), so the form β∗ω is symplectic away from N × {0}. Since

β|N×{0} is the bundle projection N → B, on N × {0} the kernel of β∗ω has dimension 2

and is fibrating.

Moreover, for the vector fields ν generating the vertical bundle of N → B and ∂
∂t

tangent to (−ε, ε) we have that Dβ(ν) intersects zero transversally and Dβ( ∂
∂t

) is never

zero. Therefore the top power of β∗ω intersects zero transversally.

All blow-up models share the same germ up to diffeomorphism. More precisely, if

β1 : N × (−ε, ε) → U1 and β2 : N × (−ε, ε) → U2 are two blow-up models for neighborhoods

U1 and U2 of B in (M,ω), then there are possibly smaller tubular neighborhoods of B,

Vi ⊆ Ui and a diffeomorphism γ : V1 → V2 such that β2 = γ ◦ β1.

Proposition 2.19. Let (M2n
1 , ω1) and (M2n

2 , ω2) be symplectic manifolds, and Bi ⊂ Mi

compact codimension two symplectic submanifolds. Assume that there exist tubular neigh-

borhoods Ui of Bi in Mi for i = 1, 2 with a symplectomorphism γ : U1 → U2 that takes

B1 → B2.

Then there is a natural origami manifold (M̃, ω̃) with folding hypersurface diffeomorphic

to the radially projectivized normal bundle N1 to B1 and nullfibration isomorphic to N1 →
B1, with M̃+, M̃− symplectomorphic to M1 rB1, M2 rB2, respectively.
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Proof. Choose β : N1 × (−ε, ε) → U1 a blow-up model for the neighborhood U1. Then

β∗(ω1) is a folded symplectic form on N1× (−ε, ε) with folding hypersurface Z1 := N1×{0}
and nullfoliation integrating to the circle fibration S1 →֒ N1

π1−→ B1. We define

M̃ =
(
M1 rB1 ∪ M2 rB2 ∪ N1 × (−ε, ε)

)
/ ∼ .

Here M2 rB2 is simply M2 rB2 with reversed orientation and we quotient by identifying

via the symplectomorphisms

N1 × (0, ε)
β≃ U1 rB1 and N1 × (−ε, 0)

β≃ U1 rB1
γ≃ U2 rB2 .

The closed 2-form defined by

ω̃ :=





ω1 on M1 rB1

ω2 on M2 rB2

β∗ω1 on N1 × (−ε, ε)

endows M̃ with a structure of origami manifold with folding hypersurface Z1, where M̃+ ≃
M1 rB1 and M̃− ≃M2 rB2.

Definition 2.20. The origami manifold (M̃, ω̃) just constructed is called the radial blow-

up of (M1, ω1) and (M2, ω2) through (γ,B1).

When M1 and M2 are compact, the radial blow-up M̃ is also compact.

Note that (M̃, ω̃) and the radial blow-up of (M1, ω1) and (M2, ω2) through (γ−1, B2)

would be origami-symplectomorphic except that they have opposite orientations.

Radial blow-up is a local operation, so it may be performed on origami manifolds (or

one symplectic and one origami) at symplectomorphic symplectic submanifolds away from

the already existing fold(s). For example, if we start with two origami surfaces and radially

blow them up at one point (away from the folds), the resulting manifold is topologically the

connected sum M1#M2 with all the previous folding curves plus a new closed curve.
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2.4 There and back: Cutting a radial blow-up

Radial blow-up allows us to assemble symplectic manifolds into an origami manifold. Let

us see that when we cut the resulting origami manifold we recover the original symplectic

manifolds:

Proposition 2.21. Let (M1, ω1) and (M2, ω2) be symplectic manifolds and Bi ⊂Mi codimension-

two symplectic submanifolds. Let γ be a symplectomorphism of tubular neighborhoods of B1

and B2 taking B1 to B2 and (M,ω) be the radial blow-up of (M1, ω1) and (M2, ω2) through

(γ,B1).

Then cutting (M,ω) yields manifolds symplectomorphic to (M1, ω1) and (M2, ω2), with

the symplectomorphisms carrying B to B1 and B2.

Proof. We will construct a symplectomorphism ρ1 between the cut space (M+
0 , ω

+
0 ) of Def-

inition 2.15 and the original manifold (M1, ω1).

Let N be the radially projectivized normal bundle to B1 in M1 and β : N×(−ε, ε) → U1

a blow-up model. The cut space M+
0 is obtained by gluing the reduced space

µ−1(0)/S1 =
{
(x, s, z) ∈ Z × [0, ε2) × C : s = |z|2

}
/S1

with the manifold M1 r B1 via [x, t2, t] ∼ β(x, t) for t > 0 over U1 r B1. The gluing

diffeomorphism uses the maps

N × (0, ε) −→ µ−1(0)/S1 and N × (0, ε) −→ U1 rB1

(x, t) 7−→ [x, t2, t] (x, t) 7−→ β(x, t)

and is in fact a symplectomorphism. The symplectic form ω+
0 on M+

0 is equal to the reduced

symplectic form on µ−1(0)/S1 and equal to ω1 on M1 rB1.

Let us define the map ρ1 : M1 →M+
0 that is the identity on M1 rB1 and on U1 is the

composed diffeomorphism

δ1 : U1 −→ (N × C) /S1 −→ µ−1(0)/S1

[x, z] 7−→ [x, |z|2, z],

where the first arrow is the inverse of the bundle isomorphism given by the blow-up model.

To show that ρ1 is well-defined we must check that u1 ∈ U1 rB1 is equivalent to its image
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δ1(u1) ∈ µ−1(0)/S1
r B. Indeed, u1 must correspond to [x, z] ∈ (N × C) /S1 with z 6= 0.

We write z as z = teiθ with t > 0. Since [x, z] = [eiθx, t], we have u1 = β(eiθx, t) and

δ1(u1) = [eiθx, |t|2, t]. These two are equivalent under β(x, t) ∼ [x, t2, t], so ρ1 is well-

defined.

Furthermore, M1 and M+
0 are symplectic manifolds equipped with a diffeomorphism

that is a symplectomorphism on the common dense subset M1 rB1, so M1 and M+
0 must

be globally symplectomorphic.

We will now turn to (M2, ω2) and (M−
0 , ω

−
0 ). The cut space M−

0 is obtained gluing the

same reduced space µ−1(0)/S1 with the manifold M2 rB2 via [x, t2, t] ∼ γ (β(x, t)) for t < 0

over U2 rB2, more precisely through the diffeomorphisms

N × (−ε, 0) −→ µ−1(0)/S1

(x, t) 7−→ [x, t2, t]

and

N × (−ε, 0) −→ U1 rB1
γ−→ U2 rB2

(x, t) 7−→ β(x, t) 7−→ γ (β(x, t)) .

The symplectic form ω−
0 on M−

0 is equal to the reduced symplectic form on µ−1(0)/S1

and equal to ω2 on M2 rB2.

Let us define the map ρ2 : M2 →M−
0 that is the identity on M2 rB2 and on U2 is the

composed diffeomorphism

δ2 : U2
γ−1

−→ U1 −→ (N × C) /S1 −→ µ−1(0)/S1

[x, z] 7−→ [x, |z|2, z],

where the second arrow is the inverse of the bundle isomorphism given by the blow-up model.

To show that ρ2 is well-defined we must check that u2 = γ(u1) ∈ U2 rB2 is equivalent to its

image δ2(u2) ∈ µ−1(0)/S1
rB. Indeed u1 must correspond to [x, z] ∈ (N × C) /S1 with z 6=

0. We write z as z = −teiθ with t < 0. Since [x, z] = [−eiθx, t], we have u2 = γ
(
β(−eiθx, t)

)

and δ2(u2) = [−eiθx, |t|2, t]. These two are equivalent under γ (β(x, t)) ∼ [x, t2, t], so ρ1 is

well-defined.

As before, we conclude that M2 and M−
0 must be globally symplectomorphic.
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2.5 And vice-versa: Radially blowing-up cut pieces

It was to be expected that, using reasonable definitions of cutting and radial blowing-up,

cutting a radial blow-up would yield the original symplectic manifolds. However, asking if

radially blowing-up cut pieces yields the original origami manifold is ultimately the same as

asking if an origami manifold is completely determined by its symplectic cut pieces (plus a

symplectomorphism γ as in Remark 2.14, which is also obtained when cutting). The answer

is yes, and this is a remarkable property of origami manifolds that will be fundamental in

the results of the next chapter.

Proposition 2.22. Let (M,ω) be an origami manifold with nullfibration S
1 →֒ Z

π−→
B, with (M1, ω1) and (M2, ω2) its symplectic cut pieces, B1 and B2 the respective natural

symplectic embedded images of B, and γ1 : U1 → U2 the natural symplectomorphism of

tubular neighborhoods of B1 and B2 as in Remark 2.14. Let (M̃, ω̃) be the radial blow-up of

(M1, ω1) and (M2, ω2) through (γ1, B1).

Then (M,ω) and (M̃, ω̃) are origami-symplectomorphic.

Proof. Let U be a tubular neighborhood of Z and ϕ : Z × (−ε, ε) → U a Moser model

diffeomorphism as in Proposition 2.3, with ϕ∗ω = p∗i∗ω + d(t2p∗α). Let N be the radially

projectivized normal bundle to B1 in M1. By Proposition 2.13, the natural embedding of

B in M1 with image B1 lifts to a bundle isomorphism from N → B1 to Z → B. Under this

isomorphism, we pick the following natural blow-up model for the neighborhood µ−1(0)/S1

of B1 in (M1, ω1):

β : Z × (−ε, ε) −→ µ−1(0)/S1

(x, t) 7−→ [x, t2, t] .

By construction, (see proof of Proposition 2.13) the reduced form ω1 on µ−1(0)/S1 is such

that β∗ω1 = ϕ∗ω, so in this case the origami manifold (M̃, ω̃) has

M̃ =
(
M1 rB1 ∪ M2 rB2 ∪ Z × (−ε, ε)

)
/ ∼

where we quotient via

Z × (0, ε)
β≃ µ−1(0)/S1 ⊂ U1 rB1

and

Z × (−ε, 0)
β≃ µ−1(0)/S1

γ≃ µ−1(0)/S1 ⊂ U2 rB2
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and we have

ω̃ :=





ω1 on M1 rB1

ω2 on M2 rB2

β∗ω1 on Z × (−ε, ε) .

The natural symplectomorphisms (from the proof of Proposition 2.13) j+ : M+ →M1 rB1

and j− : M− → M2 r B2 extending ϕ(x, t) 7→
[
x, t2, t

]
make the following diagrams

commute:

M+ ⊃ U+
j+

// µ−1(0)/S1 ⊂ M1 rB1

Z × (0, ε)

ϕ

ddIII
I
II

II
II β

88ppppppppppp

M− ⊃ U−
j− // µ−1(0)/S1 ⊂ M2 rB2

Z × (−ε, 0)

ϕ

eeJ
J
J
J
J
J
J
J
J
J β

77ooooooooooo

Therefore, the map M → M̃ defined by j+, j− and ϕ−1 is a well-defined diffeomorphism

pulling back ω̃ to ω.
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Chapter 3

Group actions on origami

manifolds

3.1 Moment images of origami manifolds

Consider a smooth action of a Lie group G on an origami manifold (M,ω)

ψ : G→ Diff(M).

Suppose G acts by origami-symplectomorphisms, i.e., ψ(g)∗ω = ω for each g ∈ G. Note

that such a G-action preserves the folding hypersurface and its nullfibration. As in the

symplectic case, we say that ψ is a hamiltonian action if there exists a map µ : M → g
∗,

equivariant with respect to the given action on M and the coadjoint action on g
∗, such that

for each X ∈ g we have

dµX = ιX#ω,

where µX : M → R, given by µX(p) = 〈µ(p), X〉, is the component of µ along X, and X#

is the vector field on M generated by the one-parameter subgroup {exp tX : t ∈ R} ⊂ G.

The map µ is called the moment map.

Guillemin-Sternberg [7] and Atiyah [1] proved that the image of the moment map of a

compact connected symplectic manifold with a torus action is a convex polytope. We are

going to see that for origami manifolds the moment images are superpositions of convex

polytopes, one for each connected component of M r Z.
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Definition 3.1. Let ∆1 and ∆2 be polytopes in R
n and F1, F2 faces of ∆1 and ∆2,

respectively. We say that ∆1 agrees with ∆2 near F1 and F2 if F1 = F2 and there is an

open subset U of Rn containing F1 such that U ∩ ∆1 = U ∩ ∆2.

Theorem 3.2. Let (M,ω,G, µ) be a compact connected origami manifold with nullfibration

S1 →֒ Z
π→ B and a hamiltonian action of an m-dimensional torus G with moment map

µ : M → g
∗. Then:

(a) The image µ(M) of the moment map is the union of a finite number of convex polytopes

∆i, i = 1, . . . , N , each of which is the image of the moment map restricted to the

closure of a connected component of M r Z;

(b) Over each connected component Z ′ of Z, µ(Z ′) is a facet of each of the two polytopes

corresponding to the neighboring components of M r Z (and furthermore the two

polytopes agree near that facet) if and only if the nullfibration on Z ′ is given by a

circle subgroup of G.

Such images µ(M) are called origami polytopes.

Proof. (a) Since the G-action preserves ω, it also preserves each connected component of

the folding hypersurface Z and its nullfoliation V . Choose an oriented nonvanishing

section V , average it so that it is G-invariant and scale it uniformly over each orbit

so that its integral curves all have period 2π. This produces a vector field v which

generates an action of S
1 on Z that commutes with the G-action. This S

1-action also

preserves the moment map µ: For any X ∈ g with corresponding vector field X# on

M , we have over Z

Lvµ
X = ιvdµ

X = ιvιX#ω = ω(X#, v) = 0 .

Using this v, the cutting construction from Section 2.2 has a hamiltonian version. Let

(Mi, ωi), i = 1, . . . , N , be the compact connected components of the symplectic cut

pieces and Bi be the union of the components of the centers B which naturally embed

in Mi. Each Mi rBi is symplectomorphic to a connected component Wi ⊂MrZ and

Mi is the closure of Mi r Bi. Each (Mi, ωi) inherits a hamiltonian action of G with

moment map µi that matches µ|Wi
over Mi r Bi and is the well-defined S

1-quotient

of µ|Z over Bi.
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By the Atiyah-Guillemin-Sternberg convexity theorem [1, 7], each µi(Mi) is a convex

polytope ∆i. Since µ(M) is the union of the µi(Mi), we conclude that

µ(M) =

N⋃

i=1

∆i.

(b) Let Z ′ be a connected component of Z with nullfibration Z ′ → B′. Let W1 and W2

be the two neighboring components of M r Z on each side of Z ′, (M1, ω1, G, µ1) and

(M2, ω2, G, µ2) the corresponding cut spaces with moment polytopes ∆1 and ∆2.

Let U be a G-invariant tubular neighborhood of Z ′ with a G-equivariant diffeomor-

phism ϕ : Z ′ × (−ε, ε) → U such that

ϕ∗ω = p∗i∗ω + d
(
t2p∗α

)
,

where G acts trivially on (−ε, ε), p : Z ′ × (−ε, ε) → Z ′ is the projection onto the first

factor, t ∈ (−ε, ε) and α is a G-invariant S
1-connection on Z ′ as in Remark 2.9.

Without loss of generality, Z ′×(0, ε) and Z ′×(−ε, 0) correspond via ϕ to the two sides

U1 =: U∩W1 and U2 =: U∩W2, respectively. The involution τ : U → U translating t 7→
−t in Z ′×(−ε, ε) is a G-equivariant (orientation-reversing) diffeomorphism preserving

Z ′, switching U1 and U2 but preserving ω. Hence the moment map satisfies µ ◦ τ = µ

and µ(U1) = µ(U2).

When the nullfibration is given by a subgroup of G, we cut the G-space U at the level

Z ′. The image µ(Z ′) is the intersection of µ(U) with a hyperplane and thus a facet of

both ∆1 and ∆2. Each Ui ∪B′ is equivariantly symplectomorphic to a neighborhood

Vi of B′ in (Mi, ωi, G, µi) with µi(Vi) = µ(Ui)∪µ(Z ′), i = 1, 2. Since µ1(V1) = µ2(V2),

we conclude that ∆1 and ∆2 agree near the facet µ(Z ′).

For a general nullfibration, we cut the G×S
1-space U with moment map (µ, t2) at Z ′,

the S1-level t2 = 0. The image of Z ′ by the G × S1-moment map is the intersection

of the image of the full U with a hyperplane. Let π : g
∗ × R → g

∗ be the projection

onto the first factor. We conclude that the image µ(Z ′) is a facet of a polytope ∆̃ in

g
∗ × R, so it can be of codimension zero or one; see Example 3.4.

If π|
∆̃

: ∆̃ → ∆1 is one-to-one, then facets of ∆̃ map to facets of ∆1 and ∆̃ is contained
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in a hyperplane surjecting onto g
∗. The normal to that hyperplane corresponds to a

circle subgroup of S
1 ×G acting trivially on U and surjecting onto the S

1-factor. This

allows us to express the S1-action in terms of a subgroup of G.

If π|
∆̃

: ∆̃ → ∆1 is not one-to-one, it cannot map the facet F̃Z′ of ∆̃ corresponding to

Z ′ to a facet of ∆1: Otherwise, F̃Z′ would contain nontrivial vertical vectors (0, x) ∈
g
∗×R, which would forbid cutting. Hence, the normal to F̃Z′ in ∆̃ must be transverse

to g
∗, and the corresponding nullfibration circle subgroup is not a subgroup of G.

Example 3.3. Consider (S2n, ω0,T
n, µ), where (S2n, ω0) is a sphere as in Example 2.12

with Tn acting by

(eiθ1 , . . . , eiθn) · (z1, . . . , zn, h) = (eiθ1z1, . . . , e
iθnzn, h)

and moment map defined by

µ(z1, . . . , zn, h) =

( |z1|2
2

, . . . ,
|zn|2

2

)

whose image is the n-simplex

{
(x1, . . . , xn) ∈ R

n : xi ≥ 0,
∑

i

xi ≤
1

2

}
.

The image µ(Z) of the folding hypersurface is the (n − 1)-dimensional affine simplex that

is the facet opposite from the orthogonal corner. Figure 3-1 gives the moment images of S
4

and S6.

Figure 3-1: Origami polytopes for S
4 and S

6

The nullfoliation is the Hopf fibration given by the diagonal circle subgroup of T
n. The
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moment image n-simplex is the union of two identical n-simplices, each of which is the

moment polytope of one of the copies of CP
n obtained by cutting; see Example 2.16. ♦

Example 3.4. Consider (S2 × S
2, ωs ⊕ ωf ,S

1, µ), where (S2, ωs) is a standard symplectic

sphere, (S2, ωf ) is a folded symplectic sphere with folding hypersurface given by a parallel,

and S1 acts as the diagonal of the standard rotation action of S1 × S1 on the product

manifold. Then the moment map image is a line segment and the image of the folding

hypersurface is a nontrivial subsegment. Indeed, the image of µ is a 45o projection of the

image of the moment map for the full S1 × S1 action, the latter being a rectangle in which

the folding hypersurface surjects to one of the sides.

Figure 3-2: One-dimensional origami polytope where the image of the fold is not a facet

By considering the first or second factors of the S1 × S1 action alone, we get the two

extreme cases in which the image of the folding hypersurface is either the full line segment

or simply one of the boundary points.

The analogous six-dimensional examples (S2 × S
2 × S

2, ωs ⊕ ωs ⊕ ωf ,T
2, µ) produce

moment images which are rational projections of a cube, with the folding hypersurface

mapped to rhombi.

Figure 3-3: Two-dimensional origami polytope where the image of the fold is not a facet

♦

35



3.2 Toric origami manifolds

In the symplectic world, a closed connected symplectic 2n-dimensional manifold equipped

with an effective hamiltonian action of an n-dimensional torus and with a corresponding

moment map is called a toric symplectic manifold or Delzant space. Delzant’s theorem [5]

says that the moment polytope determines the Delzant space up to an equivariant sym-

plectomorphism intertwining the moment maps. A polytope which occurs as the moment

image of a Delzant space is a Delzant polytope. This is a polytope in R
n such that n

edges of the form p + tui, t ≥ 0 meet at each vertex p, with ui ∈ Zn, and for each vertex,

the corresponding u1, . . . , un can be chosen to be a Z-basis of Zn.

Definition 3.5. A toric origami manifold (M,ω,G, µ) is a compact connected origami

manifold (M,ω) equipped with an effective hamiltonian action of a torus G with dimG =

1
2 dimM and with a choice of a corresponding moment map µ.

We will see that in the toric case the condition of part (b) of Theorem 3.2 always holds:

Corollary 3.6. When (M,ω,G, µ) is a toric origami manifold the moment map image

of each connected component Z ′ of Z is a facet of the two polytopes corresponding to the

neighboring components of M r Z and these polytopes agree near the facet µ(Z ′).

Proof. On a toric origami manifold, principal orbits, i.e. those with trivial isotropy, form a

dense open subset of M [2, p.179]. Any connected component Z ′ of Z has a G-invariant

tubular neighborhood modeled on Z ′ × (−ε, ε) with a G × S1 hamiltonian action having

moment map (µ, t2). As the orbits are isotropic submanifolds, the principal orbits of the

G×S
1-action must still have dimension dimG, so their stabilizer must be a one-dimensional

compact connected subgroup surjecting onto S1. Thus, over those connected components

of Z the nullfibration is given by a subgroup of G.

The moment image of an origami manifold is a superposition of polytopes with cer-

tain compatibility conditions. These polytopes are the moment images of the closures of

connected components of M r Z, and are also the moment polytopes of the connected

components Mi of the symplectic cut pieces.

As seen in the proof of Theorem 3.2, each Mi inherits a hamiltonian G-action, thus mak-

ing each (Mi, ωi, G, µi) a Delzant space. In the next section we will see that all (compatible)

superpositions of Delzant polytopes occur as moment images of toric origami manifolds, and
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furthermore classify them up to equivariant origami-symplectomorphism intertwining mo-

ment maps.

Example 3.7. Let (M1, ω1,T
2, µ1) and (M2, ω2,T

2, µ2) be symplectic toric manifolds with

moment polytopes that agree near a facet. For example, consider the Hirzebruch surfaces

with Delzant polytopes as in Figure 3-4, but translated so the vertical edges coincide.

Figure 3-4: Delzant polytopes that agree near a facet: two Hirzebruch surfaces

Let (B,ωB,T
2, µB) be a symplectic S

2 with a hamiltonian (noneffective) T
2-action and

hamiltonian embeddings ji into (Mi, ωi,T
2, µi) as preimages of the vertical edges.

In order to proceed we need the following lemma:

Lemma 3.8. Let G = Tn be an n-dimensional torus and (M2n
i , ωi, µi), i = 1, 2, two

symplectic toric manifolds. If the moment polytopes ∆i := µi(Mi) agree near facets F1 ⊂
µ1(M1) and F2 ⊂ µ2(M2), then there are G-invariant neighborhoods Ui of Bi = µ−1

i (Fi), i =

1, 2, with a G-equivariant symplectomorphism γ : U1 → U2 extending a symplectomorphism

B1 → B2 and such that γ∗µ2 = µ1.

Proof. Let U be an open set containing F1 = F2 such that U ∩ ∆1 = U ∩ ∆2. Perform

symplectic cutting [9] on M1 and M2 by slicing ∆i along a hyperplane parallel to Fi such

that the resulting moment polytope ∆̃i containing Fi is in the open set U . Suppose the

hyperplane is close enough to Fi to guarantee that ∆̃i is still a Delzant polytope. Then ∆̃1 =

∆̃2. By Delzant’s theorem, the corresponding cut spaces M̃1 and M̃2 are G-equivariantly

symplectomorphic, with the symplectomorphism pulling back one moment map to the other.

Since symplectic cutting is a local operation, restricting the previous symplectomorphism

gives us a G-equivariant symplectomorphism between G-equivariant neighborhoods Ui of

Bi in Mi pulling back one moment map to the other.

By this Lemma, there exists a T
2-equivariant symplectomorphism γ : U1 → U2 between

invariant tubular neighborhoods Ui of ji(B) extending a symplectomorphism j1(B) → j2(B)
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such that γ∗µ2 = µ1. The corresponding radial blow-up has the origami polytope depicted

in Figure 3-5.

Figure 3-5: Origami polytope for the radial blow-up of two Hirzebruch surfaces

Different shades of grey distinguish regions where each point represents two orbits

(darker) or one orbit (lighter), as results from the superposition of two Hirzebruch polytopes.

♦

3.3 Classification of toric origami manifolds

A toric origami manifold is determined by its symplectic cut pieces (plus a symplecto-

morphsim γ as in Remark 2.14) whose connected components are Delzant spaces. These, in

turn, are determined by their moment polytopes, so the toric origami manifold is determined

by its moment data, collected in the form of an origami template.

Definition 3.9. An n-dimensional origami template is a pair (P,F), where P is a

(nonempty) finite collection of oriented n-dimensional Delzant polytopes and F is a collec-

tion of pairs of facets of polytopes in P satisfying the following properties:

(a) For each pair {F1, F2} ∈ F , the corresponding polytopes ∆1 ∋ F1 and ∆2 ∋ F2 agree

near those facets and have opposite orientations;

(b) If a facet F occurs in a pair in F , then neither F nor any of its neighboring facets

occur elsewhere in F ;

(c) The topological space constructed from the disjoint union ⊔∆i, ∆i ∈ P by identifying

facet pairs in F is connected.

Theorem 3.10. Toric origami manifolds are classified by origami templates up to equiv-

ariant origami-symplectomorphisms preserving the moment maps. More specifically, there

38



is a bijective correspondence

{2n-dim’l toric origami manifolds} −→ {n-dim’l origami templates}
(M2n, ω,Tn, µ) 7−→ µ(M).

Proof. Let M1 be the disjoint union of all the Delzant spaces associated with the positively

oriented polytopes in P, and similarly M2 for the negatively oriented ones. The origami

manifold corresponding to the template is the radial blow-up ofM1 andM2 along the inverse

images of the pairs of facets occurring in F , using the symplectomorphism γ from Lemma

3.8.

The uniqueness part follows from an equivariant version of Proposition 2.22.

Example 3.11. The template of the manifold constructed in Example 3.7 is (P,F), where

P contains the two Hirzebruch polytopes and F consists of the pair of vertical edges. ♦

Example 3.12. Unlike ordinary toric manifolds, toric origami manifolds may come from

non-simply connected templates. Let M be the manifold S
2×S

2 (with different areas) blown

up at two points. The associated polytope ∆ is a rectangle with two corners removed. We

can construct an origami template (P,F) where P consists of four copies of ∆ arranged

in a square and F of the four pairs of edges coming from the blowups, as illustrated in

Figure 3-6.

Figure 3-6: Non-simply connected origami polytope

Note that the associated origami manifold is also not simply connected.

We can form higher-dimensional analogues of this example, which fail to be k-connected

for k ≥ 2. In the case k = 2, for instance, let ∆′ be the polytope associated to M × S2,

and construct an origami template (P ′,F ′) just as before, to obtain the three-dimensional

polytope of Figure 3-7.
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Figure 3-7: Non-2-connected origami polytope

We now superimpose these two solids along the dark shaded facets (the bottom facets

of the top copies of ∆′), giving us a ninth pair of facets and the desired non-2-connected

template. ♦

Example 3.13. We can classify all two-dimensional toric origami manifolds via their one-

dimensional templates. These are disjoint unions of n segments connected at vertices with

zero angle, each segment gives a component of M r Z. In these pictures the segment

length, which accounts for symplectic area of the corresponding component, is ignored.

Instead of drawing segments superimposed, we open up angles slightly to show the number

of components. All internal vertices are marked with bullets for folds and each one gives a

component of Z. An endpoint on the picture corresponds to a fixed point on the manifold.

There are two families:

• Manifolds diffeomorphic to a sphere S2 with two fixed points (the north and south

pole) and the fold Z consisting of n ≥ 0 disjoint circles:

Figure 3-8: Toric origami 2-spheres

• Manifolds diffeomorphic to a torus T2 with no fixed points and the fold Z consisting

of an even number 2n ≥ 2 of disjoint circles:

♦
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Figure 3-9: Toric origami 2-tori

3.4 Take a walk on the non-origami side

Moment images of origami manifolds, and especially those of toric origami manifolds, are

very rigid. This is due to the origami hypothesis, and in fact (non-origami) folded symplectic

manifolds have moment images that can be practically arbitrary.

Take a toric symplectic 2n-manifold (M ′, ω′,Tn, µ) and use a regular closed hypersurface

inside the moment image to scoop out the T
n-invariant open subset of the manifold M ′

that corresponds to the region inside the hypersurface. Let f be a defining function for the

hypersurface such that f is positive on the interior. Now, consider the manifold

M =
{
(p, x) ∈M ′ × R : x2 = f(p)

}
.

This manifold is naturally a folded symplectic manifold that inherits an effective hamiltonian

Tn-action and a moment map from the original M ′. Its moment map image is exactly the

interior of the hypersurface (each point on the interior of the image represents two orbits,

one for positive and one for negative x, and points on the fold are mapped to the boundary).

For instance, we can use this method to build a 4-dimensional folded symplectic manifold

with moment image as in Figure 3-101.

The nullfoliation on the fold Z is not fibrating: At points where the slope of the curve

is irrational, the corresponding leaf is not compact, so this manifold is not origami.

As illustrated by Figure 3-10, it is not possible to classify toric folded symplectic man-

ifolds by combinatorial moment data as was the case for toric origami manifolds. Such a

classification must be more intricate for the general folded case, and in [8] C. Lee gives a

partial result that sheds some light on the type of classification that might be possible:

A toric folded symplectic manifold (M,ω,T, µ) is a compact connected folded symplectic

manifold (M2n, ω) endowed with an effective hamiltonian action of a half-dimensional torus

1Image from [6], reprinted and altered with permission of the authors
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Figure 3-10: Moment image of a folded (non-origami) symplectic manifold

Tn and a corresponding moment map µ. The orbital moment map is the map on the

orbit space M/T induced by the moment map. Two toric folded symplectic 4-manifolds

(M,ω,T, µ) and (M ′, ω′,T, µ′) are folded-symplectomorphic if H2(M/T,Z) = 0 and there

exists a diffeomorphism between orbit spaces preserving orbital moment maps.

When (M,ω,T, µ) is a toric origami manifold, M/T can be realized as the topological

space obtained by gluing the polytopes of its origami template along the common facets

(see point (c) in Definition 3.9). This space has the same homotopy type as the graph

obtained by replacing each polytope by a point and each glued double facet by an edge

between the points corresponding to the polytopes that the facet belongs to. Therefore,

H2(M/T,Z) = 0. The existence of a diffeomorphism between orbit spaces implies that

(M ′, ω′,T, µ′) is an origami manifold as well, and that its origami template is the same as

that of (M,ω,T, µ), which makes them origami-symplectomorphic by Theorem 3.3.
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Chapter 4

Going nonorientable

4.1 Nonorientable origami manifolds

In Section 3.3 we saw that given an origami template, we can construct the corresponding

origami manifold by blowing up the Delzant spaces that correspond to the polytopes along

the paired facets. Consider Figure 4-1, and use this method to create a manifold: Start

with three copies of S
2 × S

2 blown up at two points and radially blow up the three marked

pairs of facets.

Figure 4-1: Nonorientable origami template

This is not a template in the sense of Definition 3.9 because the condition regarding

orientation is not satisfied, but since radial blowing up is a local operation, it is possible to

construct the corresponding manifold. While failing to be globally orientable, this manifold

is not essentially different from the origami manifolds studied in Chapters 1 and 2. More

precisely, a small enough tubular neighbourhood of the folding hypersurface, like the collar

given by Proposition 2.3, is an open (oriented) origami manifold. In this case, we say that

we have a coorientable fold.

This suggests that we should allow for nonorientable origami manifolds. Indeed, Defi-
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nition 2.1 of folded symplectic and 2.11 of origami forms make sense without reference to

orientability. We therefore extend the earlier definitions to include nonorientable origami

manifolds that are, in the above sense, essentially different from those previously considered:

Example 4.1. Consider the projective real space RP
2n = S

2n/Z2, with the 2-form ω0

induced by the restriction to S2n of the Z2-invariant form dx1 ∧ dx2 + . . .+ dx2n−1 ∧ dx2n

in R2n+1 [4]. The folding hypersurface is RP2n−1 ≃ {[x1, . . . , x2n, 0]} and the nullfibration

is the Z2-quotient of the Hopf fibration: S
1 →֒ RP

2n−1
։ CP

n−1. This origami RP
2n is

the Z2-quotient of the oriented origami 2n-sphere from Example 2.12. Note that the collar

neighbourhood of the fold is a bundle of Möbius bands. ♦
When the collar neighbourhood of the fold is nonorientable, we say we have a non-

coorientable fold.

4.2 Cutting and radially blowing-up in the general case

The orientable double cover (M,ω) (with a choice of orientation) of a nonorientable origami

manifold (M,ω) is an oriented origami manifold, so we can perform cutting onM by working

on (M,ω): The double cover involution yields a symplectomorphism from one symplectic

cut piece to the other, so we regard these pieces as a trivial double cover of one of them,

and call their Z2-quotient the symplectic cut space of (M,ω). In general,

Definition 4.2. The symplectic cut space of an origami manifold (M,ω) is the natural

Z2-quotient of the symplectic cut pieces of its orientable double cover.

Example 4.3. In the case where M r Z is connected, the symplectic cut space is also

connected: Cutting the origami manifold (RP2n, ω0) from Example 4.1 produces a single

copy of CP
n. ♦

In order to generalize the blowing-up construction to the general case, we replace the

symplectic manifolds (M1, ω1) and (M2, ω2) in Proposition 2.19 by their union (M,ω),

and likewise the symplectic submanifolds B1 and B2 by their union B. Let (M,ω) be

a symplectic manifold with a codimension-two symplectic submanifold B. It is useful to

introduce notion of model involution.

Definition 4.4. A model involution of a tubular neighborhood U of B is a symplectic

involution γ : U → U preserving B such that on the connected components Ui of U , where
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γ(Ui) = Ui, we have γ|Ui
= idUi

.

Recall that N is the radially projectivized normal bundle to B in M . Then a model

involution γ induces a bundle map Γ : N → N covering γ|B by the formula

Γ([v]) = [dγp(v)] for v ∈ TpM,p ∈ B .

This is well-defined because γ(B) = B.

When, as in the orientable case, B is the disjoint union of B1 and B2 and U = U1 ⊔ U2,

if γ(B1) = B2 then

γ1 := γ|U1
: U1 → U2 and γ|U2

= γ−1
1 : U2 → U1 .

In that case, B/γ ≃ B1 and N/ − Γ ≃ N1 is the radially projectivized normal bundle to

B1.

Proposition 4.5. Let (M,ω) be a symplectic manifold, B a compact codimension-two sym-

plectic submanifold and N its radially projectivized normal bundle. Let γ : U → U be a model

involution of a tubular neighborhood U of B and Γ : N → N the induced bundle map.

Then there is a natural origami manifold (M̃, ω̃) with folding hypersurface diffeomorphic

to N/− Γ and nullfibration isomorphic to N/− Γ → B/γ.

Proof. Choose β : N × (−ε, ε) → U a blow-up model for the neighborhood U such that

γ ◦ β = β ◦ Γ. This is always possible: For components Ui of U where γ(Ui) = Ui this

condition is trivial; for disjoint neighborhood components Ui and Uj such that γ(Ui) = Uj

this condition amounts to choosing any blow-up model on one of these components and

transporting it to the other by γ.

Then β∗ω is a folded symplectic form on N × (−ε, ε) with folding hypersurface N ×{0}
and nullfoliation integrating to the circle fibration S

1 →֒ N π→ B. We define

M̃ =
(
M rB

⋃
N × (−ε, ε)

)
/ ∼

where we quotient by

(x, t) ∼ β(x, t) for t > 0 and (x, t) ∼ (−Γ(x),−t) .
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The forms ω on M r B and β∗ω on N × (−ε, ε) induce an origami form ω̃ on M̃ with

folding hypersurface N/ − Γ. Indeed, β is a symplectomorphism for t > 0, and (−Γ,−id)

on N × (−ε, ε) is a symplectomorphism away from t = 0 (since β and γ are) and at points

where t = 0 it is a local diffeomorphism.

The origami manifold (M̃, ω̃) just constructed is called the radial blow-up of (M,ω)

through (γ,B). When M is compact, M̃ is as well.

Example 4.6. Let M be a 2-sphere, B the union of two (distinct) points of M , and γ

defined by a symplectomorphism from a Darboux neighborhood of one point to a Darboux

neighborhood of the other. Then the radial blow-up M̃ is a Klein bottle and ω̃ a form which

folds along a circle. ♦

Example 4.7. Let M be a 2-sphere, B one point on it, and γ the identity map on a

neighborhood of that point. Then the radial blow-up M̃ is RP2 and ω̃ is a form that folds

along a circle. ♦
The quotient N×(−ε, ε)/ (−Γ,−id) provides a collar neighborhood of the fold in (M̃, ω̃).

When B splits into two disjoint components interchanged by γ, this collar is orientable

so the fold is coorientable. Example 4.6 illustrates a case where, even though the fold is

coorientable, the radial blow-up (M̃, ω̃) is not orientable.

When γ is the identity map, as in Example 4.7, the collar is nonorientable and the

fold is not coorientable. In the latter case, the collar is a bundle of Möbius bands S1 ×
(−ε, ε)/(−id,−id) over B.

In general, γ will be the identity over some connected components of B and will inter-

change other components, so some components of the fold will be coorientable and others

will not.

While cutting of general origami manifolds is performed by working on the double cover,

blow-up is performed directly, so in order to prove results similar to Propositions 2.21 and

2.22 we need the fact that the blow-up of the double cover is the double cover of the blow-up:

Lemma 4.8. Let (M,ω) be the blow-up of the symplectic manifold (Ms, ωs) through (γ,B).

We write B = B0⊔B1⊔B2 and the domain of γ as U = U0⊔U1⊔U2 where γ is the identity

map on U0 and exchanges U1 and U2.

Let (Ms, ωs) be the trivial double cover of (Ms, ωs) with B = B↑ ⊔B↓, U = U↑ ⊔ U↓ the
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double covers of B and U ; let γ : U → U be the lift of γ satisfying γ(U↑
0 ) = U↓

0 , γ(U↑
1 ) = U↓

2

and γ(U↑
2 ) = U↓

1 ; and let (M,ω) be the blow-up of (Ms, ωs) through (γ,B).

Then (M,ω) is an orientable double cover of (M,ω).

Proof. Being the double cover of an oriented manifold, we write

Ms = M↑
s ⊔M↓

s

with each component diffeomorphic to Ms. By construction of γ, the blow-up can be

performed as in Proposition 2.19 and yields an orientable origami manifold (M,ω) with

M
+ ≃M↑

s rB↑ and M
− ≃M↓

s rB↓

and a fold N ↑ fibering over B↑. There is a natural two-to-one smooth projection M → M

taking M↑
s rB↑ and M↓

s rB↓ each diffeomorphically to MrZ where Z is the fold of (M,ω),

and that takes the fold N ↑ ≃ N of (M,ω) to Z ≃ N/−Γ, where Γ : N → N is the bundle

map induced by γ (the map −Γ has no fixed points).

Corollary 4.9. Let (M,ω) be the radial blow-up of the symplectic manifold (Ms, ωs) through

(γ,B). Then the cutting of (M,ω) yields a manifold symplectomorphic to (Ms, ωs) where

the symplectomorphism carries the base to B.

Proof. Let (Mcut, ωcut) be the symplectic cut space of (M,ω). Let (Ms, ωs) and (Mcut, ωcut)

be the trivial double covers of (Ms, ωs) and (Mcut, ωcut). By Lemma 4.8, the radial blow-up

(M,ω) of (Ms, ωs) through (γ,B) is an orientable double cover of (M,ω). By Defini-

tion 4.2, (Mcut, ωcut) is the symplectic cut space of (M,ω). By Proposition 2.22, (Ms, ωs)

and (Mcut, ωcut) are symplectomorphic relative to the centers. It follows that (Ms, ωs) and

(Mcut, ωcut) are symplectomorphic relative to the centers.

Corollary 4.10. Let (M,ω) be an origami manifold with nullfibration S
1 →֒ Z

π→ B.

Let (Mcut, ωcut) be its symplectic cut space, Bcut the natural symplectic embedded image

of B in Mcut and γ : U → U a natural symplectomorphism of a tubular neighborhood U of

Bcut.

Then (M,ω) is origami-symplectomorphic to (M̃, ω̃), the radial blow-up of (Mcut, ωcut)

through (γ,Bcut).

47



Proof. We prove this at the level of orientable double covers. By Proposition 2.21, the

orientable double cover of (M,ω) is origami-symplectomorphic to the blow-up of its cut

space. By definition, the cut space of the double cover of (M,ω) is the double cover of

(Mcut, ωcut) and, by Lemma 4.8, the blow-up of this latter double cover is the double cover

of (M̃, ω̃).

4.3 Convexity and classification results in the general case

The definitions of hamiltonian action, moment map and toric action hold also for nonori-

entable origami manifolds, so we will extend the results of Chapter 3 to all origami manifolds.

Example 4.11. Recall that the moment polytope of a toric CP
2 is a triangle as shown on

the right in Figure 4-2. The moment image of a toric sphere S4 is shown on the left with a

darker shading, two copies of this triangle glued along one edge. In the center we have the

moment image of a toric RP
4, a single copy of the triangle with a single folded edge.

S4 RP
4

CP
2

Figure 4-2: Three origami templates: S4, RP4 and CP2

This exhibits S4 as a double cover of RP4 at the level of templates. ♦
Whenever the connected component of the fold is coorientable, the situtation is similar

to that of the original oriented case, in the sense that the neighboring polytopes must agree

near the folding edge. In the non-coorientable case, the folding edge only belongs to one

polytope, so there is no such condition to satisfy. Theorem 3.2 then becomes:

Theorem 4.12. Let (M,ω,G, µ) be a compact connected origami manifold with nullfibration

S1 →֒ Z
π→ B and a hamiltonian action of an m-dimensional torus G with moment map

µ : M → g
∗. Then:

(a) The image µ(M) of the moment map is the union of a finite number of convex polytopes

∆i, i = 1, . . . , N , each of which is the image of the moment map restricted to the

closure of a connected component of M r Z;
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(b) Over each connected component Z ′ of Z, µ(Z ′) is a facet of each of the one or two

polytopes corresponding to the neighboring components of MrZ (and furthermore the

polytopes, if two, agree near that facet) if and only if the nullfibration on Z ′ is given

by a subgroup of G.

To prove this, we lift the hamiltonian torus action to the orientable double cover of M .

The lifted moment map is the composition of the two-to-one projection with the original

double map. The result then follows from Theorem 3.2.

Working again with orientable double covers, we get as in Corollary 3.6 that the con-

dition of part (b) of the Theorem above holds for toric origami manifolds. We can now

proceed to a classification of toric origami manifolds analogous to that of Theorem 3.10.

We begin by re-defining templates (compare with Definition 3.9):

Definition 4.13. An n-dimensional origami template is a pair (P,F), where P is a

(nonempty) finite collection of n-dimensional Delzant polytopes and F is a collection of

facets and pairs of facets of polytopes in P satisfying the following properties:

(a) For each pair {F1, F2} ∈ F , the corresponding polytopes ∆1 ∋ F1 and ∆2 ∋ F2 agree

near those facets;

(b) If a facet F occurs in a set in F , then neither F nor any of its neighboring facets

occur elsewhere in F ;

(c) The topological space constructed from the disjoint union ⊔∆i, ∆i ∈ P by identifying

facet pairs in F is connected.

With the updated definitions of origami manifolds and origami templates, that include

both the orientable and the nonorientable case, we again have a classification theorem:

Theorem 4.14. Toric origami manifolds are classified by origami templates up to equiv-

ariant origami-symplectomorphisms preserving the moment maps. More specifically, there

is a bijective correspondence

{2n-diml toric origami manifolds} −→ {n-diml origami templates}
(M2n, ω,Tn, µ) 7−→ µ(M).
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The proof is similar to that of Theorem 3.10: To build the toric orgami manifold from

the template, blow up the Delzant spaces associated with the polytopes in P along the

inverse images of the facets in F . The model involution γ is built from the identity map for

single facets {F} ∈ F and the symplectomorphism in Lemma 3.8 for pairs {F1, F2} ∈ F .

Example 4.15. We can add the following two families of (nonorientable) origami manifolds

to the listing of toric origami surfaces of Example 3.13:

• Manifolds diffeomorphic to a projective plane RP2 with one fixed point and the fold

Z consisting of one non-coorientable circle and n ≥ 0 coorientable disjoint circles:

Figure 4-3: Toric origami projective planes

• Manifolds diffeomorphic to a Klein bottle with no fixed points and the fold Z consisting

of two non-coorientable circles and n ≥ 0 coorientable disjoint circles:

Figure 4-4: Toric origami Klein bottles

In summary, toric origami surfaces are diffeomorphically either spheres, tori, projective

planes or Klein bottles. ♦
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