Macro Risks and the Term Structure of Interest Rates

Geert Bekaert¹ Eric Engstrom² Andrey Ermolov³

The expressed views do not necessarily reflect those of the Board of Governors of the Federal Reserve System, or its staff.

80th American Finance Association Meeting San Diego, CA - January 5, 2020

Motivation

- Treasury bond risk premia are time-varying (e.g., Campbell and Shiller, 1991)
- Economic channels of bond return predictability not clear (Bauer and Hamilton, 2017):
 - Only price variables (e.g., yield curve slope) are robust predictors of excess bond returns
 - Macro variables are insignificant predictors

Modeling Macro Risks

Asset Pricing Implications

Main Idea and Contribution

- Economic intuition: bond risk premia should be higher in "aggregate supply" (AS) environment than "aggregate demand" (AD) environment as inflation is counter-cyclical in former and pro-cyclical in latter (Fama, 1981)
- Macro risks=second and higher order moments of AD/AS shocks
- Macro risks are robust predictors of excess bond returns

Asset Pricing Implications

Demand and Supply Shocks

• Consider GDP growth and inflation shocks:

•
$$g_{t+1} = E_t[g_{t+1}] + \epsilon_{t+1}^g$$

- $\pi_{t+1} = E_t[\pi_{t+1}] + \epsilon_{t+1}^{\pi}$
- Model them as functions of "demand" (u^d_t)/" supply" (u^s_t) shocks (Blanchard, 1989):

$$\epsilon_{t+1}^{g} = \underbrace{\sigma_{g}^{d}}_{>0} u_{t+1}^{d} + \underbrace{\sigma_{g}^{s}}_{>0} u_{t+1}^{s},$$

$$\epsilon_{t+1}^{\pi} = \underbrace{\sigma_{\pi}^{d}}_{>0} u_{t+1}^{d} - \underbrace{\sigma_{\pi}^{s}}_{>0} u_{t+1}^{s},$$

$$Cov(u_{t+1}^{d}, u_{t+1}^{s}) = 0, Var(u_{t+1}^{d}) = Var(u_{t+1}^{s}) = 1,$$

$$4/17$$

Intuition

• If "supply" and "demand" shocks are heteroskedastic, $Cov_t(\epsilon_{t+1}^g, \epsilon_{t+1}^\pi)$ will vary over time:

$$Cov_{t}(\epsilon_{t+1}^{g}, \epsilon_{t+1}^{\pi}) = \sigma_{g}^{d} \sigma_{\pi}^{d} \underbrace{Var_{t}(u_{t+1}^{d})}_{\text{macro risk}} - \sigma_{g}^{s} \sigma_{\pi}^{s} \underbrace{Var_{t}(u_{t+1}^{s})}_{\text{macro risk}}$$

- "Demand" shock environment: high Cov_t(ε^g_{t+1}, ε^π_{t+1}) ⇒ nominal bonds hedge well
- "Supply" shock environment: low Cov_t(ε^g_{t+1}, ε^π_{t+1}) ⇒ nominal bonds hedge poorly

Identification

- "Demand" and "supply" shocks are not identified in Gaussian framework ⇒ use unconditional higher order moments (Lanne, Meitz, and Saikkonen, 2017)
- For example, identification via matching co-skewness moments:

$$E[u_t^g(u_t^{\pi})^2] = \sigma_g^d(\sigma_{\pi}^d)^2 E[(u_t^d)^3] + \sigma_g^s(\sigma_{\pi}^s)^2 E[(u_t^s)^3],$$

$$E[(u_t^g)^2 u_t^{\pi}] = (\sigma_g^d)^2 \sigma_{\pi}^d E[(u_t^d)^3] - (\sigma_g^s)^2 \sigma_{\pi}^s E[(u_t^s)^3].$$

• Imagine: $E[(u_t^s)^3] \approx 0$ and $E[(u_t^d)^3] < 0$:

• co-skewness moments admit identification of σ_{π}^{d} and σ_{g}^{d}

• if
$$E[u_t^g(u_t^{\pi})^2] < E[(u_t^g)^2 u_t^{\pi}] \Rightarrow \sigma_{\pi}^d > \sigma_g^d$$

Introd	

Modeling demand and supply shocks

 Demand and supply shocks modeled using Bad Environment-Good Environment (BEGE) structure (Bekaert and Engstrom, 2017): component models of two 0-mean shocks

$$\begin{array}{l} u_{t+1}^{d} = \sigma_{p}^{d} \omega_{p,t+1}^{d} - \sigma_{n}^{d} \omega_{n,t+1}^{d}, \\ u_{t+1}^{s} = \sigma_{p}^{s} \omega_{p,t+1}^{s} - \sigma_{n}^{s} \omega_{n,t+1}^{s}, \end{array} \right\} \begin{array}{l} \omega_{p,t+1} \text{ - good environment shock} \\ \omega_{n,t+1} \text{ - bad environment shock} \end{array}$$

• Shocks follow demeaned gamma distributions:

$$\begin{split} & \omega_{p,t+1}^d \sim \Gamma(p_t^d,1) - p_t^d, \\ & \omega_{n,t+1}^s \sim \Gamma(n_t^d,1) - n_t^d, \\ & \omega_{p,t+1}^s \sim \Gamma(p_t^s,1) - p_t^s, \\ & \omega_{n,t+1}^s \sim \Gamma(n_t^s,1) - n_t^s. \end{split} \right\} \begin{array}{c} \text{gamma distribution with} \\ & \Gamma(x,y) - \text{shape parameter } x \text{ and scale} \\ & \text{parameter } y \end{split}$$

イロト 不同下 イヨト イヨト

Modeling Macro Risks

Asset Pricing Implications

Bad Environment-Good Environment structure: Probability density function

Modeling Macro Risks

Asset Pricing Implications

Time-varying variances

• Shape parameters driven by level shocks (Gourieroux and Jasiak, 2006):

$$\boldsymbol{p}_{t+1}^{d} = \bar{\boldsymbol{p}}^{d} + \rho_{\boldsymbol{p}}^{d}(\boldsymbol{p}_{t}^{d} - \bar{\boldsymbol{p}}^{d}) + \sigma_{\boldsymbol{p}\boldsymbol{p}}^{d}\omega_{\boldsymbol{p},t+1}^{d}$$

- Similar processes for n_{t+1}^d , p_{t+1}^s , n_{t+1}^s
- We call $p_t^d, n_t^d, p_t^s, n_t^s$ macro risks:
 - $p_t^d/n_t^d = \text{good (positively skewed)/bad (negatively skewed) demand variances}$
 - $p_t^s/n_t^s = \text{good}$ (positively skewed)/bad (negatively skewed) supply variances

Asset Pricing Implications

10/17

Data and Estimation

- US quarterly data 1962Q2-2016Q4
- 3 step estimation:
 - Shocks to output growth and inflation: VAR
 - Demand and supply shocks: invert from output growth and inflation shocks after estimating "structural" loadings via GMM using higher order moments (3rd and 4th order moments are jointly highly significant and GMM fits them well), also allowing for GDP growth and inflation shocks uncorrelated with demand and supply shocks
 - *p*^d_t, *n*^d_t, *p*^s_t, *n*^s_t: approximate maximum likelihood (Bates, 2006)

Modeling Macro Risks

Asset Pricing Implications

'Demand'' Macro Risks

$$p_t^d = 20.00 + 0.93 \cdot (p_{t-1}^d - 20.00) + 0.98 \cdot \omega_{p,t}^d,$$

$$n_t^d = 0.34 + 0.72 \cdot (n_{t-1}^d - 0.34) + 0.57 \cdot \omega_{p,t}^d,$$

Modeling Macro Risks

Asset Pricing Implications

"Supply" Macro Risks

$$p_{t}^{s} = 20.00 + 0.99 \cdot (p_{t-1}^{s} - 20.00) + 0.55 \cdot \omega_{p,t}^{s},$$

$$n_{t}^{s} = 4.00 + 0.67 \cdot (n_{t-1}^{s} - 4.00) + 1.25 \cdot \omega_{n,t}^{s}.$$

Excess Bond Returns and Macro Factors

- Regress future annualized quarterly excess zero-coupon bond returns on macro risks and macro level factors
- Statistical significance is computed using Bauer-Hamilton (2017) bootstrap under the null of no predictability from macro factors
- Macro risks are scaled to unit variance to help interpret regression coefficients

Modeling Macro Risks

Asset Pricing Implications

Excess Bond Returns and Macro Factors: Regression Coefficients

	1 year bond	5 year bond
Macro level factors		
p_t^d	-0.87%***	-3.15%***
n_t^d	-0.23%***	-1.66%***
p_t^s	0.40%	0.87%
n ^s	0.34%	1.45%

Macro level factors: expected aggregate inflation, expected core inflation, expected real GDP growth, unemployment gap

Modeling Macro Risks

Asset Pricing Implications $\circ \circ \circ \circ$

Excess Bond Returns and Macro Factors: Adjusted R^2 :s

	1 year bond	5 year bond
3 financial factors	6.66%	7.08%
3 financial factors +	9.62%*	7.74%
macro level factors		
3 financial factors +	13.38%***	11.01%***
macro level factors $+$		
macro risks		

Financial factors: level, slope, curvature

Modeling Macro Risks

Asset Pricing Implications $\circ \circ \circ \bullet$

Realized Bond Return Variances and Macro Factors: Adjusted *R*²:s

- Variation in the second moments of bond returns unexplored, although there is a clear return-variance trade-off in Treasury markets (Ghysels et.al., 2014)
- Regressing realized bond return variances on macro risks

	10 year bond
3 financial factors	13.90%
Macro level factors	18.90%
Macro risks	42.67%
3 financial factors + macro	29.37%****
level factors	
3 financial factors + macro	44.08%***
level factors $+$ macro risks	

Macro risks regression coefficients predominantly positive

Modeling Macro Risks

Conclusions

- Economically intuitive "demand" and "supply" macro risks are robust predictors of excess bond returns
- Work in progress: a term-structure model ⇒ more economically motivated than affine term structure models and more tractable than DSGE models