Solution #1: If \(f : D \rightarrow \mathbb{R} \) is continuous at \(x_0 \), then for all \(\epsilon > 0 \) there exists a \(\delta > 0 \) such that whenever \(x \in D \) and \(|x - x_0| < \delta \), then \(|f(x) - f(x_0)| < \epsilon \). Since \(A, B \) are subsets of \(D \), this holds in particular whenever \(x \in A \) or \(x \in B \) (and \(|x - x_0| < \delta \)), proving that \(f : A \rightarrow \mathbb{R} \) and \(f : B \rightarrow \mathbb{R} \) are continuous at \(x_0 \). Vice versa, if \(f : A \rightarrow \mathbb{R} \) and \(f : B \rightarrow \mathbb{R} \) are continuous at \(x_0 \), then for all \(\epsilon > 0 \) there exist numbers \(\delta_A, \delta_B > 0 \) such that if either \(x \in A \), \(|x - x_0| < \delta_A \), or \(x \in B \), \(|x - x_0| < \delta_B \), then \(|f(x) - f(x_0)| < \epsilon \). Now define \(\delta := \min\{\delta_A, \delta_B\} > 0 \). If \(x \in D \) and \(|x - x_0| < \delta \), then it follows that either \(x \in A \), \(|x - x_0| < \delta \leq \delta_A \), or \(x \in B \), \(|x - x_0| < \delta \leq \delta_B \), and hence \(|f(x) - f(x_0)| < \epsilon \) in both cases, as required for the continuity of \(f \) at \(x_0 \).

Solution #2: Recall that a function \(f : D \rightarrow \mathbb{R} \) is called \(\alpha \)-Hölder if there exists a constant \(C \) such that \(|f(x) - f(y)| \leq C|x - y|^{\alpha} \) for all \(x, y \in D \). Using the \(\varepsilon\)-\(\delta \)-characterization, it is very easy to see that \(f \) is uniformly continuous: given \(\varepsilon > 0 \), we need to find some \(\delta > 0 \) depending only on \(\epsilon \) such that whenever \(x, y \in D \) and \(|x - y| < \delta \), it follows that \(|f(x) - f(y)| < \epsilon \); using the above, it then clearly suffices to take \(\delta = (\frac{\varepsilon}{C})^{\frac{1}{\alpha}} \). Alternatively, we can work with the definition of uniform continuity based on sequences: given any two sequences \(\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty} \subset D \) with \(|x_n - y_n| \rightarrow 0 \), we need to show that \(|f(x_n) - f(y_n)| \rightarrow 0 \); so it suffices to show that if \(\{t_n\}_{n=1}^{\infty} \) is a sequence with \(t_n \geq 0 \) for all \(n \in \mathbb{N} \) and \(t_n \rightarrow 0 \), then \(t_n^{\alpha} \rightarrow 0 \); but this is almost immediate from the definition of a limit: given \(\varepsilon > 0 \), we need to find \(N \in \mathbb{N} \) such that \(t_n^{\alpha} < \varepsilon \) for \(n > N \); for this, simply use the assumption that \(t_n \rightarrow 0 \) to find \(N \in \mathbb{N} \) such that \(t_n < \varepsilon^{\frac{1}{\alpha}} \) for \(n > N \).

Note: Both solutions crucially rely on the fact that the function \(x \mapsto x^\alpha \) is increasing. To prove this fact, notice that, strictly speaking, we have defined \(x^\alpha \) only for \(\alpha \in \mathbb{Q} \); in this case, write \(\alpha = \frac{m}{n} \) with \(m, n \in \mathbb{N} \) and use that the functions \(y = \sqrt[n]{x} \) and \(z = y^m \) are increasing (which we already know), so that \(x_1 < x_2 \) implies \(y_1 < y_2 \) and hence \(z_1 < z_2 \), i.e. \(x_1^\alpha < x_2^\alpha \) as desired.

Solution #3: If \(f \) was not constant, then there would exist \(a, b \in [0, 1] \) with \(f(a) \neq f(b) \). Then \(a \neq b \), so we can assume without loss of generality that \(a < b \). Since the irrationals are dense (Corollary 1.10), there exists an irrational \(c \) between \(f(a) \) and \(f(b) \). It follows from the IVT that there exists an \(x_0 \in (a, b) \) such that \(f(x_0) = c \), contradicting the fact that \(f(x_0) \in \mathbb{Q} \).

Solution #4: Given \(x, \varepsilon \), define \(S := \{\delta > 0 : f(x + \delta) < f(x) + \varepsilon\} \) and define \(\delta_0 := \varepsilon^2 + 2\varepsilon\sqrt{x} \). Then we need to prove two things: (1) If \(\delta < \delta_0 \) then \(\delta \in S \) (this tells us that no number less than \(\delta_0 \) can be an upper bound of \(S \)). (2) If \(\delta > \delta_0 \) then \(\delta \notin S \) (this shows that \(\delta_0 \) is an upper bound of \(S \)). Given (1) and (2), it then follows that \(\delta_0 = \sup S \), the least upper bound of \(S \), as desired. The proofs of (1) and (2) are very similar, using the fact that \(f \) is strictly increasing: (1) If \(\delta < \delta_0 \) then \(f(x + \delta) < f(x + \delta_0) = \sqrt{x + 2\varepsilon\sqrt{x} + \varepsilon^2} = \sqrt{x} + \varepsilon = f(x) + \varepsilon \), so that \(\delta \in S \). (2) If \(\delta > \delta_0 \) then \(f(x + \delta) > f(x + \delta_0) = f(x) + \varepsilon \), so that \(\delta \notin S \).

Bonus Solution: Let \(x, y \in D \) and define \(m := \frac{x+y}{2} \). Notice that \(|x - m| = |y - m| = \frac{|x-y|}{2} \). By the triangle inequality and the definition of \(\alpha \)-Hölder,

\[
|f(x) - f(y)| \leq |f(x) - f(m)| + |f(m) - f(y)| \leq C \left(\frac{|x-y|}{2} \right)^\alpha + C \left(\frac{|x-y|}{2} \right)^\alpha = qC|x-y|^\alpha,
\]

where \(q := 2^{1-\alpha} \). Repeating this argument \(n \) times, we find that \(|f(x) - f(y)| \leq q^n C|x-y|^\alpha \). Now notice that \(q < 1 \) because \(\alpha > 1 \). Letting \(n \rightarrow \infty \), we deduce that \(|f(x) - f(y)| = 0 \).