Aggregate Demand and Aggregate Supply Effects of CoViD-19: A Real-time Analysis

Geert Bekaert¹ Eric Engstrom² Andrey Ermolov³

The expressed views do not necessarily reflect those of the Board of Governors of the Federal Reserve System, or its staff.

European Central Bank January 28, 2021

¹Columbia Business School and CEPR ²Board of Governors of the Federal Reserve System ³Gabelli School of Business, Fordham University

Introduction	Modeling Demand and Supply Shocks	Estimation	CoViD-19
●○○○○○○		0000000	0000000000
Definitior	าร		

- Following Keynesian tradition (e.g., Blanchard, 1989):
 - Aggregate demand (AD) shocks: move inflation and real activity in the same direction
 - Aggregate supply (AS) shocks: move inflation and real activity in the opposite direction

Introduction	Modeling Demand and Supply Shocks	Estimation	CoViD-19
000000		0000000	0000000000
Motivatio	n		

- Distinguishing AD from AS shocks is a long-standing goal of macroeconomics (earlier studies include, e.g., Burns and Mitchell, 1946):
 - Fiscal and monetary policy responses usually very different
 - Affect performance of various asset classes differently (Bekaert, Engstrom, Ermolov, 2021)

Modeling Demand and Supply Shocks

Estimation 0000000 CoViD-19 0000000000

AD/AS Shocks during CoViD-19

- For many recessions the dominant force is immediately clear:
 - Oil crises in the 1970s \Rightarrow supply shocks
 - $\bullet \ \ \text{Volcker experiment} \Rightarrow \text{demand shock}$
- AD-AS decomposition is particularly interesting during CoViD-19: massive lockdowns are large negative demand shocks, but also many supply shocks at the same time...

Modeling Demand and Supply Shocks

Estimation 0000000 CoViD-19 0000000000

Supply Shocks during CoViD-19: Labor force

US	LATEST UPDATES NEW STRAINS TRACKING VACCINE DISTRIBUTION YOU TESTED POSITIVE-NOW WHAT? TRAVEL TESTING RULES	
	Q&A ON THE SHOT COVID STORM SERIES	

ECONOMY | U.S. ECONOMY

Coronavirus Relief Often Pays Workers More Than Work

When combined with state benefits, weekly government payouts create incentives that employers say complicate efforts to reopen businesses

Modeling Demand and Supply Shocks

Estimation 0000000 CoViD-19 0000000000

Supply Shocks during CoViD-19: Domestic production

				English Edition	n ♥ Print Ec	dition	Video Pode	asts Late	st Headlines		
lome	World	U.S.	Politics	Economy	Business	Tech	Markets	Opinion	Life & Arts	Real Estate	WSJ. Magazine
RUS	[LATES Q&A ON	T UPDATES	NEW STRAI	NS TRACE	KING VACC	INE DISTRIBUT	TION YOU	I TESTED POSITIN	/E-NOW WHAT?	TRAVELTESTING

BUSINESS

Grocers Hunt for Meat as Coronavirus Hobbles Beef and Pork Plants

Surging consumer demand also tightens supplies; supermarkets brace for shortages

RECOMMENDED VIDEOS

How Mortgages Work in the U.S.

The Science Behind • How the Coronavirus Affects the Brain

When Rioters Stormed the Capitol: How the

Modeling Demand and Supply Shocks

Estimation 0000000 CoViD-19 0000000000

Supply Shocks during CoViD-19: International Supply Chains

	English Edition * Print Edition Video Podcasts Latest Headlines											
lome	World	U.S.	Politics	Economy	Business	Tech	Markets	Opinion	Life & Arts	Real Estate	WSJ. Magazine	Q
RUS	US LATEST UPDATES NEW STRAINS TRACKING VACCINE DISTRIBUTION YOU TESTED POSITIVE-NOW WHAT? TRAVEL TESTING RULES											
		Q&A ON	THE SHOT	COVID STOR	M SERIES							

ECONOMY | THE OUTLOOK

Firms Want to Adjust Supply Chains Post-Pandemic, but Changes Take Time

Covid-19 has exposed the risk of farflung production; alternatives like making things at home could raise costs

RECOMMENDED VIDEOS

1. Trump Hints at Comeback as His Presidency Ends

- 2. iPhone 12 Mini: The Mini Review
- Fauci Says the U.S. Will Remain in the WHO

Introduction	Modeling Demand and Supply Shocks	Estimation	CoViD-19
○○○○○○●		0000000	0000000000
Contribut	ion		

- Novel, easily implementable approach to identify demand and supply shocks
- Identification through non-Gaussian features of the data:
 - minimal theoretical assumptions
 - strongly supported by data (e.g., Evans and Wachtel, 1993, for inflation, and Hamilton, 1989, for GDP growth)
- Relies on survey forecast revisions:
 - aggregate measure available in real time
 - no need to model conditional mean
 - good empirical fit (e.g., Ang, Bekaert, and Wei, 2007)

Modeling Demand and Supply Shocks

Estimation 0000000 CoViD-19 0000000000

Demand and Supply Shocks

• Consider GDP growth and inflation shocks:

•
$$g_{t+1} = E_t[g_{t+1}] + \epsilon_{t+1}^g$$

- $\pi_{t+1} = E_t[\pi_{t+1}] + \epsilon_{t+1}^{\pi}$
- Model them as functions of AD (u^d_t) and AS (u^s_t) shocks:

$$\epsilon_{t+1}^{g} = \underbrace{\sigma_{g}^{d}}_{>0} u_{t+1}^{d} + \underbrace{\sigma_{g}^{s}}_{>0} u_{t+1}^{s},$$

$$\epsilon_{t+1}^{\pi} = \underbrace{\sigma_{\pi}^{d}}_{>0} u_{t+1}^{d} - \underbrace{\sigma_{\pi}^{s}}_{>0} u_{t+1}^{s},$$

$$Cov(u_{t+1}^{d}, u_{t+1}^{s}) = 0, Var(u_{t+1}^{d}) = Var(\underbrace{u_{t+1}^{s}}_{< \Box > < C}) = 1.$$

$$\underbrace{v = Var(u_{t+1}^{s}, u_{t+1}^{s}) = 1}_{0, \forall ar(u_{t+1}^{d}) = \sqrt{2}} \underbrace{v = Var(u_{t+1}^{s})}_{< \Box > < C} \underbrace{v = Var(u_{t+1}^{s})}_{0, \forall ar(u_{t+1}^{s}) = \sqrt{2}} \underbrace{v = Var(u_{t+1}^{s})}_{0, \forall ar(u_{t+1}^{s}) = \sqrt{2} \underbrace{v = Var(u_{t+1}^{s})}_{0, \forall ar(u_{t+1}^{s})}_{0, \forall ar(u_{t+1}^{s}) = \sqrt$$

Modeling Demand and Supply Shocks

Estimation 0000000 CoViD-19 0000000000

Identification 1/3

• Sample covariance matrix:

$$Cov(\epsilon_t^g, \epsilon_t^\pi) = \begin{bmatrix} (\sigma_g^s)^2 + (\sigma_g^d)^2 & -\sigma_\pi^s \sigma_g^s + \sigma_\pi^d \sigma_g^d \\ -\sigma_\pi^s \sigma_g^s + \sigma_\pi^d \sigma_g^d & (\sigma_\pi^s)^2 + (\sigma_\pi^d)^2 \end{bmatrix}$$

- 3 unique moments, but need 4 coefficients to extract AD and AS shocks
- "Demand" and "supply" shocks are not identified in Gaussian framework ⇒ use unconditional higher order moments (in spirit of Lanne, Meitz, and Saikkonen, 2017)

Modeling Demand and Supply Shocks

Estimation

CoViD-19 0000000000

Identification 2/3

• For example, identification via matching co-skewness moments:

$$E[u_t^g(u_t^{\pi})^2] = \sigma_g^d(\sigma_{\pi}^d)^2 E[(u_t^d)^3] + \sigma_g^s(\sigma_{\pi}^s)^2 E[(u_t^s)^3],$$

$$E[(u_t^g)^2 u_t^{\pi}] = (\sigma_g^d)^2 \sigma_{\pi}^d E[(u_t^d)^3] - (\sigma_g^s)^2 \sigma_{\pi}^s E[(u_t^s)^3].$$

• Imagine $E[(u_t^s)^3] \approx 0$ and $E[(u_t^d)^3] < 0$:

$$E[u_t^g(u_t^{\pi})^2] = \sigma_g^d(\sigma_\pi^d)^2 E[(u_t^d)^3] + \sigma_g^s(\sigma_\pi^s)^2 E[(u_t^s)^3],$$

$$E[(u_t^g)^2 u_t^{\pi}] = (\sigma_g^d)^2 \sigma_\pi^d E[(u_t^d)^3] - (\sigma_g^s)^2 \sigma_\pi^s E[(u_t^s)^3].$$

• If in data $E[u_t^g(u_t^\pi)^2] < E[(u_t^g)^2 u_t^\pi] \Rightarrow \sigma_\pi^d > \sigma_g^d$

• Co-skewness moments admit identification of σ_{π}^{d} and σ_{g}^{d}

Introduction	

Identification 3/3

- 12 unconditional moments to match:
 - 3 second order moments: $Std(u_t^g)$, $Std(u_t^{\pi})$, $Corr(u_t^g, u_t^{\pi})$
 - 4 third order moments: $Skw(u_t^g)$, $Skw(u_t^\pi)$, $E[(u_t^\pi)^2 u_t^g]$, $E[u_t^\pi (u_t^g)^2]$
 - **5** fourth order moments: $Kurt(u_t^g)$, $Kurt(u_t^\pi)$, $E[(u_t^\pi)^2(u_t^g)^2]$, $E[(u_t^\pi)^3 u_t^g]$, $E[u_t^\pi(u_t^g)^3]$
- 9 parameters to estimate:
 - 4 AD/AS loadings: σ_g^d , σ_g^s , σ_π^d , σ_π^s
 - 2 unconditional skewnesses: $E[(u_t^d)^3]$, $E[(u_t^s)^3]$
 - 3 unconditional excess (co-)kurtoses: $E[(u_t^d)^4] 3$, $E[(u_t^s)^4] 3$, $E[(u_t^s)^2] 1$

Introduction 0000000	Modeling Demand and Supply ○○○○●	Shocks	Estimation 0000000		CoViD-19 0000000000
Extracting	Demand	and	Supply	Shock	S

• Given AD/AS loadings can invert AD/AS shocks from GDP growth and inflation shocks:

$$u_t^d = \frac{\sigma_\pi^s \epsilon_t^g + \sigma_g^s \epsilon_t^\pi}{\sigma_\pi^d \sigma_g^s + \sigma_\pi^s \sigma_g^d}$$

$$u_t^s = \frac{\sigma_\pi^d \epsilon_t^g - \sigma_g^d \epsilon_t^\pi}{\sigma_\pi^d \sigma_g^s + \sigma_\pi^s \sigma_g^d}$$

 Introduction
 Modeling Demand and Supply Shocks
 Estimation

 0000000
 000000
 000000

CoViD-19 0000000000

GDP Growth and Inflation Shocks

 Extracting US real-time GDP growth and inflation shocks from quarterly mean Survey of Professional Forecasters revisions:

$$u_t^g = E_t[g_t] - E_{t-1}[g_t],$$

$$u_t^{\pi} = E_t[\pi_t] - E_{t-1}[\pi_t]$$

AD/AS Inversion: Matching Moments

	Volatility		Correlation		
	u_t^{π}	u_t^g	$u_t^{\pi} u_t^g$		
Data	0.6361	1.1885	-0.1344		
Standard error	(0.0913)	(0.1448)	(0.1555)		
Fitted value	[0.7083]	[1.3295]	[-0.2776]		
	Skev	vness	Coskev	vness	
	u_t^{π}	u_t^g	$(u_t^{\pi})^2 u_t^g$	$u_t^{\pi}(u_t^g)^2$	
Data	0.2005	-1.2343	-0.7873	0.4309	
Standard error	(0.3712)	(0.3890)	(0.2674)	(0.4884)	
Fitted value	[0.3663]	[-1.4465]	[-0.9808]	[0.4874]	
	Excess	kurtosis	Excess cokurtosis		
	u_t^{π}	u ^g	$(u_t^{\pi})^2 (u_t^{g})^2$	$(u_t^{\pi})^3 u_t^{g}$	$u_t^{\pi}(u_t^g)^3$
Data	1.7280	4.7138	1.9239	-0.5464	-1.6186
Standard error	(0.9813)	(1.3877)	(0.8979)	(1.1467)	(1.5647)
Fitted value	[1.7502]	[4.3216]	[2.6462]	[-1.7761]	[-3.2401]
Test	for joint sigi	nificance of 3	3 rd and 4 th ord	ler moments	
J-stat	25.3618				
<i>p</i> -value	0.26%				
		Overidentific	ation test		
J-stat	2.9781				
<i>p</i> -value	38.74%				

Modeling Demand and Supply Shocks $_{\rm OOOOO}$

Estimation

CoViD-19 0000000000

AD/AS Inversion: Parameter Estimates

Panel A: Inflation/GDP Growth Shocks Loadings					
	u_t^{π}	u_t^g			
u ^s	-0.4829	1.1802			
	(0.0566)	(0.1129)			
ut ^d	0.5141	0.6035			
	(0.0685)	(0.1064)			
Panel B: Higher-ord	ler Moments	of Supply and Demand Shocks			
	Skewness	Excess kurtosis			
u ^s	-1.9563	6.8535			
	(0.3873)	(1.5692)			
u ^d	-0.6896	1.0062			
-	(0.5413)	(1.6825)			
Co-excess kurtosis	-0.0095				
	(0.2843)				

Estimation

Check 1: Impulse Responses

- Identification relies only on sign restriction and unconditional higher order moments
- Literature mostly uses additional economic restrictions: e.g., demand shocks should not have long-run GDP effects (Blanchard and Quah, 1989)
- Is our identification consistent with such restrictions?

• VAR model is:
$$Y_t = A_0 + A_1 Y_{t-1} + S \begin{bmatrix} u_t^s \\ u_t^d \end{bmatrix} + \epsilon_t$$
, where:

- Y_t vector of revised real GDP growth and inflation
- $[u_t^s, u_t^d]'$ pre-estimated demand and supply shocks

Modeling Demand and Supply Shocks

Estimation ○○○○●○ CoViD-19 0000000000

Check 1: Impulse Responses

	Contemporaneous (quarter 0) responses					
Shock	Real GDP level	Price level				
Demand	0.19%***	0.33%***				
	(0.22%)	(0.00%)				
Supply	0.32%***	-0.18%***				
	(0.00%)	(99.98%)				
	Cumulative (2	0 quarters) responses				
Shock	Real GDP level	Price level				
Demand	0.00%	1.17%***				
	(52.25%)	(0.00%)				
Supply	0.66%***	-0.45%				
	(0.00%)	(93.95%)				

block-bootstrapped probabilities that impulse response < 0 in parentheses

Check 2: Recession Classifications

- AD component: sum of demand shocks during recession $\times \sigma_g^d$
- AS component: sum of supply shocks during recession $\times \sigma_g^s$

NBER Recession	GDP shock: demand component	GDP shock: supply component
1969Q4-1970Q4	-0.34%	-2.11%
1973Q4-1975Q1	-0.08%	-2.33%
1980Q1-1980Q2	0.72%	-0.51%
1981Q3-1982Q4	-3.63%	0.12%
1990Q4-1991Q1	-0.20%	-0.32%
2001Q1-2001Q4	-1.55%	-0.37%
2008Q1-2009Q2	-1.92%	-0.18%

- First 5 recessions consistent with Gali (1992)
- Great Recession debatable: demand (e.g., Mian and Sufi, 2014) vs supply (e.g., Ireland, 2011, or Mulligan, 2012)

Modeling Demand and Supply Shocks

Estimation 0000000 CoViD-19 ●○○○○○○○○○

Real Time GDP Growth and Inflation Shocks

	Real GDP growth shock	Inflation shock
2020: Q1	-6.6%	-2.7%
2020: Q2	-34.3%	-4.6%
Max(1968Q4-2019Q2)	3.6%	2.7%
Min(1968Q4-2019Q2)	-6.6%	-2.1%
2008Q4	-3.5%	-1.4%

Modeling Demand and Supply Shocks

Estimation

CoViD-19 ○●○○○○○○○○

Real Time Demand and Supply Shocks

	Demand shock	Supply shock
2020: Q1	-7.1	-1.9
2020: Q2	-24.5	-16.5
Max(1968Q4-2019Q2)	3.0	2.9
Min(1968Q4-2019Q2)	-3.8	-5.6
2008Q4	-3.7	-1.1

Modeling Demand and Supply Shocks

Estimation

CoViD-19 ○○●○○○○○○○

Real Time GDP Growth Demand and Supply Components

	Real GDP growth	Real GDP growth
	demand component	supply component
2020: Q1	-4.3%	-2.3%
	(0.8%)	(0.2%)
2020: Q2	-14.8%	-19.5%
	(2.6%)	(1.9%)
Max(1968Q4-2019Q2)	1.8%	3.5%
Min(1968Q4-2019Q2)	-2.3%	-6.6%
2008Q4	-2.2%	-1.3%
	(0.4%)	(0.1%)

Modeling Demand and Supply Shocks

Estimation

CoViD-19

Real GDP Growth

Introduction
coocococoModeling Demand and Supply Shocks
cococococoEstimation
cocococococoCoVID-19
cocococococo2020Q2Survey Forecast Revisions Implied

Real GDP Growth Shock

Modeling Demand and Supply Shocks

Estimation 0000000 CoViD-19

VAR Impulse Response to 2020:Q2 Demand and Supply Shocks

- Survey forecasts reflect real time expectations of market participants
- What would be impulse response to shock of such composition based on historical data?

• VAR model
$$Y_t = A_0 + A_1 Y_{t-1} + S \begin{bmatrix} u_t^s \\ u_t^d \end{bmatrix} + \epsilon_t$$
, where:

- Y_t vector of final revised real GDP growth and inflation
- $[u_t^s, u_t^d]'$ pre-estimated demand and supply shocks
- ϵ_t residual noise vector

Modeling Demand and Supply Shocks

Estimation 0000000 CoViD-19 ○○○○○○●○○○

VAR Cumulative Real GDP Growth Response to 2020:Q2 Demand and Supply Shocks

Modeling Demand and Supply Shocks

Estimation

CoViD-19 ○○○○○○●○○

Cumulative Real GDP Growth: Individual Forecasts - 2020:Q2

28/31

Inflation			
Introduction	Modeling Demand and Supply Shocks	Estimation	CoViD-19
0000000		0000000	○○○○○○○●○

Modeling Demand and Supply Shocks

Estimation

CoViD-19 ○○○○○○○○●

2020Q2 Forecast Revisions Implied Inflation Shock

Introduction	Modeling Demand and Supply Shocks	Estimation	CoViD-19
0000000		0000000	0000000000
Conclus	ions		

- Novel way to identify AD/AS shocks:
 - Minimal theoretical restrictions (just a sign restriction)
 - Utilizing survey forecast revisions
 - Identification through non-Gaussian features
- CoViD-19 dynamics:
 - 2020Q1 GDP growth shock very large by historical standards: mostly demand-driven
 - 2020Q2 shock extraordinary by historical standards: $\frac{2}{2}$ supply- and $\frac{1}{3}$ demand-driven
- Many applications: contact us with any questions during ◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○ ○ ○ implementation!

31/31