Modeling AS/AD Shocks

Estimation Results

Uncertainty and Real Activity 00000

Uncertainty and the Economy: The Evolving Distributions of Aggregate Supply and Demand Shocks

Geert Bekaert¹ Eric Engstrom² Andrey Ermolov³

The expressed views do not necessarily reflect those of the Board of Governors of the Federal Reserve System, or its staff.

Society for Economic Dynamics Annual Meeting July 3, 2021

< □ > < 同

¹Columbia Business School and NBER
 ²Board of Governors of the Federal Reserve System
 ³Gabelli School of Business, Fordham University

Modeling AS/AD Shocks

Estimation Results

Uncertainty and Real Activity

Contribution 1/3

Hi,

I am abundant and, unfortunately, do not fit this slide.

Best Wishes, Literature on Uncertainty and Business Cycles

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Contribution ○●○ Modeling AS/AD Shocks

Estimation Results

Uncertainty and Real Activity 00000

Contribution 2/3

- Distinguishing between aggregate demand (AD) and aggregate supply (AS) shocks uncertainty
- AD and AS shocks are different from each other:
 - Economic impact can be different (e.g., Blanchard and Quah, 1989)
 - Policy responses often different
- Key result: AS shocks uncertainty more important for real activity

Contribution	Modeling AS/AD Shocks	Estimation Results	Uncertainty and Real Activity
○○●	000000	0000000	00000
Contril	bution 3/3		

- Recent interest in non-Gaussian uncertainty (e.g., Adrian, Boyarchenko, and Giannone, 2019; Fernandez-Villaverde and Guerron-Quintana, 2020)
- Flexible econometric framework for multivariate distribution of macro data:
 - Non-Gaussian features (outperforms other non-Gaussian models)
 - Time-varying closed-form second/higher-order moments
 - Time-varying level and uncertainty shock correlation
- Key results applying to the joint GDP growth-inflation distribution:
 - Non-Gaussian features become more important over time
 - Negatively skewed AS uncertainty most important for real activity

Modeling AS/AD Shocks

Estimation Results

Uncertainty and Real Activity 00000

Aggregate Supply and Demand Shocks

• Consider GDP growth and inflation shocks:

•
$$g_{t+1} = E_t[g_{t+1}] + \epsilon_{t+1}^g$$

- $\pi_{t+1} = E_t[\pi_{t+1}] + \epsilon_{t+1}^{\pi}$
- Model them as functions of AD (u^d_t)/AS (u^s_t) shocks (Blanchard, 1989):

$$\epsilon_{t+1}^{g} = \underbrace{\sigma_{g}^{d}}_{>0} u_{t+1}^{d} + \underbrace{\sigma_{g}^{s}}_{>0} u_{t+1}^{s},$$

$$\epsilon_{t+1}^{\pi} = \underbrace{\sigma_{\pi}^{d}}_{>0} u_{t+1}^{d} - \underbrace{\sigma_{\pi}^{s}}_{>0} u_{t+1}^{s},$$

$$Cov(u_{t+1}^{d}, u_{t+1}^{s}) = 0, Var(u_{t+1}^{d}) = Var(u_{t+1}^{s}) = 1.$$

Contribution	Modeling AS/AD Shocks	Estimation Results

Uncertainty and Real Activity

Identification

- "Demand" and "supply" shocks are not identified in Gaussian framework ⇒ use unconditional higher order moments
- For example, identification via matching co-skewness moments:

$$E[u_t^g(u_t^{\pi})^2] = \sigma_g^d(\sigma_\pi^d)^2 E[(u_t^d)^3] + \sigma_g^s(\sigma_\pi^s)^2 E[(u_t^s)^3],$$

$$E[(u_t^g)^2 u_t^{\pi}] = (\sigma_g^d)^2 \sigma_\pi^d E[(u_t^d)^3] - (\sigma_g^s)^2 \sigma_\pi^s E[(u_t^s)^3].$$

• Imagine: $E[(u_t^s)^3] \approx 0$ and $E[(u_t^d)^3] < 0$:

• co-skewness moments admit identification of σ_{π}^{d} and σ_{g}^{d}

• if $E[u_t^g(u_t^{\pi})^2] < E[(u_t^g)^2 u_t^{\pi}] \Rightarrow \sigma_{\pi}^d > \sigma_{\pi}^d$

 Contribution
 Modeling AS/AD Shocks
 Estimation Results
 Uncertainty and Real Activity

 000
 000000
 000000
 00000

- Modeling demand and supply shocks
 - Demand and supply shocks modeled using Bad Environment-Good Environment (BEGE) structure (Bekaert and Engstrom, 2017): component models of two 0-mean shocks

$$\begin{array}{l} u_{t+1}^{d} = \sigma_{p}^{d} \omega_{p,t+1}^{d} - \sigma_{n}^{d} \omega_{n,t+1}^{d}, \\ u_{t+1}^{s} = \sigma_{p}^{s} \omega_{p,t+1}^{s} - \sigma_{n}^{s} \omega_{n,t+1}^{s}, \end{array} \right\} \begin{array}{l} \omega_{p,t+1} \text{ - good environment shock} \\ \omega_{n,t+1} \text{ - bad environment shock} \end{array}$$

• Shocks follow demeaned gamma distributions:

$$\begin{split} & \omega_{\rho,t+1}^{d} \sim \Gamma(p_t^d, 1) - p_t^d, \\ & \omega_{n,t+1}^{s} \sim \Gamma(n_t^d, 1) - n_t^d, \\ & \omega_{\rho,t+1}^{s} \sim \Gamma(p_t^s, 1) - p_t^s, \\ & \omega_{n,t+1}^{s} \sim \Gamma(n_t^s, 1) - n_t^s. \end{split} \right\} \begin{array}{c} \text{gamma distribution with} \\ & \Gamma(x, y) - \text{shape parameter x and scale} \\ & \text{parameter y} \end{split}$$

イロン イロン イヨン イヨン

Modeling AS/AD Shocks

Estimation Results

Uncertainty and Real Activity 00000

Bad Environment-Good Environment Probability Density Function

Modeling AS/AD Shocks

Estimation Results

Uncertainty and Real Activity

Time-varying variances

• AR(1) process for shape parameters:

$$p_{t+1}^{d} = \bar{p}^{d} + \rho_{p}^{d}(p_{t}^{d} - \bar{p}^{d}) + \underbrace{\sigma_{pp}^{d}\omega_{p,t+1}^{d}}_{\text{level shock}} + \underbrace{\sigma_{pp}^{dd}\nu_{p,t+1}}_{\text{pure variance shock}}$$

• Similar processes for
$$n_{t+1}^d$$
, p_{t+1}^s , n_{t+1}^s

- *p*^d_t/*n*^d_t = good (positively skewed)/bad (negatively skewed) demand variances
- *p*^s_t/*n*^s_t = good (positively skewed)/bad (negatively skewed) supply variances
- Flexible time-varying correlation between level and variance shocks: good/bad variance positively/negatively correlated with level shocks

Contribution Modeling AS/AD Shocks Esti

Estimation Results

Uncertainty and Real Activity 00000

Bad Environment-Good Environment Structure Properties

- Flexible: e.g., Gaussian and rare disaster distributions are special cases
- Closed-form expressions for second and higher-order moments
- Outperforms other non-Gaussian models (e.g., regime-switching models)

Modeling AS/AD Shocks

Estimation Results

Uncertainty and Real Activity 00000

Data and Estimation

- US quarterly data 1968Q4-2019Q2
- 3 step estimation:
 - Shocks to output growth and inflation: real-time data from Survey of Professional Forecasters
 - Demand and supply shocks: invert from output growth and inflation shocks after estimating "structural" loadings via GMM using higher order moments (3rd and 4th order moments are jointly highly significant and GMM fits them well)
 - *p*^d_t, *n*^s_t, *p*^s_t, *n*^s_t: approximate maximum likelihood (Bates, 2006)

 Contribution
 Modeling AS/AD Shocks
 Estimation Results
 Uncertainty and Real Vision

 Loadings of GDP Growth and Inflation

 Shocks onto Supply and Demand Shock

	u_t^{π}	u _t ^g
u_t^s	-0.4829	1.1802
	(0.0566)	(0.1129)
u_t^d	0.5141	0.6035
	(0.0685)	(0.1064)

standard errors in parentheses

Modeling AS/AD Shocks

Estimation Results

Uncertainty and Real Activity 00000

AS/AD Dynamics

- Model selection based on Akaike information criterion
- AS:
 - Good component: Gaussian; level and variance shocks are independent
 - Bad component: gamma; level and variance shocks are perfectly correlated
- AD:
 - Good component is Gaussian
 - Bad component is gamma
 - Level and variance shocks are perfectly correlated

Modeling AS/AD Shocks

Estimation Results

Uncertainty and Real Activity

AS/AD Variances

14/23

15/23

< A >

Conditional Contour Plots of Joint Real GDP Growth - Inflation Distribution

Numbers correspond to percentiles *

うくC 16/23

 $\underset{000000}{\mathsf{Modeling}} \mathsf{AS}/\mathsf{AD} \mathsf{Shocks}$

Estimation Results

Uncertainty and Real Activity 00000

Conditional Correlation between Level and Variance Shocks

conditional correlation between supply level shocks and supply variance shocks

୍ର 17/23

Uncertainty and Real Activity 0000

Bloom (2009) Uncertainty Decomposition

- Bloom (2009) measures uncertainty using financial markets • volatility
- Regress on macro variances:
 - Fit: macro variances explain 24.97% of variation, which can be further ۲ decomposed into Gaussian/bad-demand/supply components
 - ٠ Residual: "pure financial" component

Macro risk and pure financial components of continuous Bloom uncertainty measure

 Contribution
 Modeling AS/AD Shocks
 Estimation Results
 Uncertainty and Real Activity

 000
 000000
 000000
 00000

VAR Impulse Responses 1/4

- VAR with macro and "pure financial" variances + key macroeconomic growth indicators (+controls such as federal funds rate):
 - Industrial production growth
 - Nonfarm payroll growth
 - Real personal consumption expenditure growth
 - Durable goods order growth
- Results similar with both reduced-form and structural shocks (Cholesky ordering does not matter)

Modeling AS/AD Shocks

Estimation Results

Uncertainty and Real Activity $\circ \circ \circ \circ \circ$

VAR Impulse Responses 2/4

Quarters

₹ 20 / 23

 $\underset{000000}{\mathsf{Modeling}} \mathsf{AS}/\mathsf{AD} \mathsf{Shocks}$

Estimation Results

Uncertainty and Real Activity $\circ \circ \circ \circ \circ \circ$

VAR Impulse Responses 3/4

୬ ୯.୯ 21 / 23

 $\underset{000000}{\mathsf{Modeling}} \mathsf{AS}/\mathsf{AD} \mathsf{Shocks}$

Estimation Results

Uncertainty and Real Activity $\circ \circ \circ \circ \circ$

VAR Impulse Responses 4/4

ର 22 / 23

Contribution	Modeling AS/AD Shocks	Estimation Results	Uncertainty and Real Activity			
000	000000	0000000	00000			
Conclusions						

- New dynamic model for real GDP growth and inflation
- Relative importance of non-Gaussian features in macro data increasing over time
- Differential impact of Gaussian/bad (negatively skewed) AD/AS uncertainty on real economic activity