RANKS AND FIRST CHERN CLASSES OF sl_2 CONFORMAL BLOCKS
Muhammad Ahsan and Dr. David Swinarski ~ April 10, 2014

Introduction

Conformal blocks have applications in string theory and mathematical physics. A conformal block is determined by a Lie algebra, a level, and a set of weights. We study conformal blocks for the Lie algebra sl_2, which is the set of all 2×2 matrices with trace zero. A weight for sl_2 is a nonnegative integer. Conformal blocks for sl_2 with up to five weights have been studied previously. We study two important properties called the rank and first Chern class of sl_2 conformal blocks of arbitrarily high level with six equal weights.

Rank formulas

The rank of a conformal block can be computed using recursive formulas. The formulas for computing ranks when there are two or three weights are shown below:

$$r_j(a, b) = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{otherwise.} \end{cases}$$

$$r_j(a, b, c) = \begin{cases} 1 & \text{if } a + b + c \text{ is even} \\ a \leq b + c & \text{and } a \leq b + c \\ b \leq a + c & b \leq a + c \\ c \leq a + b & c \leq a + b \\ a + b + c \leq 2j & \text{or otherwise.} \end{cases}$$

A recursive formula for the rank when there are n weights with $n \geq 4$ is

$$r_j(\lambda_1, \ldots, \lambda_n) = \sum_{k=0}^{n-2} r_j(\lambda_1, \ldots, \lambda_{n-2}, k) r_j(\lambda_{n-1}, \lambda_n, l).$$

In principle, these formulas can be used to obtain the rank for any sl_2 conformal block, but in practice, this is slow if the level is very large. For this reason, we want to find closed formulas for the ranks that will work even when the level is large.

B. Alexeev found closed formulas for ranks when $n = 4$. We found closed formulas for the rank when $n = 6$ and the weights are equal to each other. There are eight expressions altogether. We divide into cases as follows: Let the set of weights be (w, w, w, w, w, w).

- Case A: $0 \leq w < 2l - 3w \leq l$
- Case B: $0 \leq 2l - 3w < w \leq l$
- Case C: $0 \leq w \leq l < 2l - 3w$
- Case D: $2l - 3w \leq 0 \leq w \leq l$

The results also depend on whether the weight is even or odd.

First Chern class formulas

In 2008, Fakhruddin described a method for computing the first Chern class of a conformal block [1]. When there are six equal weights, the first Chern class is a vector of two nonnegative integers. We wanted to know which points in the first quadrant are first Chern classes of a conformal block for sl_2.

For this analysis, we assumed that the set of weights is of the form $(\lambda - j, \lambda - j)$. Fakhruddin’s formulas for the first Chern class are recursive. The x coordinate can be computed by the formula

$$\sum_{i=0}^{l-j} \deg(\ell - j, \ell - j, \ell - j, \ell - j) \rank(\ell - j, \ell - j, \ell - j, \ell - j)$$

and the y coordinate can be computed by the formula

$$\sum_{i=0}^{l-j} \deg(\ell - j, \ell - j, k) \rank(\ell - j, \ell - j, \ell - j, \ell - j) \rank(\ell - j, \ell - j, \ell - j, \ell - j),$$

where

$$\deg(a, b, c, d) = \rank(a, b, c, d) \max \left\{ \frac{a + b + c + d - 2k}{2} \right\}.$$}

As an example, here are some of the formulas for the x coordinates that we obtained by interpolation.

Conjecture. If j is even, the x coordinate of the first Chern class of the sl_2 conformal block with weights $(\ell - j, \ell - j)$ is given by the formulas below.

Case $\ell^2 < j < \ell^2 + 1$:

$$\begin{align*}
\frac{a}{2l} - \frac{b}{2l} + \frac{c}{2l} - \frac{d}{2l} + 2j - \frac{j}{2} + 1 = 0,
\frac{a}{2l} - \frac{b}{2l} + \frac{c}{2l} - \frac{d}{2l} + 2j - \frac{j}{2} + 1 = \frac{1}{2},
\frac{a}{2l} - \frac{b}{2l} + \frac{c}{2l} - \frac{d}{2l} + 2j - \frac{j}{2} + 1 = \frac{3}{2},
\frac{a}{2l} - \frac{b}{2l} + \frac{c}{2l} - \frac{d}{2l} + 2j - \frac{j}{2} + 1 = \frac{5}{2},
\frac{a}{2l} - \frac{b}{2l} + \frac{c}{2l} - \frac{d}{2l} + 2j - \frac{j}{2} + 1 = \frac{7}{2},
\frac{a}{2l} - \frac{b}{2l} + \frac{c}{2l} - \frac{d}{2l} + 2j - \frac{j}{2} + 1 = \frac{9}{2}.
\end{align*}$$

The distribution of first Chern classes

These formulas allow us to compute first Chern classes for large levels for the first time. We discovered that the first Chern classes are distributed throughout the first quadrant in an interesting pattern. For each level, the first Chern classes form a ‘leaf’ with one corner at the origin:

If the formulas we obtained by interpolation are correct, this suggests that a vector with nonnegative integer coordinates can only be a first Chern class of a conformal block if it lies on one of these leaves.

References