Time-varying Risk of Nominal Bonds: How Important Are Macroeconomic Shocks?

#### Andrey Ermolov

Columbia Business School

February 7, 2015

# Motivation: Time-varying stock and bond return correlation



- Unconditional correlation is 0.02
- Computed quarterly from daily data
- Expectations=dynamic conditional correlation of Colacito et.al. (2009)

# Stock and bond return correlation important but difficult to explain moment

#### • Important:

- First order effect on portfolio variance
- Stocks and bonds large and closely integrated markets: should be modeled jointly
- Difficult to explain:
  - Theoretically: starting from Shiller and Beltratti (1992)
  - Empirically: e.g., even in dynamic factor models (Baele et.al., 2010)

### Question

- Are macroeconomic shocks (consumption growth and inflation) related to time-varying stock and bond return correlation?
  - Can they generate correlations of observed magnitudes?
  - Historically, how much do they matter at different points in time?

Asset Pricing Implications

# Contribution: Methodology

• Tractable stuctural model for analyzing macroeconomic risk of nominal assets

|                                                                     | Campbell et.al., 2014 | Burkhardt and Has-<br>seltoft, 2012; Song,<br>2014 | Me                       |
|---------------------------------------------------------------------|-----------------------|----------------------------------------------------|--------------------------|
| Туре                                                                | Habit                 | Long-run risk                                      | Habit                    |
| Non-Gaussian macro dynamics                                         | Νο                    | Yes                                                | Yes                      |
| Exact closed form solutions                                         | No                    | No                                                 | Yes                      |
| Realistic term structure                                            | Yes                   | No                                                 | Yes                      |
| Macroeconomic shocks from consumption and inflation data            | No                    | No                                                 | Yes                      |
| Do macroeconomic shocks mat-<br>ter for the risk of nominal assets? | Not much              | A lot                                              | Half<br>of the<br>sample |

Asset Pricing Implications

# Contribution: Empirical results

- Economically intuitive characterization of macroeconomic shocks
- Implications for stock and bond return correlation:
  - macroeconomic shocks generate sizeable positive and negative correlations, although negative correlations smaller and less frequent than in data
  - historically, macroeconomic shocks are important in explaining high correlations from late 70's to early 90's and low correlations pre- and during the Great Recession

Asset Pricing Implications

# Overview of the model

- External habit utility:
  - realistic asset pricing moments: in particular, realistic term structure
- Macroeconomic dynamics from Bekaert, Engstrom, and Ermolov (2014c):
  - convenient for modeling time-varying bond risk: drives time-varying stock and bond return correlations

Asset Pricing Implications

# Consumption growth and inflation

- Consumption growth:  $g_{t+1} = \bar{g} + \epsilon_{t+1}^{g}$ 
  - Constant mean  $\bar{g}$
  - Heteroskedastic 0-mean shock  $\epsilon_{t+1}^g$
- Inflation:  $\pi_{t+1} = \bar{\pi} + x_t^{\pi} + \epsilon_{t+1}^{\pi}$ 
  - Unconditional mean  $\bar{\pi}$
  - Persistent 0-mean inflation expectations  $x_t^{\pi}$
  - Heteroskedastic 0-mean shock  $\epsilon_{t+1}^{\pi}$

Asset Pricing Implications

### Macroeconomic shocks

$$\epsilon_{t+1}^{g} = \underbrace{\sigma_{g}^{d}}_{>0} u_{t+1}^{d} + \underbrace{\sigma_{g}^{s}}_{>0} u_{t+1}^{s},$$
  

$$\epsilon_{t+1}^{\pi} = \underbrace{\sigma_{\pi}^{d}}_{>0} u_{t+1}^{d} - \underbrace{\sigma_{\pi}^{s}}_{>0} u_{t+1}^{s},$$
  

$$Cov(u_{t+1}^{d}, u_{t+1}^{s}) = 0, Var(u_{t+1}^{d}) = Var(u_{t+1}^{s}) =$$

- u<sup>d</sup><sub>t+1</sub> "demand shock": moves g<sub>t+1</sub> and π<sub>t+1</sub> in the same direction ⇒ nominal bonds hedge well
- *u*<sup>s</sup><sub>t+1</sub> "supply shock": moves *g*<sub>t+1</sub> and *π*<sub>t+1</sub> in opposite directions ⇒ nominal bonds hedge poorly

### Macroeconomic environments

• If supply and demand shocks are heteroskedastic,  $Cov_t(\epsilon_{t+1}^g, \epsilon_{t+1}^\pi)$  will vary over time:

$$Cov_t(\epsilon_{t+1}^g, \epsilon_{t+1}^\pi) = \sigma_g^d \sigma_\pi^d Var_t(u_{t+1}^d) - \sigma_g^s \sigma_\pi^s Var_t(u_{t+1}^s)$$

- Demand shock environment: Cov<sub>t</sub>(e<sup>g</sup><sub>t+1</sub>, e<sup>π</sup><sub>t+1</sub>) > 0 ⇒ stock and bond correlations relatively low
- Supply shock environment: Cov<sub>t</sub>(ε<sup>g</sup><sub>t+1</sub>, ε<sup>π</sup><sub>t+1</sub>) < 0 ⇒ stock and bond correlations relatively high</li>

| Introduction |
|--------------|
|              |

# Modeling demand and supply shocks

 Demand and supply shocks modeled using Bad Environment-Good Environment (BEGE) structure (Bekaert and Engstrom, 2014): component models of two 0-mean shocks

$$\begin{array}{l} u_{t+1}^{d} = \sigma_{p}^{d} \omega_{p,t+1}^{d} - \sigma_{n}^{d} \omega_{n,t+1}^{d}, \\ u_{t+1}^{s} = \sigma_{p}^{s} \omega_{p,t+1}^{s} - \sigma_{n}^{s} \omega_{n,t+1}^{s}, \end{array} \right\} \omega_{p,t+1} \text{ - good shock}$$

• Shocks follow demeaned gamma distributions:

$$\begin{split} & \omega_{p,t+1}^d \sim \Gamma(p_t^d,1) - p_t^d, \\ & \omega_{n,t+1}^d \sim \Gamma(n_t^d,1) - n_t^d, \\ & \omega_{p,t+1}^s \sim \Gamma(p_t^s,1) - p_t^s, \\ & \omega_{n,t+1}^s \sim \Gamma(n_t^s,1) - n_t^s. \end{split} \right\} \begin{array}{c} \text{gamma distribution with} \\ & \Gamma(x,y) - \text{shape parameter } x \text{ and} \\ & \text{scale parameter } y \end{array}$$

Asset Pricing Implications

# Bad Environment-Good Environment structure: Probability density function



### Time-varying variances

- *p<sub>t</sub>* can be interpreted as good variance and *n<sub>t</sub>* as bad variance
- Variances are persistent and driven by the realization shocks, capturing volatility clustering (Gourieroux and Jasiak, 2006):

$$oldsymbol{p}_{t+1}^d = oldsymbol{ar{
ho}}^d + 
ho_{
ho}^d(oldsymbol{p}_t^d - oldsymbol{ar{
ho}}^d) + \sigma_{
ho
ho}^d\omega_{
ho,t+1}^d,$$

• Similar processes for  $n_{t+1}^d$ ,  $p_{t+1}^s$ ,  $n_{t+1}^s$ 

Asset Pricing Implications

# Time-varying variances: Probability density functions



# Model: Why gamma distributed shocks?

- Empirically supported to capture non-Gaussian features prevalent in consumption and inflation data (Bekaert and Engstrom, 2009; Bekaert, Engstrom, and Ermolov, 2014a,b)
- Non-Gaussian features facilitate theoretically matching risk-premia
- Intuitive closed form solutions
- Efficient estimation

### Data

- US quarterly observations: 1969Q4-2012Q4
- Working (1960) adjusted consumption of non-durables and services
- Inflation: St.Louis Fed
- Inflation expectations: Survey of Professional Forecasters

# Estimation

- Maximum likelihood estimation using only macroeconomic data (no financial data)
- Input: consumption growth and inflation time series
- Output 1: macroeconomic dynamics parameters estimates
- Output 2: expected  $p_t^d$ ,  $n_t^d$ ,  $p_t^s$ ,  $n_t^s$  time series
- Methodology: sequentially computing likelihood over observations - in characteristic function domain formulas for computing likelihood available in closed form (Bates, 2006)

Asset Pricing Implications

# Consumption growth and inflation shocks

$$\epsilon^{g}_{t+1} = \underset{(0.0015){0}}{0.0003} u^{d}_{t+1} + \underset{(0.0003)}{0.0003} u^{s}_{t+1}$$
  
 $\epsilon^{\pi}_{t+1} = \underset{(0.0055){0}}{0.0055} u^{d}_{t+1} - \underset{(0.0036)}{0.0006} u^{s}_{t+1}$ 

- Consumption growth shocks: supply driven
- Inflation shocks: demand driven

Introduction 000000 Macroeconomic Dynamics

Asset Pricing Implications

# Demand and supply variances



19/45

Asset Pricing Implications

# Supply shocks



Supply shock parameter estimates

Asset Pricing Implications

# Correlation between industry portfolio returns and bad supply shocks $(\omega_{n,t+1}^s)$



More correlations

Asset Pricing Implications

### Demand shocks



Asset Pricing Implications

# Correlation between industry portfolio returns and bad demand shocks $(\omega_{n,t+1}^d)$



23/45

Asset Pricing Implications

# Conditional correlation between consumption growth and inflation



24 / 45

# Utility

- Representative agent
- Habit utility:  $E_0 \sum_{t=0}^{\infty} \beta^t \frac{(C_t H_t)^{1-\gamma}}{1-\gamma}$
- Discount factor  $\beta$
- "Risk-aversion" coefficient  $\gamma$  (always assumed >1)
- $C_t$  consumption
- $H_t$  external habit: e.g., exogeneous standard of living

Introduction

# Habit

- Inverse surplus ratio:  $q_t = \ln \frac{C_t}{C_t H_t}$
- $q_{t+1} = \bar{q} + \rho_q(q_t \bar{q}) \underbrace{\gamma_q}_{const>0} \epsilon^g_{t+1}$
- Habit = weighted average of past consumption shocks

|                  | Here         | Campbell and Cochrane (1999) |
|------------------|--------------|------------------------------|
| "Price of risk"  | Constant     | Time-varying                 |
| "Amount of risk" | Time-varying | Constant                     |

• Ermolov (2014a) shows that the time-varying "amount of risk" specification has advantages in term structure modeling (+asset prices in closed-form!)

# **Financial Assets**

- Risk-free 0-coupon nominal bonds
- Aggregate equity = claim to the aggregate dividends

# Dividends and expected inflation

- Real dividend growth:  $d_{t+1} = \bar{g} + \epsilon_{t+1}^d$
- $\epsilon^{d}_{t+1}$  heteroskedastic 0-mean shock,  $0 < Corr(\epsilon^{d}_{t+1}, \epsilon^{g}_{t+1}) < 1$
- Persistent inflation expectations  $x_t^{\pi}$ ,  $0 < Corr(x_t^{\pi}, \epsilon_t^{\pi}) < 1$
- $\bar{g}$  consumption growth mean,  $\epsilon_{t+1}^{g}$  consumption growth shock,  $\epsilon_{t+1}^{\pi}$  inflation shock



# Pricing

• Stochastic discount factor (SDF):

$$M_{t+1} = \beta e^{-\gamma g_{t+1} + \gamma (q_{t+1} - q_t)}$$

Innovations to SDF:

$$m_{t+1} - E_t(m_{t+1}) = \underbrace{a_p}_{const<0} \omega_{p,t+1}^d + \underbrace{a_n}_{const>0} \omega_{n,t+1}^d + \underbrace{a_p}_{const<0} \omega_{p,t+1}^s + \underbrace{a_n}_{const>0} \omega_{n,t+1}^s$$

- Positive consumption shocks decrease marginal utility
- Negative consumption shocks increase marginal utility
- Nominal SDF:  $m_{t+1}^{\$} = m_{t+1} \pi_{t+1}$

### Asset prices

• Time t n-period nominal bond prices:  $P_{n,t}^{\$} = exp(C_n^{\$} + Q_n^{\$}q_t + X_n^{\pi}x_t^{\pi} + P_n^{d\$}p_t^d + N_n^{d\$}n_t^d + P_n^{s\$}p_t^s + N_n^{s\$}n_t^s)$ 

- Time t aggregate equity  $\frac{P}{D}$ -ratio:  $\frac{P_t}{D_t} = \sum_{n=1}^{\infty} exp(C_n^e + Q_n^e q_t + P_n^{de} p_t^d + N_n^{de} n_t^d + P_n^{se} p_t^s + N_n^{se} n_t^s)$
- Coefficients recursively defined

### Price impact of demand shocks

#### • Suppose a positive demand shock occurs

| Channel                 | $r_{t+1}^e - E_t r_{t+1}^e$ | $r^b_{t+1} - E_t r^b_{t+1}$ |
|-------------------------|-----------------------------|-----------------------------|
| Intertemporal smoothing | +                           | +                           |
| Precautionary savings   | +                           | +                           |
| Dividend growth         | +                           |                             |
| Expected inflation      |                             | -                           |

31/45

# Price impact of demand shocks

#### Suppose a positive demand shock occurs

| Channel                 | $r_{t+1}^e - E_t r_{t+1}^e$ | $r_{t+1}^b - E_t r_{t+1}^b$ |
|-------------------------|-----------------------------|-----------------------------|
| Intertemporal smoothing | +                           | ţ,                          |
| Precautionary savings   | , ···                       | ţ.                          |
| Dividend growth         | +                           |                             |
| Expected inflation      |                             | _                           |

# Demand shocks move stock and bond returns in opposite directions

Asset Pricing Implications

# Price impact of supply shocks

#### • Suppose a positive supply shock occurs

| Channel                 | $r_{t+1}^e - E_t r_{t+1}^e$ | $r_{t+1}^b - E_t r_{t+1}^b$ |
|-------------------------|-----------------------------|-----------------------------|
| Intertemporal smoothing | +                           | +                           |
| Precautionary savings   | +                           | +                           |
| Dividend growth         | +                           |                             |
| Expected inflation      |                             | +                           |

33 / 45

Asset Pricing Implications

# Price impact of supply shocks

Suppose a positive supply shock occurs

| Channel                 | $r_{t+1}^e - E_t r_{t+1}^e$ | $r_{t+1}^b - E_t r_{t+1}^b$ |
|-------------------------|-----------------------------|-----------------------------|
| Intertemporal smoothing | +                           | +                           |
| Precautionary savings   |                             | ~ <b>.</b>                  |
| Dividend growth         | +                           |                             |
| Expected inflation      |                             | +                           |

Supply shocks move stock and bond returns in the same direction

# Conditional return comovements

• In the model:  $Cov_t(r^e_{t+1}, r^b_{t+1}) \approx$ 

$$\underbrace{a_{dp}^e a_{dp}^b}_{<0} p_t^d + \underbrace{a_{dn}^e a_{dn}^b}_{<0} n_t^d + \underbrace{a_{sp}^e a_{sp}^b}_{>0} p_t^s + \underbrace{a_{sn}^e a_{sn}^b}_{>0} n_t^s$$

- Demand shock environment: Cov<sub>t</sub>(r<sup>e</sup><sub>t+1</sub>, r<sup>b</sup><sub>t+1</sub>) < 0 nominal bonds hedge well</li>
- Supply shock environment: Cov<sub>t</sub>(r<sup>e</sup><sub>t+1</sub>, r<sup>b</sup><sub>t+1</sub>) > 0 nominal bonds hedge poorly

### Data

- US quarterly observations: 1969Q4-2012Q4
- Corporate earnings payout (Longstaff and Piazzesi, 2004): NIPA
- Aggregate stock returns: CRSP
- Treasury yields: Gürkaynak et.al. (2006)

# Estimation

- Macroeconomic dynamics already estimated from consumption and inflation data
- Generalized method of moments (GMM) estimation
- 5 preference parameters to estimate:  $\beta$ ,  $\gamma$ ,  $\bar{q}$ ,  $\rho_q$ ,  $\gamma_q$
- 9 unconditional moments to match:
  - 1 quarter nominal interest rate and its variance
  - 5 year bond excess return and its variance
  - price-dividend ratio and its variance
  - equity premium and its variance
  - unconditional 5 year bond and stock return covariance

Asset Pricing Implications

# Estimated preference parameters

| 0.99   |
|--------|
| fixed  |
| 4.12   |
| (0.51) |
| 1.00   |
| fixed  |
| 0.99   |
| (0.02) |
| -9.51  |
| (0.84) |
|        |

38/45

### GMM moments match

| Moment                          | Data       | Model    |
|---------------------------------|------------|----------|
| $E(y_{1a}^{\$})$                | 1.33%      | 1.53%    |
|                                 | (0.18%)    |          |
| $Var(y_{1a}^{\$})$              | 6.48E-05   | 7.74E-05 |
| 4                               | (2.00E-05) |          |
| $E(r_{5y}^{bx})$                | 0.49%      | 0.62%    |
|                                 | (0.24%)    |          |
| $Var(r_{5v}^{bx})$              | 0.0011     | 0.0008   |
|                                 | (0.0003)   |          |
| E(pd)                           | 5.01       | 5.09     |
|                                 | (0.10)     |          |
| Var(pd)                         | 0.18       | 0.12     |
|                                 | (0.04)     |          |
| $E(r^{ex})$                     | 1.08%      | 0.90%    |
|                                 | (0.58%)    |          |
| Var(r <sup>ex</sup> )           | 0.0085     | 0.0074   |
|                                 | (0.0013)   |          |
| $Cov(r^{ex}, r^{bx})$           | 0.0002     | 0.0007   |
|                                 | (0.0005)   |          |
| Overidentification test p-value | 0.2406     |          |

Asset Pricing Implications

#### Introduction 000000

# Implied stock and bond return correlations

| ditional correlation |                                                                                                                                                                                          |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data                 | Model                                                                                                                                                                                    |
| 0.05                 | 0.30                                                                                                                                                                                     |
| (0.13)               |                                                                                                                                                                                          |
| itional correlations |                                                                                                                                                                                          |
| Data (expectations)  | Model                                                                                                                                                                                    |
| -0.71                | -0.48                                                                                                                                                                                    |
| 0.60                 | 0.55                                                                                                                                                                                     |
| -0.68                | -0.19                                                                                                                                                                                    |
| (0.05)               |                                                                                                                                                                                          |
| -0.60                | -0.10                                                                                                                                                                                    |
| (0.04)               |                                                                                                                                                                                          |
| 0.55                 | 0.56                                                                                                                                                                                     |
| (0.02)               |                                                                                                                                                                                          |
| 0.57                 | 0.62                                                                                                                                                                                     |
| (0.03)               |                                                                                                                                                                                          |
|                      | ditional correlation<br>Data<br>0.05<br>(0.13)<br>itional correlations<br>Data (expectations)<br>-0.71<br>0.60<br>-0.68<br>(0.05)<br>-0.60<br>(0.04)<br>0.55<br>(0.02)<br>0.57<br>(0.03) |

 Macroeconomic shocks generate sizeable positive and negative stock and bond return correlations

Negative correlations less extreme and frequent than in data

Introduction 000000 Macroeconomic Dynamics

Asset Pricing Implications

41/45

# Historical stock and bond return correlations



- Macroeconomic shocks important from late 70's until early 90's and pre- and during Great Recession
- Excluding 1997-2003 and 2010-2012: Corr(Model, Data)=0.58, Corr(r<sup>ex</sup>, r<sup>bx</sup>)=0.27 → Additional results

| Introduction |
|--------------|
|              |

# Defining flights to safety episodes

 High-frequency episodes of simultaneous extreme positive bond and negative stock returns unlikely to be related to macroeconomic factors (Baele et.al. 2014)



Flights to Safety-variable

# Explaining residual stock and bond return correlations with flights to safety episodes



43 / 45

# Comparision to the literature

- Studies finding weak links between risk of nominal assets and macroeconomy: restrictive macroeconomic dynamics (difficult to incorporate realistic dynamics into asset pricing frameworks in a tractable manner)
- Studies finding strong links between risk of nominal assets and macroeconomy: rely on financial data to estimate macroeconomic shocks

# Conclusions

- Tractable structural framework for understanding macroeconomic risk of nominal assets: tons of applications!
- Economically characterizing macroeconomic shocks
- Macroeconomic shocks:
  - produce sizeable positive and negative stock and bond return correlations, although negative correlations smaller and less frequent than in data
  - historically most important for correlations from late 70's to early 90's and pre- and during the Great Recession

# Appendix 1: BEGE conditional moments

 Intuitive theoretical expressions for (unscaled) moments:

• 
$$Var_t(u_{t+1}) = \sigma_p^2 p_t + \sigma_n^2 n_t$$

• 
$$Skw_t(u_{t+1}) = 2(\sigma_p^3 p_t - \sigma_n^3 n_t)$$

• 
$$Ex.Kur_t(u_{t+1}) = 6(\sigma_p^4 p_t + \sigma_n^4 n_t)$$

# Appendix 2: Macroeconomic dynamics estimation procedure

- Stage 1: Filter  $\epsilon_{t+1}^g$  and  $\epsilon_{t+1}^\pi$  using OLS
- Stage 2: Estimate  $\sigma_g^d$ ,  $\sigma_g^s$ ,  $\sigma_\pi^d$ ,  $\sigma_\pi^s$  to invert  $\epsilon_{t+1}^g$  and  $\epsilon_{t+1}^{\pi}$  to  $u_{t+1}^d$  and  $u_{t+1}^s$  using GMM (based on unconditional second and third moments, including cross-moments)
- Stage 3: From u<sup>d</sup><sub>t+1</sub> and u<sup>s</sup><sub>t+1</sub>, estimate macroeconomic volatility parameters (p<sup>¯</sup>d, n<sup>¯</sup>d, p<sup>¯</sup>s, n<sup>¯</sup>s, ρ<sup>d</sup><sub>p</sub>, ρ<sup>d</sup><sub>n</sub>, ρ<sup>d</sup><sub>p</sub>, ρ<sup>s</sup><sub>n</sub>, σ<sup>d</sup><sub>pp</sub>, σ<sup>d</sup><sub>nn</sub>, σ<sup>s</sup><sub>pp</sub>, σ<sup>s</sup><sub>nn</sub>) using the characteristic function domain approximate maximum likelihood (Bates, 2006)
- Stage 4: Estimate inflation expectations and dividend dynamics by regressing them on u<sup>d</sup><sub>t+1</sub> and u<sup>s</sup><sub>t+1</sub>



# Appendix 3: Maximum likelihood estimation procedure

- Below is the algorithm for  $u_t^d$ , algorithm for  $u_t^s$  is identical
- Sequentially computing likelihood over  $\{u_t^d = \sigma_p^d \omega_{p,t}^d \sigma_n^d \omega_{n,t}^d\}_{t=1}^T$ 
  - Step 1: Computing likelihood of u<sup>d</sup><sub>t+1</sub> given p<sup>d</sup><sub>t</sub> and n<sup>d</sup><sub>t</sub> distributions
  - Step 2: Updating  $p_t^d$  and  $n_t^d$  distributions given  $u_{t+1}^d$
  - Step 3: Computing conditional distribution of  $p_{t+1}^d$  and  $n_{t+1}^d$  given  $u_{t+1}^d$
- In characteristic function domain (approximate) Steps 1-3 formulas available in closed form (Bates, 2006)



# Appendix 4: Supply shocks parameters

| Good              | variance | Bad                 | variance |
|-------------------|----------|---------------------|----------|
| $\sigma_p^s$      | 0.15     | $\sigma_s^n$        | 0.26     |
| Γ                 | (0.03)   |                     | (0.07)   |
| $\bar{p}^s$       | 7.69     | $ar{n}^{s}$         | 18.17    |
|                   | (0.71)   |                     | (1.12)   |
| $\rho_p^s$        | 0.92     | $\rho_n^s$          | 0.99     |
|                   | (0.09)   |                     | (0.14)   |
| $\sigma_{pp}^{s}$ | 0.92     | $\sigma_{nn}^{s}$   | 0.40     |
|                   | (0.30)   | $\langle g \rangle$ | (0.21)   |
|                   | (► F     | Back                |          |

49 / 45

# Appendix 5: Correlation between industry portfolio returns and good supply shocks $(\omega_{p,t+1}^{s})$



# Appendix 6: Demand shocks parameters

| Good            | variance | Bad             | variance |
|-----------------|----------|-----------------|----------|
| $\sigma_p^d$    | 0.07     | $\sigma_d^n$    | 5.39     |
|                 | (0.03)   |                 | (1.32)   |
| $\bar{p}^d$     | 139.84   | $\bar{n}^{d}$   | 0.01     |
|                 | (7.17)   |                 | (0.01)   |
| $\rho_p^d$      | 0.96     | $\rho_n^d$      | 0.75     |
|                 | (0.03)   | 1               | (0.20)   |
| $\sigma^d_{pp}$ | 0.96     | $\sigma_{nn}^d$ | 0.08     |
|                 | (0.14)   |                 | (0.04)   |

- Gaussian good component
- Rare-disaster type bad component



Appendix 7: Correlation between industry portfolio returns and good demand shocks  $(\omega_{p,t+1}^d)$ 



# Appendix 8: Dividends and expected inflation specifications

- Real dividend growth:  $d_{t+1} = \bar{g} + \gamma_d \epsilon^g_{t+1} + \gamma_{dd} u^d_{t+1} + \epsilon^{div}_{t+1}, \ \epsilon^{div}_{t+1} \sim \mathcal{N}(0, \sigma_d)$
- Inflation expectations:  $x_{t+1}^{\pi} = \rho_{x^{\pi}} x_{t}^{\pi} + \gamma_{x^{\pi}} \epsilon_{t+1}^{\pi} + \gamma_{x^{\pi}d} u_{t+1}^{d} + \epsilon_{t+1}^{x^{\pi}}, \epsilon_{t+1}^{x^{\pi}} \sim \mathcal{N}(0, \sigma_{x}^{\pi})$

| Parameter           | Estimate | Standard error |
|---------------------|----------|----------------|
| Ē                   | 0.42%    | 0.04%          |
| $\bar{\pi}$         | 1.06%    | 0.07%          |
| $\gamma_d$          | 1.35     | 1.73           |
| $\gamma_{d^d}$      | 4.24     | 5.83           |
| $\sigma_d$          | 0.06     | 0.03           |
| $ ho_{X^{\pi}}$     | 0.93     | 0.02           |
| $\gamma_{x^{\pi}}$  | 0.22     | 0.03           |
| $\gamma_{x^{\pi}d}$ | 0.09     | 0.04           |
| $\sigma_{X}\pi$     | 0.0011   | 0.0007         |



# Appendix 9: Implied local risk-aversion

| Percentile | 1%   | 5%   | 25%  | 50%   | 75%   | 95%   | 99%   |
|------------|------|------|------|-------|-------|-------|-------|
| Value      | 6.33 | 7.30 | 8.99 | 10.58 | 13.02 | 19.85 | 29.23 |
|            |      |      |      |       |       |       |       |

# Appendix 10: Unconditional consumption growth and inflation dynamics

|                                                                                                                      | Consumption growth |         | Inflation |       |
|----------------------------------------------------------------------------------------------------------------------|--------------------|---------|-----------|-------|
|                                                                                                                      | Data               | Model   | Data      | Model |
| Mean                                                                                                                 | 0.42%              | 0.42%   | 1.06%     | 1.06% |
|                                                                                                                      | (0.04%)            |         | (0.07%)   |       |
| Standard deviation                                                                                                   | 0.41%              | 0.44%   | 0.86%     | 0.86% |
|                                                                                                                      | (0.03%)            |         | (0.08%)   |       |
| Skewness                                                                                                             | -0.41              | -0.37   | 0.11      | -0.55 |
|                                                                                                                      | (0.26)             |         | (0.78)    |       |
| Excess kurtosis                                                                                                      | 1.24               | 1.75    | 4.68      | 7.17  |
|                                                                                                                      | (0.56)             |         | (2.53)    |       |
| Pr( <mean-2.standard deviation)<="" td=""><td>2.91%</td><td>3.11%</td><td>0.58%</td><td>1.62%</td></mean-2.standard> | 2.91%              | 3.11%   | 0.58%     | 1.62% |
|                                                                                                                      | (0.97%)            |         | (0.60%)   |       |
| Pr( <mean-4.standard deviation)<="" td=""><td>0.00%</td><td>0.00%</td><td>0.58%</td><td>0.19%</td></mean-4.standard> | 0.00%              | 0.00%   | 0.58%     | 0.19% |
|                                                                                                                      | (0.12%)            |         | (0.60%)   |       |
| Pr(>mean+2·Standard deviation)                                                                                       | 2.91%              | 2.05%   | 5.54%     | 2.71% |
|                                                                                                                      | (1.04%)            |         | (1.64%)   |       |
| Pr(>mean+4.Standard deviation)                                                                                       | (0.00%)            | (0.03%) | 0.00%     | 0.03% |
|                                                                                                                      | (0.00%)            |         | (0.14%)   |       |
| $Corr(g_t, \pi_t)$                                                                                                   | -0.14              | -0.22   |           |       |
|                                                                                                                      | (0.11)             | (0.18)  |           |       |
|                                                                                                                      |                    |         | •         |       |

# Appendix 11: Implied financial moments

|                                            | Data     | Model   |
|--------------------------------------------|----------|---------|
| $y_{5v}^{\$} - y_{1v}^{\$}$                | 0.18%    | 0.12%   |
| -, -,                                      | (0.04%)  |         |
| $y_{5y} - y_{1y}$                          | 0.11%    | 0.09%   |
|                                            | (0.02%)  |         |
| Fama-Bliss (1987) slope: 5 years vs 1 year | 0.77     | 0.14    |
|                                            | (0.36)   |         |
| AC <sub>1</sub> (pd)                       | 0.98     | 0.99    |
|                                            | (0.03)   |         |
| Slope $r_{t+1}^{ex}$ wrt $pd_t$            | -0.0204  | -0.0056 |
|                                            | (0.0171) |         |

# Appendix 12: Time pattern in stock and bond return correlations

|                    | 1970-2000 | 2001-2012 | Difference |
|--------------------|-----------|-----------|------------|
| Data: expectations | 0.27      | -0.32     | -0.59***   |
|                    | (0.17)    | (0.22)    |            |
| Model              | 0.30      | 0.06      | -0.23***   |
|                    | (0.09)    | (0.15)    |            |
|                    |           |           |            |

▶ Back