The Variance Risk Premium in Equilibrium Models

Geert Bekaert¹ Eric Engstrom² Andrey Ermolov³

The expressed views do not necessarily reflect those of the Board of Governors of the Federal Reserve System, or its staff.

32nd Northern Finance Association Meeting September 26, 2020

•••	000	00	00000000
Mativati	<u>on</u>		

- Use option markets phenomena, such as variance risk premium, to discipline consumption-based asset pricing literature
- Expand stylized facts \Rightarrow existing models fail
- New model that does match key facts

Variance Risk Premium

- Variance risk premium=risk-neutral variance
 physical variance of aggregate equity claim return
- Volatility risk premium=risk-neutral volatility - physical volatility of aggregate equity claim return
- Many ways to compute physical variance/volatility, but our findings are robust

 Introduction
 Stylized facts
 Extant models
 New model

 00
 00
 00
 00
 0000000000

- On average positive: 5.36% annually (⇒ variance risk premium 0.0196 annually)
- Low autocorrelation: 0.54 (0.48 in the pre-Great Recession sample)

(a)

IntroductionStylized factsExtant modelsNew modelNext Month Consumption GrowthConditional on Variance Risk Premium

High variance risk premium=above 80th unconditional percentile
 Low variance risk premium=below 20th unconditional percentile

✓) Q (
5 / 18

- Martin (2017) shows that risk-neutral entropy of aggregate equity return is very close to, but still higher than its risk-neutral variance
- Informative moment: left-tail of risk-neutral distribution is only moderately heavier than right tail

Introduction 00	Stylized facts	Extant models ●○	New model
Extant	consumption-	based models	1/2

- Time-varying volatility of consumption growth volatility (Bollerslev, Tauchen, and Zhou, 2009):
 - Fully conditionally log-normal models can not simultaneously generate positive variance risk premium and equity premium: for risk-neutral variance to be above physical variance, covariance between returns and pricing kernel must be positive, but then equity premium becomes negative
- Long-run risks with volatility jumps (Drechsler and Yaron, 2011):
 - Consumption growth is conditionally log-normal ⇒ can not generate consumption growth shifts conditional on variance risk premium

- Rare disasters (Wachter, 2013):
 - Left tail of risk-neutral return distribution is much heavier than right tail ⇒ risk neutral entropy is much larger than risk-neutral variance
 - Reducing size/probability of disasters helps, but then model has problems generating realistic equity premium
- Non-Gaussian habit (Bekaert and Engstrom, 2017):
 - Risk neutral entropy is almost equal to the risk-neutral variance
 - Very non-tractable: difficult to evaluate fit under alternative parametrisation

Consumption growth process

- Consumption growth has constant mean and heteroskedastic shock: $g_{t+1} = \bar{g} + \epsilon_{t+1}^g$
- Dividend shock=levered consumption shock: $d_{t+1} = \bar{g} + \gamma_g(\sigma_{cp}\omega_{p,t+1} - \sigma_{cn}\omega_{n,t+1})$
- Shock modeled using Bad Environment-Good Environment (BEGE) structure (Bekaert and Engstrom, 2017) - component models of two 0-mean shocks:

$$\epsilon^g_{t+1} = \underbrace{\sigma_{cp}}_{>0} \cdot \underbrace{\omega_{p,t+1}}_{\text{good shock}} - \underbrace{\sigma_{cn}}_{>0} \cdot \underbrace{\omega_{n,t+1}}_{\text{bad shock}}$$

Good and bad shocks follow demeaned gamma distributions:

$$\begin{array}{l} \omega_{p,t+1} \sim \Gamma(p_t,1) - p_t, \\ \omega_{n,t+1} \sim \Gamma(n_t,1) - n_t. \end{array} \right\} \Gamma(x,y) - \begin{array}{l} \text{gamma distribution with shape} \\ \text{parameter } x, \text{ scale parameter } y \end{array}$$

Introduction 00	Stylized facts	Extant models	New model	

lime-varying variances

- Shape parameters can be interpreted as variances:
 - *p_t* "good" variance
 - *n_t* "bad" variance
- Shape parameter driven by level shock (Gourieroux and Jasiak, 2006):

$$n_{t+1} = \bar{n} + \rho_n(n_t - \bar{n}) + \sigma_{nn}\omega_{n,t+1}$$

 For parsimony, p_t is constant: only bad shock distribution is time-varying

00	OOO	OO	
Utility fu	Inction		

• External habit utility:
$$E_t \sum_{j=t}^{\infty} \beta^{j-t} \frac{(C_j - H_j)^{1-\gamma} - 1}{1-\gamma}$$

- β discount rate, C_j consumption, H_j habit stock $(C_j > H_j)$
- Inverse consumption surplus ratio, $Q_t = \frac{C_t}{C_t H_t}$ $(q_t = \ln(Q_t))$, driven by consumption shocks: $q_{t+1} = \bar{q} + \rho_q(q_t \bar{q}) + \underbrace{\sigma_{qp}}_{>0} \underbrace{\omega_{p,t+1}}_{>0} + \underbrace{\sigma_{qn}}_{<0} \underbrace{\omega_{n,t+1}}_{<0}$

• Log-stochastic discount factor:

$$m_{t+1} = m_0 + m_q q_t + \underbrace{m_{\omega,p}}_{<0} \omega_{p,t+1} + \underbrace{m_{\omega,n}}_{>0} \omega_{n,t+1}$$

- Compared to Campbell and Cochrane (1999) and Bekaert and Engstrom (2017):
 - constant prices of risk

• economically intuitive closed-form solutions: for example, variance risk premium= $\underset{<0}{r_p} \cdot p_t + \underset{>0}{r_n} \cdot n_t$

Data and Estimation

- US monthly data 1990:M1-2017:M12
- Classical minimum distance estimation match unconditional moments of:
 - Consumption growth: mean, variance, skewness, kurtosis
 - Risk-free rate: mean, variance, autocorrelation
 - **Equity**: average equity premium, physical return variance, mean log-price-dividend ratio, log-price-dividend ratio variance, log-price-dividend ratio autocorrelation
 - **Options**: mean variance risk premium, variance risk premium variance, difference between risk-neutral entropy and variance

Extant models

Parameter estimates

Preferences						
β	γ	ą	ρ_q	σ_{qp}	σ_{qn}	
1.0000	1.9870	1.0000	0.9904	$-2.64 \cdot 10^{-5}$	0.1140	
(fixed)	(0.5972)	(fixed)	(0.0121)	(0.0011)	(0.0327)	
Macro dynamics						
Ē	σ_{cp}	σ_{cn}	p	n	ρ_n	σ_{nn}
0.0017	0.0007	0.0035	11.0848	0.0621	0.9954	0.0327
(0.0002)	(0.0002)	(0.0005)	(4.8705)	(0.0211)	(0.0164)	(0.0159)

standard errors in parentheses

- Good shock essentially Gauassian
- Bad shock very non-Gaussian

Introduction	Stylized facts	Extant models	New model
00	000	00	○○○○○●○○

K AV	moments 1	
	moments	

Moment	Model	Data	Data standard error		
Consumptio	n growth				
Mean	0.0017	0.0020	0.0002		
Standard deviation	0.0024	0.0024	0.0002		
Skewness	0.1170	0.1163	0.3141		
Kurtosis	2.0166	2.0186	0.7741		
Equi	Equity				
Equity premium	0.0020	0.0041	0.0023		
Physical standard deviation of equity return	0.0462	0.0426	0.0039		
Options					
Variance risk premium	0.0015	0.0016	0.0003		
Variance risk premium standard deviation	0.0020	0.0019	0.0003		
Risk-neutral entropy - risk-neutral variance	0.0007	0.0006	0.0001		

Introduction 00	Stylized facts	Extant models	New model ○○○○○○●○
Consumpt	ion growth _l	percentiles	
conditiona	l on varianc	e risk premiu	m

Panel A: US data 1990M1-2017M2				
	High variance premium	Low variance premium	High-Low difference	
10 th percentile	-0.23%	-0.02%	-0.21%***	
			(0.07%)	
50 th percentile	0.18%	0.20%	-0.02%	
			(0.05%)	
90 th percentile	0.50%	0.50%	0.00%	
			(0.07%)	
Panel B: Model				
	High variance premium	Low variance premium	High-Low difference	
10 th percentile	-0.17%	-0.10%	-0.07%	
50 th percentile	0.16%	0.15%	0.01%	
90 th percentile	0.50%	0.48%	0.02%	

bootstrap standard errors in parentheses high variance risk premium=above 80^{th} unconditional percentile low variance risk premium=below 20^{th} unconditional percentile $a_{ab} + a_{b} + a_{$

16/18

Introduction	Stylized facts	Extant models	New model
00	000		○○○○○○○●
Limitations			

- Monthly variance risk premium autocorrelation is 0.99 vs 0.52 (standard error 0.09) in data
- Problem in all consumption-based models: state variables driving asset prices are very persistent, so that realistically small shocks to state variables generate realistic asset pricing implications
- Can be resolved by adding a preference shock with less persistent variance (ρ_s) to inverse surplus ratio:

$$\begin{split} q_{t+1} &= \bar{q} + \rho_q(q_t - \bar{q}) + \sigma_{qp}\omega_{p,t+1} + \sigma_{qn}\omega_{n,t+1} + \sigma_{qq}\omega_{q,t+1}, \\ \omega_{q,t+1} &\sim \Gamma(s_t, 1) - s_t, \\ s_{t+1} &= \bar{s} + \rho_s(s_t - \bar{s}) + \sigma_{sq}\omega_{q,t+1} \end{split}$$

Conclusions			
Introduction 00	Stylized facts	Extant models 00	New model

- Use variance risk premium properties to discipline and refute existing consumption-based asset pricing models
- Extant models struggle
- Introduce tractable non-Gaussian habit model which does well