A Unified Theory of Bond and Currency Markets

Andrey Ermolov

Columbia Business School

April 24, 2014

Stylized Facts about Bond Markets

US Fact 1: Upward Sloping Real Yield Curve

In US, real long yields are on average higher than short yields (Gurkaynak et.al., 2009; Ang and Ulrich, 2012; Chernov and Mueller, 2012)

US Fact 2: Violations of the Expectation Hypothesis

High slope of the yield curve \Rightarrow high return on long-term bonds over the life of short-term bonds (Fama and Bliss, 1987; Campbell and Shiller, 1991)

International Fact 1: Uncovered Interest Rate Parity Violations

High differential between foreign and domestic interest rates \Rightarrow high return on borrowing in domestic bonds and investing in foreign bonds (Hansen and Hodrick, 1980; Fama, 1984)

Bermuda Triangle of The Theoretical Bond Markets Literature

- US and international bond markets closely integrated, but theoretically difficult to explain them jointly
- This paper tries to address this task

Model

- Solutions to the puzzles
- Empirical eividence
- Calibration

• Model

- Solutions to the puzzles
- Empirical evidence
- Calibration

Model: Overview

- Only real sector
- Key components:
 - Habit utility
 - Heteroskedastic consumption growth
- Contribution: applying model to jointly explain US and international term structure

Model: Utility

- Representative agent
- Habit utility: $E_0 \sum_{t=0}^{\infty} \beta^t \frac{(\frac{C_t}{H_t})^{1-\gamma}}{1-\gamma}$
- Risk-aversion γ (always assumed >1)
- C_t consumption
- *H_t* habit: exogeneous standard of living

a a a a

Model: Consumption Growth

 Consumption growth as a mixture of two shocks:

$$g_{t+1} = \bar{g} + \sigma_{cp}\omega_{p,t+1} - \sigma_{cn}\omega_{n,t+1}$$

 Demeaned gamma distributed shocks (Bekaert and Engstrom, 2009)

•
$$\omega_{p,t+1} \sim \Gamma(ar{p},1) - ar{p},$$

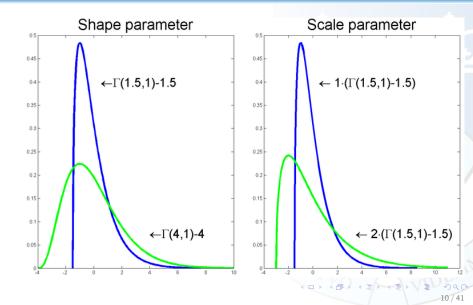
• $\omega_{n,t+1} \sim \Gamma(n_t,1) - n_t$,

Model: Why Gamma Shocks?

• Qualitatively: logic works with Gaussian shocks

- Quantitatively: calibration with Gaussian shocks challenging
- Gamma distribution has more tail mass: increases agent's sensitivity to shocks
- Unlike for rare disasters, there is strong empirical evidence of gamma shocks in US consumption (Bekaert and Engstrom, 2009)

Model: Gamma Shocks



Model: Volatility and Habit

- Time-varying volatility: $n_{t+1} = \bar{n} + \rho_n(n_t - \bar{n}) + \sigma_{nn}\omega_{n,t+1},$
- Consumption-habit ratio: $s_t = \ln \frac{C_t}{H_t}$

•
$$s_{t+1} = \bar{s} + \rho_s(s_t - \bar{s}) +$$

$$\sigma_{sp}\omega_{p,t+1} - \sigma_{sn}\omega_{n,t+1}$$

constant sensitivity to consumption shocks

 Habit=weighted average of past consumption shocks (ω_{n,t} and ω_{p,t})

	Here	Campbell and Cochrane (1999)
Price of risk	Constant	Time-varying
Amount of risk	Time-varying	Constant

Model: Pricing

• Stochastic discount factor:

$$M_{t+1} = \beta e^{-g_{t+1} + (1-\gamma)(s_{t+1}-s_t)}$$

Innovations to stochastic discount factor:

$$m_{t+1} - E_t(m_{t+1}) = \underbrace{a_p}_{const<0} \omega_{p,t+1} + \underbrace{a_n}_{const>0} \omega_{n,t+1}$$

- Positive consumption shocks decrease marginal utility
- Negative consumption shocks increase marginal utility

Model: Risk-free rate

- Intertemporal smoothing: interest rate decreasing in consumption-habit ratio
- Precautionary savings: interest rate decreasing in consumption growth volatility

Model Solutions to the puzzles

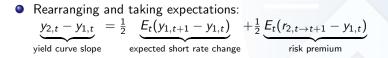
- Empirical evidence
- Calibration

Solutions to The Puzzles: Setup 1/3

• Time
$$t = 0, 1, 2$$

- At time 0: 1 and 2 period zero-coupon bonds: prices P_{1,t}, P_{2,t}
- Yields: $y_{1,t} = -\ln P_{1,t}$ and $y_{2,t} = -\frac{1}{2}\ln P_{2,t}$
- Return on holding 2 period bond over 1 period: $R_{2,t \rightarrow t+1} = \frac{P_{1,t+1}}{P_{2,t}}$
- Taking logs: $r_{2,t\to t+1} = -y_{1,t+1} + 2y_{2,t}$

Solutions to The Puzzles: Setup 2/3



 Holding 2 period bond over 1 period is not risk-free: subject to short rate risk ⇒ risk premium

• $E_t(r_{2,t\to t+1} - y_{1,t}) \approx -cov_t(m_{t+1}, r_{2,t\to t+1}) = cov_t(m_{t+1}, y_{1,t+1})$

Solutions to The Puzzles: Setup 3/3

$$E_t(r_{2,t\to t+1}-y_{1,t})\approx$$

intertemporal smoothing, $\propto cov_t(m_{t+1}, s_{t+1})$ precautionary savings, $\propto cov_t(m_{t+1}, n_{t+1})$ $\underbrace{-S_1 \sigma_{sn} a_n n_t}_{>0} + \underbrace{N_1 \sigma_{nn} a_n n_t}_{<0}$

• Intertemporal smoothing: negative consumption shock at t = 1...

- decreases consumption-habit ratio and thus...
- increases short rate decreasing bond prices...
- and consequently increasing risk premium on 2 period bond at t = 0
- Precautionary savings: negative consumption shock at t = 1...
 - increases consumption volatility and thus...
 - decreases short rate increasing bond prices...
 - and decreasing risk premium on 2 period bond at t = 0

Solutions to The Puzzles: Average slope of the yield curve

$$\underbrace{E_t(y_{2,t} - y_{1,t})}_{t \to t} = \frac{1}{2} \quad \underbrace{E_t(y_{1,t+1} - y_{1,t})}_{t \to t \to t} + \frac{1}{2} \underbrace{E_t(r_{2,t \to t+1} - y_{1,t})}_{t \to t \to t}$$

yield curve slope

expected short rate change

risk premium

$$E(y_{2,t} - y_{1,t}) = \frac{1}{2}E(r_{2,t \to t+1} - y_{1,t})$$

Dominant effect	Intertemporal smoothing	Precautionary savings
$E(r_{2,t\rightarrow t+1}-y_{1,t})$	>0	<0
Slope of the yield curve	↑	₩
		A PARTER VEDER

18/41

Solutions to The Puzzles: Expectation hypothesis

$$\underbrace{E_t(y_{2,t}-y_{1,t})}_{t} = \frac{1}{2} \quad \underbrace{E_t(y_{1,t+1}-y_{1,t})}_{t} + \frac{1}{2} \underbrace{E_t(r_{2,t\to t+1}-y_{1,t})}_{t}$$

yield curve slope

expected short rate change

risk premium

- Suppose volatility, n_t , is high
- *E_t(y_{1,t+1})* is high as the next period volatility is expected to mean-revert and thus short rate is expected to be higher

•
$$|E(r_{2,t
ightarrow t+1} - y_{1,t})| \propto n_t$$
 is high

Dominant effect	Intertemporal	Precautionary
	smoothing	savings
$E_t(y_{1,t+1}-y_{2,t})$	High	High
$E(r_{2,t\rightarrow t+1}-y_{1,t})$	High	Low
$E_t(y_{2,t} - y_{1,t})$	High	Ambiguous
$Corr(E_t(y_{2,t} - y_{1,t}), E(r_{2,t \to t+1} - y_{1,t}))$	High	Ambiguous

Solutions to the Puzzles: Average Slope of the Yield Curve and The Expectation hypothesis

Dominant effect	Intertemporal	Precautionary
	smoothing	savings
Average Slope of the Yield Curve	1	\downarrow
Expectation Hypothesis	Violated	Ambiguous
Example	US	UK
		BI

Solutions to the Puzzles: Longer Horizons

- Depending on the parameters, intertemporal smoothing and precautionary savings will have different strengths at different horizons
- Consequently, the yield curve can be upwardor downward-sloping, hump- or U-shaped
- Similarly, expectation hypothesis can be violated at some horizons and not violated at others

Solutions to The Puzzles: International Setup 1/3

- 2 symmetric and independent countries: H and L
- Each country has its own good
- Complete markets=marginal utilities are equal across countries
- No trading frictions or arbitrage opportunities
- Exchange rate: $Q = \frac{\text{H country goods}}{\text{L country good}}$

Solutions to The Puzzles: International Setup 2/3

- Time *t* = 0, 1
- At *t* = 0:
 - country *H* has high conditional consumption growth volatility: n_t^H
 - country *L* has low conditional consumption growth volatility: $n_t^L < n_t^H$
- Stochastic discount factors: M_{t+1}^H and M_{t+1}^L
- 1 period risk-free bonds with returns (yields) $R_{t+1}^{H}(y_{1,t}^{H})$ and $R_{t+1}^{L}(y_{1,t}^{L})$

Solutions to The Puzzles: International Setup 3/3

- Country *L* Euler $E_t(M_{t+1}^L R_{t+1}^L) = 1$
- Country *H* Euler for investing in country *L* bond $E_t(M_{t+1}^H \frac{Q_{t+1}}{Q_t} R_{t+1}^L) = 1$
- Complete markets \Rightarrow unique SDF \Rightarrow $M_{t+1}^{L} = M_{t+1}^{H} \frac{Q_{t+1}}{Q_{t}}$
- Change in log-exchange rate: $q_{t+1} - q_t = m_{t+1}^L - m_{t+1}^H$

Solutions to The Puzzles: Uncovered Interest Rate Parity Violations 1/2

• Return from borrowing in *H* and lending in *L*: $r_{t+1}^{FX} = -y_{1,t}^{H} + y_{1,t}^{L} + q_{t+1} - q_t$

 $Cov_t(m_{t+1}^H, r_{t+1}^{FX}) = Cov_t(m_{t+1}^H, -y_{1,t}^H + y_{1,t}^L + m_{t+1}^L - m_{t+1}^H) = -Var_t(m_{t+1}^H) < 0$

 Interpretation: a negative consumption shock in H at t = 1 simultaneously increases marginal utility and strengthens the exchange rate

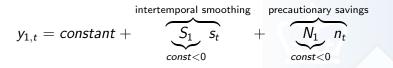
Solutions to The Puzzles: Uncovered Interest Rate Parity Violations 2/2

• In the model:
$$E_t r_{t+1}^{FX} = \underbrace{N_1}_{>0} (n_t^H - n_t^L)$$

- Consumption volatility in *H* is high:
 - E_tr^{FX}_{t+1} is high because r^{FX}_{t+1} is a poor hedge against consumption shocks and magnitude (volatility) of these shocks is high
 - interest rate in H are low due to precautionary savings

- Puzzles
- Model
- Solutions to the puzzles
 Empirical evidence
- Calibration

Empirical evidence: US bonds 1/3



Predictions and assumptions of the model:

 Interest rate should be decreasing in consumption-habit ratio (intertemporal smoothing)

- Interest rate should be decreasing in consumption growth volatility (precautionary savings)
- Positive and negative consumption shocks can affect consumption-habit ratio differently

Empirical evidence: US bonds 2/3

Quarterly US data 1969-2013

Theoretical variable	Empirical proxy
real yield	nominal yield - expected in-
	flation
consumption-habit ratio	$\sum_{i=0}^{40} ho_s^i (g_{t-i} - ar{g})$
	$\sum_{i=0}^{40} ho_s^i (g_{t-i} - ar{g}) \mathbb{1}_{(g_{t-i} - ar{g}) < 0}$
negative shocks	
conditional volatility	from consumption GARCH
	models

29/41

Empirical evidence: US bonds 3/3

- Positive and negative consumption shocks seem to affect habit differently
- Evidence of precautionary savings and intertemporal smoothing for negative shocks

$$y_{t,t+1}^{\$} - E_t \pi_{t+1} = \alpha_0 + \alpha_1 \cdot \text{consumption-habit} + \alpha_2 \cdot \alpha_2$$

consumption-habit⁻ + $\alpha_3 \cdot$ conditional volatility + ϵ_{t+1}

			~t 1	
	Setup 1	Setup 2	Setup 3	Setup 4
Constant	0.0421***	-0.0084	-0.0001	0.0000
	(0.0091)	(0.0146)	(0.0154)	(0.0184)
Consumption-habit	0.1720	0.5715***	0.2270	0.8010***
	(0.1674)	(0.2012)	(0.1812)	(0.2414)
$Consumption-habit^-$		-0.8452***		-1.4544***
		(0.2736)		(0.2411)
Conditional volatility			6.2180**	-6.6084*
			(2.6823)	(3.9976)
R^2	0.0673	0.3057	0.2098	0.3341
				20

30 / 41

Empirical evidence: International bonds

 Low-interest rate countries have higher consumption growth volatilities

Historical consumption growth volatilities

Low-interest rate Mid-interest rate High-interest rate

		<u> </u>	
Whol	e time period: 1971	-2012	
1.94%	1.42%	1.18%	7
(0.22%)	(0.14%)	(0.13%)	
Mode	rn time period: 198	8-2012	
1.42%	1.24%	1.21%	
(0.22%)	(0.21%)	(0.22%)	

Agenda

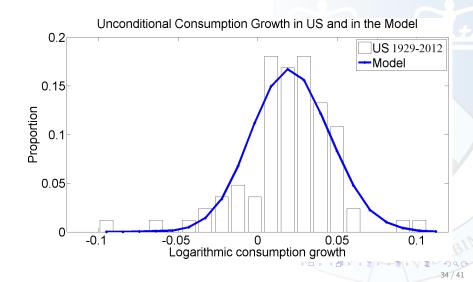
- Puzzles
- Model
- Solutions to the puzzles
- Empirical evidence
 Calibration

Calibration: Parameters

• Annual frequency

Preferences	
β discount factor	0.98
γ risk-aversion	6.69
\bar{s} average consumption-habit ratio	1.00
$ ho_s$ persistence of the consumption-habit ratio	0.79
σ_{sp} sensitivity of the consumption-habit ratio to positive shocks	10^{-4}
σ_{sn} sensitivity of the consumption-habit ratio to negative shocks	-0.16
Consumption dynamics	
\bar{g} average consumption growth	0.02
\bar{p} shape parameter of positive shocks	202.25
σ_{cp} impact of positive shocks on the consumption growth	$0.17 \cdot 10^{-4}$
\bar{n} average shape parameter of negative shocks	0.02
σ_{cn} impact of negative shocks on the consumption growth	0.05
ρ_n volatility persistence	0.88
σ_{nn} scale of the volatility shock	0.08

Calibration: Consumption Growth 1/2

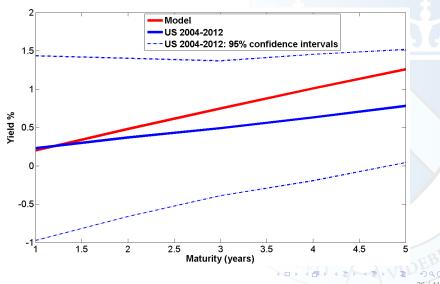


Calibration: Consumption Growth 2/2

- Unconditional consumption growth more Gaussian than in data
- No disasters

	Model	US 1929-2012	
Mean	2.10%	2.00%	-
	(0.16%)	(0.36%)	
Standard deviation	2.52%	2.98%	
	(0.25%)	(0.45%)	
Skewness	-0.20	-0.83	
	(0.27)	(0.64)	
Excess kurtosis	2.02	3.52	
	(0.64)	(1.32)	
$P($	1.93%	4.96%	
	(1.13%)	(1.58%)	
$P($	0.11%	1.20%	
	(0.01%)	(0.53%)	

Calibration: Real Yields 1/2



36/41

Calibration: Real Yields 2/2

- Model matches:
 - Upward sloping yield curve
 - Realistically low volatility of interest rates: intertemporal smoothing and precautionary savings effects offset each other

Moment	Model	US 2004-2012
$\sigma(y_1)$	1.65%	1.58%
	(0.51%)	(0.42%)

Calibration: Violations of the Expectation Hypothesis

Model replicates expectation hypothesis violations

•
$$y_{n-1,t+1} - y_{n,t} = \beta_0 + \beta_n \frac{1}{n-1} (y_{n,t} - y_{1,t}) + \epsilon_t$$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Moment	Description	Model	US nominal 1961-2012
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	β_2	n=2 years	-1.18	-0.71
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(0.57)	(0.42)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	β_3	<i>n</i> =3 years	-1.21	-1.04
(0.47) (0.53) β_5 n=5 years -1.31 -1.48			(0.52)	(0.51)
β_5 n=5 years -1.31 -1.48	β_4	<i>n</i> =4 years	-1.27	-1.29
15			(0.47)	(0.53)
(0.42) (0.58)	β_5	<i>n</i> =5 years	-1.31	
		-	(0.42)	(0.58)

38/41

Calibration: International

Adequate fit of international moments

- α_{FX} is from the regression $r_{t+1}^{FX} = \alpha_0 + \alpha_{FX}(y_{1,t} y_{1,t}^*) + \epsilon_t$
- Δq_{t+1} is the real exchange rate change

Moment	Model	G-10 countries, 1970-2000
		(Backus et.al. 2001, and Benigno
		and Thoenissen, 2008)
α_{FX}	-1.92	[-0.74,-1.84]
	(0.32)	
$\sigma(\Delta q_{t+1})$	20.12%	[6.23%,17.54%]
	(12.54%)	
$\mathit{Corr}(\Delta q_{t+1}, g^*_{t+1} - g_{t+1})$	-0.49	[-0.55,0.53]
	(0.10)	

Calibration: Equity

- Equity = claim to aggregate consumption
- Key equity moments replicated

Moment	Model	US 1929-2012
$r_{mkt} - y_1$	4.45%	5.67%
	(2.84%)	(2.11%)
Sharpe-ratio	0.36	0.29
	(0.15)	(0.13)
pd	3.66	3.40
	(0.12)	(0.09)
$Corr(pd_{t-1}, pd_t)$	0.81	0.85
(, , , , , , , , , , , , , , , , , , ,	(0.08)	(0.12)

Conclusion

 A joint explanation of key US and international bond markets phenomena